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Abstract
Time series forecasting is crucial for various applications,
such as weather forecasting, power load forecasting, and fi-
nancial analysis. In recent studies, MLP-mixer models for
time series forecasting have been shown as a promising al-
ternative to transformer-based models. However, the perfor-
mance of these models is still yet to reach its potential. In
this paper, we propose Wavelet Patch Mixer (WPMixer), a
novel MLP-based model, for long-term time series forecast-
ing, which leverages the benefits of patching, multi-resolution
wavelet decomposition, and mixing. Our model is based on
three key components: (i) multi-resolution wavelet decom-
position, (ii) patching and embedding, and (iii) MLP mix-
ing. Multi-resolution wavelet decomposition efficiently ex-
tracts information in both the frequency and time domains.
Patching allows the model to capture an extended history with
a look-back window and enhances capturing local informa-
tion while MLP mixing incorporates global information. Our
model significantly outperforms state-of-the-art MLP-based
and transformer-based models for long-term time series fore-
casting in a computationally efficient way, demonstrating its
efficacy and potential for practical applications.

Introduction
Typically, time series data volume accumulates to vast
amounts in various applications due to recording observa-
tions and events over long time horizons. The study of pre-
dicting time series data has been essential because of its ex-
tensive use in various domains such as finance, weather fore-
casting, and energy consumption prediction.

While research in time-series forecasting, for a long time,
relied on traditional statistical methods such as ARIMA
(Ariyo, Adewumi, and Ayo 2014), HMM (Hassan and Nath
2005), and SSM (Durbin and Koopman 2012), with the in-
creasing availability of large datasets and high computa-
tional power, deep learning methods gained prevalence due
to their superior performance in complex tasks. Specifically,
RNN and CNN-based models like DeepAR (Salinas et al.
2020), and SCINet (Liu et al. 2022a), as well as transformer-
based time series forecasting models, have become popular
over time.

Transformer models for time series forecasting, such as
Informer (Zhou et al. 2021), Autoformer (Wu et al. 2021),
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Fedformer (Zhou et al. 2022b), and Crossformer (Zhang and
Yan 2023) have become popular thanks to their improved
capability of learning long-term dependencies. However, re-
cently, questions have arisen about the performance of the
transformer variants in time series forecasting. The study
(Zeng et al. 2023) demonstrated that a simple linear model
can outperform or perform similarly with the state-of-the-
art transformers on the popular benchmark datasets for time
series forecasting.

Recently, MLP-based models have outperformed trans-
former variants in this domain. TimeMixer (Wang et al.
2024) and TSMixer (Chen et al. 2023) showed excellent
prospects in multivariate time series forecasting. TSMixer,
an MLP-mixer-based variant, mixes data in the time
and channel domain but is computationally expensive for
long-term forecasting due to a longer look-back window.
TimeMixer, which achieves the state-of-the-art results on
most benchmark datasets, decomposes a multi-scaled time
series into seasonal and trend series using the moving av-
erage method and then employs the mixing among the
mult-scaled data. However, due to complex seasonality pat-
terns, decomposing a signal into seasonal and trend data
is inadequate, and mixing among the multi-scaled data can
cause information loss (Hyndman et al. 2011). Addition-
ally, real-world time series data can have abrupt spikes and
dips, which is difficult to explain using multi-scaled moving
average-based decomposition techniques. Furthermore, cap-
turing the information only in the time domain is not suf-
ficient due to the complex nature of the time series data.
SWformer, a variant of Sepformer (Fan et al. 2022), ex-
tracts information in the time and frequency domain uti-
lizing wavelet transform-based decomposition. However, a
multi-level wavelet transform is required to achieve its full
potential.

To address these challenges, we propose a novel MLP-
mixer-based model, called Wavelet Patch Mixer (WPMixer).
What sets our model apart is its ability to capture intri-
cate information in both the time and frequency domains,
achieved through the use of multi-level wavelet decompo-
sition. WPMixer decomposes the time series into multiple
approximation and detail coefficient series using the multi-
level wavelet transform. Distinct resolution branches han-
dle each coefficient series, preventing information loss from
mixing among multiple coefficient series. We utilize patch-



ing to capture local information and reduce the computa-
tional cost. We also employ patch mixer followed by embed-
ding mixer to capture global information. Our contributions
can be summarized as follows:
• We propose a novel model consisting of three core parts.

Multi-level wavelet decomposition enables utilizing time
and frequency domain properties due to spikes and dips,
which cannot be captured by moving average-based de-
composition methods in the time domain. Patching and
mixing, on the other hand, capture local and global infor-
mation, respectively.

• We analyze each decomposed series using a distinct res-
olution branch. This approach ensures that information
from each resolution is maintained separately, thereby
minimizing potential information loss.

• We enhance the performance of the patch mixer by ap-
plying an embedding mixer after each patch mixer.

• Our model, WPMixer, efficiently achieves state-of-the-
art performance in long-term forecasting on several
benchmark datasets.

Related Work
Time series forecasting refers to predicting a sequence of
values in a time series based on a past sequence. Research on
time series forecasting considers both long-term and short-
term forecasting tasks.

Transformer-based models have recently shown remark-
able performance in long-term forecasting. Informer (Zhou
et al. 2021) applies prob-sparse attention with distill op-
eration. Autoformer (Wu et al. 2021) improves Informer
by applying decomposition in the transformer architecture.
They decompose time series into seasonal and trend pat-
terns with auto-correlation mechanisms based on time se-
ries periodicity. Sepformer (Fan et al. 2022) and FED-
former (Zhou et al. 2022b) are other transformer models
which use decomposition techniques for long-term time se-
ries forecasting. Sepformer uses a single-level wavelet de-
composition, in which wavelet coefficients are processed by
a transformer. FEDformer enhances the time domain fea-
tures using Fourier and wavelet transforms. In addition to
the enhancement method, they also utilize separate attention
mechanisms for Fourier and wavelet decomposed data. The
Crossformer (Zhang and Yan 2023) model employes a dual-
stage attention mechanism to capture dependencies across
time and variables. In (Liu et al. 2022b), a non-stationary
transformer is proposed with de-stationary attention to ad-
dress the over-stationarization problem. In the framework
of PatchTST (Nie et al. 2023), a conventional transformer
augmented with patching is introduced to address the chal-
lenge of minimizing computational complexity while effec-
tively capturing local semantic information. iTransformer
(Liu et al. 2024), an exclusively encoder-based transformer
architecture, adopts a strategy of tokenizing each variate se-
ries individually rather than processing multivariate data at
a single time step. This approach facilitates the computation
of mutual attention across the multivariate series.

FiLM (Zhou et al. 2022a) modifies the time series by
transforming it into a Legendre polynomial space, thereby

preserving the memory of long-term historical data. This
method employs a frequency-enhanced operation akin to
that used by FEDFormer (Zhou et al. 2022b) to accomplish
the enhancement of the time series data. MICN (Wang et al.
2023) employs multiscale hybrid decomposition to analyze
seasonal and trend components. Forecasting seasonal series
is conducted using a convolutional neural network (CNN)
model, which implements a convolutional kernel in the time
domain. Trend prediction is achieved through a regression-
based approach. TimesNet (Wu et al. 2023) utilizes the
Fast Fourier transform to derive multiple periods for trans-
forming time series data, thereby elucidating inter-period
and intra-period variations within the series. In (Zeng et al.
2023), authors presents a group of linear models to demon-
strate the effectiveness of simple linear models against the
transformer-based model.

Recently, MLP-Mixer models have also been shown to
provide effective solutions for time series forecasting de-
spite being initially proposed for vision-based tasks (Tol-
stikhin et al. 2021). This potential is further demonstrated
in TSMixer (Chen et al. 2023) and TimeMixer (Wang et al.
2024), where the mixer model is shown to outperform
the transformer-based methods on the popular benchmark
datasets. TSMixer has the same architecture as the original
MLP-Mixer (Tolstikhin et al. 2021), but instead of mixing in
the patch and channel domain, it mixes data in the time and
channel domain directly. TimeMixer obtains a multi-scaled
time series by applying down-sampling, then decomposes
the multi-scaled time series into seasonal and trend series
and mixes the data.

In our proposed WPMixer model, we improve the perfor-
mance of the MLP-mixer-based models by employing multi-
level wavelet decomposition with patching and mixing.

Proposed Method
Given a multivariate time series XL =
{xt−L+1, . . . ,xt−1,xt}, with a look-back window L,
at time step t, we aim to forecast the subsequent T data
points XT = {xt+1,xt+2, . . . ,xt+T }, where xt ∈ R1×C

denotes a multivariate data point at time t, C is the number
of the variates, and T is the prediction length.

Model Architecture
The architecture of the proposed model is illustrated in Fig-
ure 1. Our approach begins with decomposing the normal-
ized time series data into approximation and detail coeffi-
cient series through multi-level wavelet decomposition. This
multi-level decomposition facilitates feature extraction from
the time series data at various resolutions, where each reso-
lution represents a distinct frequency level. As we progress
to higher decomposition levels, the frequency range of the
approximation coefficients becomes narrower. At the same
time, we get multiple detail coefficient series that represent
detailed information at various frequency levels. However,
higher-level coefficient series may not always yield rele-
vant information for forecasting tasks. Additionally, differ-
ent wavelets offer varying trade-offs between time and fre-
quency localization, making the selection of an optimal de-



Figure 1: WPMixer with m levels of wavelet decomposition. XAi and XDi are the approximation and detail coefficient se-
ries corresponding to the input time series XL. YAi and YDi are the predicted approximation and detail coefficient series
corresponding to the predicted time series XT . To simplify notation, XWi

denotes either XAi
or XDi

. Code is available at
https://github.com/Secure-and-Intelligent-Systems-Lab

composition level and wavelet type a crucial aspect of the
optimization process.

Our model processes each wavelet coefficient series
through a distinct resolution branch, which prevents the in-
termixing of information across different frequency scales.
Each resolution branch comprises an instance normalization
module, a patch and embedding module, several mixer mod-
ules, a head module, and an instance denormalization mod-
ule. The patch and embedding module transforms the nor-
malized wavelet coefficient series into a series of patches.
The patch mixer modules then aggregate the local informa-
tion contained within these patches into a global information
context. In the mixer module, which is a fusion of a patch
mixer and an embedding mixer, the embedding mixer cap-
tures the global information in a higher dimensional space.
The head module subsequently forecasts the wavelet coeffi-
cient series, providing the information needed for predict-
ing the time series. A denormalization layer is employed
to reintegrate the stationary information into the predicted
wavelet coefficient series. Finally, the multi-level wavelet re-
construction module reconstructs the predicted time series
by utilizing the predicted approximation and detail wavelet
coefficient series. In the following subsections, we describe
the key modules of our model.

Instance Normalization: One of the main challenges for
time series forecasting is to deal with the time-varying mean
and variation. To overcome this challenge, Reversible In-
stance Normalization (RevIN) with learnable affine trans-
form has been proposed in (Kim et al. 2021). We initially
employ RevIN normalization and denormalization directly
in the time series data before decomposition and after re-
construction, respectively. We also employ RevIN normal-
ization and denormalization in the wavelet coefficient series.
The positions of the RevIN normalization and denormaliza-
tion layers are shown in Fig 1.

Decomposition: We utilize the multi-level discrete
wavelet transform to decompose the time series data. This
transformation involves an iterative decomposition process
utilizing high-pass and low-pass filters to extract wavelet co-
efficients at multiple levels (Mallat 1989). The coefficients
of the filters depend on the type of wavelet. The output of
the high-pass filter refers to detailed information, called
detail coefficients, whereas the output of the low-pass filter
refers to low-frequency information, called approximation
coefficients. At each level, the approximation coefficients
from the preceding level is split into new approximation and
detail coefficients, allowing for a deeper data analysis. We



adapt the implementation of the multi-level discrete wavelet
transform from (Cotter 2019) to work with PyTorch mixed
precision analysis.

The decomposition module disintegrates the normalized
time series XT

L ∈ RC×L into approximation and detail co-
efficient series:

[XAm ,XDm ,XDm−1 , . . . ,XD1 ] = Decomp(XT
L, ψ,m).

(1)
In this context, m denotes the decomposition level, ψ de-
notes the wavelet type, XAi

∈ RC×Li and XDi
∈ RC×Li

represent the approximation and detail coefficient series at
the i-th level of decomposition, respectively. Here, Li indi-
cates the number of wavelet coefficients in the coefficient
series at the i-th decomposition level. To avoid information
redundancy, we retain only the approximation coefficient se-
ries from the final level m while discarding those from lev-
els 1 through (m − 1), as they are further decomposed into
new approximation and detail coefficient series. However,
we include the detail coefficient series from all levels in
our analysis. In our experiments, we optimized the wavelet
type by considering the Daubechies, Symlets, Coiflets, and
Biorthogonal wavelet families.

Each series of wavelet coefficient is processed through
a distinct resolution branch within the model, encompass-
ing a RevIN normalization module, a patching and embed-
ding module, multiple mixer modules, a head module, and a
RevIN denormalization module. The total number of multi-
variate coefficient series or resolution branches in the model
is given by (m+1) due to the m detail and 1 approximation
coefficient series.

To simplify the notation, we will refer both the approxi-
mation coefficient series XAi

and the detail coefficient se-
ries XDi

with XWi
∈ RC×Li in the following steps.

Patching and Embedding Module: To capture the local
information efficiently, we adopt patching and embedding
techniques from (Nie et al. 2023). Each normalized univari-
ate wavelet coefficient series X(j)

Wi
∈ R1×Li , j = 1, . . . , C,

is divided into overlapping patches of length P . The non-
overlapping portion is denoted as stride S. Before patch-
ing, X(j)

Wi
is padded with S number of repeated last values

of the sequence X
(j)
Wi

. So, each univariate wavelet coeffi-

cient series X
(j)
Wi

is converted to X
(j)
Pi

∈ R1×Ni×P , where
Ni =

(Li−P )
S + 2 is the number of patches.

The multivariate output of the patching block,

XPi
= Patch(XWi

) ∈ RC×Ni×P (2)

is passed through a linear embedding layer to encode into
d dimensions. This embedding layer is shareable across all
variates of XPi

, i.e.,

Xdi = Embedding(XPi
) ∈ RC×Ni×d. (3)

Mixer Module: The Mixer module consists of two pri-
mary components, the Patch Mixer and a subsequent Em-
bedding Mixer. The Patch Mixer functions similarly to the
token-mixing MLP as outlined in (Tolstikhin et al. 2021).

Before intermixing information across the patch dimen-
sion, 2D-Batch normalization followed by dimension per-
mutation operation is applied on Xdi ∈ RC×Ni×d. Within
the patch mixer, two linear layers are employed alongside
the GELU activation function. The first layer expands the
dimensionality with factor tf while the subsequent layer re-
stores it to its original dimension. The operations in the patch
mixer can be summarized as,

X
′

di = P(BN(Xdi)) ∈ Rd×C×Ni (4)

X
′′

di = L2(G(L1(X
′

di))) ∈ Rd×C×Ni (5)
where BN(.) represents the 2D-Batch normalization, P(.)
represents dimension permutation, G(.) represents GELU
activation, L1 : Rd×C×Ni → Rd×C×Ni.tf represents layer-
1 and L2 : Rd×C×Ni.tf → Rd×C×Ni represents layer-2 in
the patch mixer MLP.

Prior to processing in the Embedding Mixer, X
′′

di
is sub-

jected to dimension permutation and 2D-Batch normaliza-
tion. In the Embedding Mixer, X

′′

di
traverses two linear lay-

ers incorporating GELU activation similarly to the Patch
Mixer. However, the initial layer increases the embedding
dimensionality d with factor df , while the subsequent layer
restores it to its original dimension. Different than Patch
Mixer, a residual connection is also included with the MLP.
The operations in the Embedding Mixer can be summarized
as,

X
′′

di = BN(P(X
′′

di)) ∈ RC×Ni×d (6)

Xdi2 = X
′′

di + L
′

2(G(L
′

1(X
′′

di))) ∈ RC×Ni×d, (7)

where L′
1 : RC×Ni×d → RC×Ni×d.df represents layer-

1 and L′
2 : RC×Ni×d.df → RC×Ni×d represents layer-2.

Two sequential Mixer modules are employed in our model,
where the second Mixer module has a residual connection
followed by 2D-Batch normalization.

Head Module: The Head module comprises a flatten and
a linear projection layers. The flatten layer flattens the last
two dimensions of the input Ydi ∈ RC×Ni×d.

Yfi = Flatten(Ydi) ∈ RC×Ni.d, (8)
and the linear layer transforms Yfi to

Yhi
= Linear(Yfi) ∈ RC×Ti , (9)

where Ti is the prediction length of the wavelet coefficient
series. To determine the value of Ti, an auxiliary time series
of equivalent length to the predicted series XT undergoes
the decomposition module while initializing the model. Ti
is set as the length of the auxiliary decomposed wavelet co-
efficient series.

Reconstruction: The Reconstruction module can be de-
scribed as,
Y = Reconstructionψ(YAm ,YDm ,YDm−1 , . . . ,YD1);

(10)
where YAi

∈ RC×Ti and YDi
∈ RC×Ti are the pre-

dicted approximation and detail wavelet coefficient series.
Y ∈ RC×T is the reconstructed time series, which is trans-
formed by instance denormalization to obtain the final pre-
diction XT ∈ RT×C .



Training: SmoothL1Loss is employed to train our
model with the default threshold value. Separate dropout
values are used for the Embedding and Mixer modules. We
used Optuna (Akiba et al. 2019) with the default setting of
Tree-structured Parzen Estimator (TPE) for optimizing the
hyperparameters. The optimized hyperparameter values are
shown in Table 7 in (Murad, Aktukmak, and Yilmaz 2024).

Differences with the Existing Models
TimeMixer leverages moving average-based seasonal and
trend decomposition of multi-scaled time series data and
integrates data across multiple scales. WPMixer, on the
other hand, employs multi-level wavelet transform-based
decomposition, processing each coefficient series individu-
ally through a resolution branch. TSMixer incorporates time
mixing and channel mixing while WPMixer employs patch
mixing followed by embedding mixing. Both TimeMixer
and TSMixer handle solely time-domain data, whereas WP-
Mixer extracts features from both the time and frequency do-
mains. Fedformer enhances time series using multi-wavelet
transform, frequently converting data between the time and
frequency domains. SWformer uses single-level wavelet
transform for time series decomposition. However, WP-
Mixer utilizes multi-level wavelet transform, which is com-
putationally less expensive than multi-wavelet transform and
more effective than single-level wavelet transform (Zhang
and Zhang 2019). Additionally, WPMixer performs time se-
ries decomposition at the beginning of the model and re-
constructs the series from the predicted coefficient series at
the end, avoiding multiple conversions between the time and
frequency domains.

Experiments
We extensively evaluate the long-term forecasting perfor-
mance of WPMixer on 7 popular datasets: ETTh1, ETTh2,
ETTm1, ETTm2, Weather, Electricity, and Traffic. The
specifications of datasets are given in Table 1.

Baselines: We compare WPMixer with seven recent time
series forecasting methods, namely TimeMixer (Wang et al.
2024)), TSMixer (Chen et al. 2023), TimesNet (Wu et al.
2023), FiLM (Zhou et al. 2022a), DLinear (Zeng et al.
2023), PatchTST (Nie et al. 2023), and Crossformer (Zhang
and Yan 2023). TimeMixer and TSMixer, which can be con-
sidered as the state-of-the-art models based on their perfor-
mances on the benchmark datasets, derive their architectures
from the MLP-Mixer model while PatchTST and Cross-
former utilize transformer architectures.

Dataset Variates Dataset Size Freq.
ETTh1, ETTh2 7 (8545, 2881, 2881) Hourly

ETTm1, ETTm2 7 (34465, 11521, 11521) 15 min
Weather 21 (36792, 5271, 10540) 10 min

Electricity 321 (18317, 2633, 5261) Hourly
Traffic 862 (12185, 1757, 3509) Hourly

Table 1: Specifications of the datasets. Dataset size refers to
the training, validation, and testing dataset sizes.

Setup: Following the practice in Informer, Autoformer,
PatchTST, TSMixer, and TimeMixer, all datasets were nor-
malized to a zero mean and unit standard deviation. The
normalized datasets served as the basis for ground truth in
our evaluations. In long-term forecasting, the lengths of pre-
dictions were set at 96, 192, 336, and 720, in alignment
with prior studies. During the training phase, SmoothL1Loss
was employed, whereas Mean Squared Error (MSE) and
Mean Absolute Error (MAE) were utilized for evaluation
purposes. Experiments with the ETT and Weather datasets
were performed on a single NVIDIA GeForce RTX 4090
GPU while the experiments with the Electricity and Traffic
datasets were carried out using two NVIDIA A100 GPUs.

Multivariate Long-Term Forecasting Results
In long-term multivariate time series forecasting, existing
studies employed distinct look-back window lengths to op-
timize performance. For a comprehensive comparison, we
present our results under two experimental setups following
TimeMixer (Wang et al. 2024).

In the first setup, we calibrated the look-back window
length alongside other hyperparameters to enhance forecast-
ing accuracy. We determined the optimal look-back window
lengths for each dataset, exploring values of 96, 192, 336,
512, 1024, and 1200. The comprehensive results under this
setup are presented in Table 2 while the optimized hyperpa-
rameter values and run information are given in Table 7 in
(Murad, Aktukmak, and Yilmaz 2024). The performance of
other models listed in Table 2 are also their optimized results
(Wang et al. 2024). Our analysis revealed that our model’s
performance is notably superior compared to its counter-
parts. Specifically, our model decreased MSE on average
across the ETTh1, ETTh2, ETTm1, and ETTm2 datasets by
7.8%, 2.2%, 3.4%, and 3.9%, respectively. Similarly, MAE
was reduced by 3.3%, 6.4%, 0.5%, and 2.5%, respectively,
for these datasets. On the Weather and Traffic datasets, our
model demonstrated lower MSE and MAE in average pre-
diction relative to the state-of-the-art TimeMixer model.
Moreover, on the Electricity dataset, our model achieved the
highest performance following the TimeMixer model.

In the second setup, we followed the unified setting of
TimeMixer for all the datasets. The detailed results are pre-
sented in Table 9 in (Murad, Aktukmak, and Yilmaz 2024).
We achieved lower MSE and MAE scores on average on
the ETT and Electricity datasets compared to the TimeMixer
model.

Computational Efficiency and Robustness
We evaluate WPMixer’s computational cost in terms of
the number of giga floating point operations (GFLOPs), a
hardware-independent metric. We compute the GFLOPs for
WPMixer and TimeMixer using the unified setting outlined
by (Wang et al. 2024) with embedding dimension d = 16 for
the ETTh1 dataset. The comparison is presented in Table 3.
WPMixer consistently requires less than one tenth GFLOPs
across all prediction lengths compared to TimeMixer.

We also evaluate our model with three different random
seeds by computing the mean and standard deviation for
MSE and MAE. Results are averaged over the prediction



Models WPMixer TimeMixer* PatchTST TSMixer TimesNet Crossformer* FiLM* Dlinear*
(Ours) 2024 2023 2023 2023 2023 2022a 2023

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.347 0.383 0.361 0.390 0.370 0.400 0.361 0.392 0.384 0.402 0.418 0.438 0.422 0.432 0.375 0.399
192 0.381 0.408 0.409 0.414 0.413 0.429 0.404 0.418 0.436 0.429 0.539 0.517 0.462 0.458 0.405 0.416
336 0.382 0.412 0.430 0.429 0.422 0.440 0.420 0.431 0.491 0.469 0.709 0.638 0.501 0.483 0.439 0.443
720 0.405 0.432 0.445 0.460 0.447 0.468 0.463 0.472 0.521 0.500 0.733 0.636 0.544 0.526 0.472 0.490
Avg 0.379 0.409 0.411 0.423 0.413 0.434 0.412 0.428 0.458 0.450 0.600 0.557 0.482 0.475 0.423 0.437

ETTh2

96 0.253 0.328 0.271 0.330 0.274 0.337 0.274 0.341 0.340 0.374 0.425 0.463 0.323 0.370 0.289 0.353
192 0.303 0.364 0.317 0.402 0.341 0.382 0.339 0.385 0.402 0.414 0.473 0.500 0.391 0.415 0.383 0.418
336 0.305 0.371 0.332 0.396 0.329 0.384 0.361 0.406 0.452 0.452 0.581 0.562 0.415 0.440 0.448 0.465
720 0.373 0.417 0.342 0.408 0.379 0.422 0.445 0.470 0.462 0.468 0.775 0.665 0.441 0.459 0.605 0.551
Avg 0.309 0.370 0.316 0.384 0.331 0.381 0.355 0.401 0.414 0.427 0.564 0.548 0.393 0.421 0.431 0.447

ETTm1

96 0.275 0.333 0.291 0.340 0.293 0.346 0.285 0.339 0.338 0.375 0.361 0.403 0.302 0.345 0.299 0.343
192 0.319 0.362 0.327 0.365 0.333 0.370 0.327 0.365 0.374 0.387 0.387 0.422 0.338 0.368 0.335 0.365
336 0.347 0.384 0.360 0.381 0.369 0.392 0.356 0.382 0.410 0.411 0.605 0.572 0.373 0.388 0.369 0.386
720 0.403 0.414 0.415 0.417 0.416 0.420 0.419 0.414 0.478 0.450 0.703 0.645 0.420 0.420 0.425 0.421
Avg 0.336 0.373 0.348 0.375 0.353 0.382 0.347 0.375 0.400 0.406 0.514 0.510 0.358 0.380 0.357 0.379

ETTm2

96 0.159 0.246 0.164 0.254 0.166 0.256 0.163 0.252 0.187 0.267 0.275 0.358 0.165 0.256 0.167 0.260
192 0.214 0.286 0.223 0.295 0.223 0.296 0.216 0.290 0.249 0.309 0.345 0.400 0.222 0.296 0.224 0.303
336 0.266 0.322 0.279 0.330 0.274 0.329 0.268 0.324 0.321 0.351 0.657 0.528 0.277 0.333 0.281 0.342
720 0.344 0.374 0.359 0.383 0.362 0.385 0.420 0.422 0.408 0.403 1.208 0.753 0.371 0.389 0.397 0.421
Avg 0.246 0.307 .256 0.315 0.256 0.317 0.267 0.322 0.291 0.333 0.621 0.510 0.259 0.319 0.267 0.332

Weather

96 0.141 0.188 0.147 0.197 0.149 0.198 0.145 0.198 0.172 0.220 0.232 0.302 0.199 0.262 0.176 0.237
192 0.185 0.229 0.189 0.239 0.194 0.241 0.191 0.242 0.219 0.261 0.371 0.410 0.228 0.288 0.220 0.282
336 0.236 0.271 0.241 0.280 0.245 0.282 0.242 0.280 0.280 0.306 0.495 0.515 0.267 0.323 0.265 0.319
720 0.307 0.321 0.310 0.330 0.314 0.334 0.320 0.336 0.365 0.359 0.526 0.542 0.319 0.361 0.323 0.362
Avg 0.217 0.252 0.222 0.262 0.226 0.264 0.225 0.264 0.259 0.287 0.406 0.442 0.253 0.309 0.246 0.300

Electricity

96 0.128 0.222 0.129 0.224 0.129 0.222 0.131 0.229 0.168 0.272 0.150 0.251 0.154 0.267 0.140 0.237
192 0.145 0.237 0.140 0.220 0.147 0.240 0.151 0.246 0.184 0.289 0.161 0.260 0.164 0.258 0.153 0.249
336 0.161 0.256 0.161 0.255 0.163 0.259 0.161 0.261 0.198 0.300 0.182 0.281 0.188 0.283 0.169 0.267
720 0.196 0.287 0.194 0.287 0.197 0.290 0.197 0.293 0.220 0.320 0.251 0.339 0.236 0.332 0.203 0.301
Avg 0.158 0.251 0.156 0.246 0.159 0.253 0.160 0.257 0.192 0.295 0.186 0.283 0.186 0.285 0.166 0.264

Traffic

96 0.354 0.246 0.360 0.249 0.360 0.249 0.376 0.264 0.593 0.321 0.514 0.267 0.416 0.294 0.410 0.282
192 0.371 0.253 0.375 0.250 0.379 0.256 0.397 0.277 0.617 0.336 0.549 0.252 0.408 0.288 0.423 0.287
336 0.387 0.267 0.385 0.270 0.392 0.264 0.413 0.290 0.629 0.336 0.530 0.300 0.425 0.298 0.436 0.296
720 0.431 0.289 0.430 0.281 0.432 0.286 0.444 0.306 0.640 0.350 0.573 0.313 0.520 0.353 0.466 0.315
Avg 0.386 0.264 0.387 0.262 0.391 0.264 0.408 0.284 0.620 0.336 0.542 0.283 0.442 0.308 0.434 0.295

1st Count: 29 26 7 9 0 2 1 1 0 0 0 0 0 0 0 0

Table 2: Multivariate long-term forecasting results. Four commonly used prediction lengths (96,192,336,720) from the literature
are considered for each dataset. The length of the look-back window is a hyperparameter. The results of the models marked
with ∗ are taken from (Wang et al. 2024); other results are taken from the corresponding papers.

WPMixer TimeMixer
T MSE MAE GFLOPs MSE MAE GFLOPs

E
T

T
h1 96 0.370 0.390 0.210 0.375 0.400 2.774

192 0.424 0.420 0.226 0.429 0.421 3.281
336 0.462 0.433 0.211 0.484 0.458 4.040
720 0.455 0.449 0.481 0.498 0.482 6.066

Table 3: WPMixer is ten folds more efficient for d = 16.

lengths of 96, 192, 336, and 720. As shown in Table 4, our
model exhibits a lower standard deviation than TimeMixer
in all cases, highlighting the robustness of our approach.

Ablation Study
WPMixer Modules: We conducted an extensive ablation
study to evaluate the individual contribution of each mod-
ule within the proposed model using the ETT datasets. This
analysis consists of fourteen distinct cases, each exploring
a different combination of the modules. Case-I represents
the foundational architecture of WPMixer. The details of the
other cases are delineated in Table 5. For each case, we per-
formed a thorough search of optimum hyperparameters uti-
lizing Optuna. The results in Table 5 demonstrate the impor-
tance of all proposed modules.

Effect of Multiple Levels of Decomposition: We as-
sessed the impact of multi-level decomposition by varying
m from 1 to 5. The other parameters are kept fixed for all
m as follows, look-back window 512, initial learning rate



WPMixer TimeMixer
MSE MAE MSE MAE

(1) 0.422 ± 0.001 0.423 ± 0.001 0.447 ± 0.002 0.440 ± 0.005
(2) 0.355 ± 0.003 0.387 ± 0.001 0.364 ± 0.008 0.395 ± 0.010
(3) 0.376 ± 0.002 0.388 ± 0.001 0.381 ± 0.003 0.395 ± 0.006
(4) 0.271 ± 0.001 0.317 ± 0.001 0.275 ± 0.001 0.323 ± 0.003
(5) 0.243 ± 0.001 0.269 ± 0.000 0.240 ± 0.010 0.271 ± 0.009
(6) 0.177 ± 0.000 0.267 ± 0.000 0.182 ± 0.017 0.272 ± 0.006
(7) 0.489 ± 0.005 0.297 ± 0.001 0.484 ± 0.015 0.297 ± 0.013

Table 4: Model robustness under the unified setting, includ-
ing similar look-back window length, batch size, and epochs
for all models. (1), (2), (3), (4), (5), (6), and (7) refer to
ETTh1, ETTh2, ETTm1, ETTm2, Weather, Electricity, and
Traffic datasets, respectively.

Modules E
T

T
h1

E
T

T
h2

E
T

T
m

1

E
T

T
m

2
Case D P E Px Ex H MSE MSE MSE MSE

I ✓ ✓ ✓ ✓ ✓ ✓ 0.379 0.308 0.336 0.245
II × ✓ ✓ ✓ ✓ ✓ 0.388 0.311 0.339 0.247
III ✓ × × ✓ ✓ ✓ 0.384 0.316 0.339 0.250
IV × × × ✓ ✓ ✓ 0.392 0.325 0.345 0.249
V ✓ ✓ × ✓ ✓ ✓ 0.378 0.314 0.339 0.247
VI × ✓ × ✓ ✓ ✓ 0.390 0.320 0.343 0.248
VII ✓ ✓ ✓ × × ✓ 0.394 0.311 0.353 0.252
VIII × ✓ ✓ × × ✓ 0.399 0.312 0.354 0.252
IX ✓ × × × × ✓ 0.400 0.315 0.356 0.251
X × × × × × ✓ 0.403 0.315 0.355 0.252
XI ✓ ✓ × × × ✓ 0.400 0.312 0.355 0.251
XII × ✓ × × × ✓ 0.403 0.314 0.355 0.252
XIII ✓ ✓ ✓ × ✓ ✓ 0.377 0.314 0.339 0.247
XIV × ✓ ✓ × ✓ ✓ 0.392 0.314 0.342 0.248

Table 5: Contribution of each module in WPMixer. D, P ,
E, Px, Ex, and H refer to the decomposition, patch, em-
bedding, patch mixer, embedding mixer, and head modules,
respectively. Look-back window is set to 512. Results are
averaged over the prediction lengths 96, 192, 336, and 720.

0.001, wavelet type Daubechies 5, batch size 128, epochs
10, d = 256, tf = 7, df = 7, patch size 16, and stride
8. MSE performances for prediction lengths of 336 and 720
on the ETTh datasets are presented in Figure 2. The results
indicate that the optimal level m depends on the prediction
length and dataset. Consequently, we treated m as a hyper-
parameter in our model and performed a search to identify
its optimal value for every experiment.

SmoothL1 vs MSE Loss: In our experiments, we uti-
lized the SmoothL1 loss as the primary loss function in-
stead of the traditional MSE loss. We conducted an abla-
tion study using the ETTh2 and ETTm2 datasets, employ-
ing an exhaustive search across the hyperparameter space.
Detailed findings are presented in Table 6. Analysis of the
results from Table 6 demonstrates that the adoption of the
SmoothL1 loss improves the performance of our model.

Look-Back Window: We also evaluated the impact of
look-back window size on the forecasting performance us-
ing the ETTh datasets, as illustrated in Figure 3. While in
general the MSE value is reduced with increasing look-back

Figure 2: WPMixer performance with the varying level of
the decomposition m.

(a) ETTh1 (b) ETTh2

Figure 3: Performance of the model with increasing look-
back window length L.

ETTm2 ETTh2
MSEloss SmoothL1 MSEloss SmoothL1

T MSE MAE MSE MAE MSE MAE MSE MAE
96 0.165 0.257 0.159 0.246 0.251 0.327 0.253 0.328
192 0.219 0.291 0.214 0.286 0.308 0.365 0.303 0.364
336 0.271 0.327 0.266 0.322 0.306 0.373 0.305 0.371
720 0.349 0.384 0.344 0.374 0.374 0.419 0.373 0.417

Table 6: SmoothL1 loss vs. MSE loss for training.

window length, after a certain length, the model’s perfor-
mance stops improving or even degrades in some cases such
as the prediction length of 336.

Conclusion
In this study, we introduced the Wavelet Patch Mixer (WP-
Mixer), a computationally efficient long-term time series
forecasting model. Our model utilizes multi-level wavelet
decomposition to capture multi-resolution information in
both the time and frequency domains. By incorporating
patching for local information and a patch mixer for global
information, we enhanced the model’s capability to handle
complex characteristics and abrupt spikes and dips in real-
world data. The addition of an embedding mixer after each
patch mixer further improved the model’s forecasting per-
formance. Our experimental results demonstrated that WP-
Mixer achieves state-of-the-art performance efficiently in
various long-term forecasting tasks. Through comprehen-
sive experiments, we analyzed the model performance, com-
putational cost, robustness to random initializations, effects
of decomposition level, loss function, and look-back win-
dow size.
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