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ABSTRACT In this paper, we propose a framework (ALMO) for any-shot learning from multi-modal
observations. Using training data containing both objects (inputs) and class attributes (side information) from
multiple modalities, ALMO embeds the high-dimensional data into a common stochastic latent space using
modality-specific encoders. Subsequently, a non-parametric classifier is trained to predict the class labels
of the objects. We perform probabilistic data fusion to combine the modalities in the stochastic latent space
and learn class conditional distributions for improved generalization and scalability. We formulate ALMO
for both few-shot and zero-shot classification tasks, demonstrating significant improvement in recognition
performance on the Omniglot and CUB-200 datasets as compared to state-of-the-art baselines.

INDEX TERMS Few-shot learning, zero-shot learning, multi-modal machine learning, probabilistic
modeling.

I. INTRODUCTION
Humans can recognize objects that belong to the classes
they have heard about but have never seen before. However,
AI systems still have difficulty generalizing from training
data for which some classes have few or no samples. This
has motivated the very active research area called any-shot
learning, which aims to imitate this aspect of the human
learning process [1], [2], [3]. Most any-shot learning algo-
rithms in the literature rely on a single data modality view
of an object (e.g., an image) to learn a predictor. The multi-
modality any-shot learning problem, where multiple types of
observations of the same object are available (e.g., image and
text), is largely unexplored. Diverse modalities can provide
additional valuable and complementary information, yielding
improved prediction performance. The primary motivation
behind this paper is to fill this gap, providing an any-shot
learning framework that exploits the dependency between
multi-modal observations with improved generalization and
scalability.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ikramullah Lali.

As described in [2], in the any-shot classification problem,
class attribute side information is available to supplement the
labeled object samples in the training data. This allows gen-
eralizable learning of a classifier from limited training data
when some classes have very few samples (few-shot) or no
samples at all (zero-shot). There have been many approaches
to any-shot classification but the so-called prototype learning
methods [4] have been among the most popular. Two disjoint
sets called support and query sets are formed from the object
samples and class attributes for each episode in advance.
Prototype methods use metric learning [5], [6] to embed
the support set into a low-dimensional semantic space. The
nearest neighbor classifier is then used to classify the samples
in the query set. Specifically, a representation for each class is
learned given its support samples in the form of a prototype.
Then, the class probability of a query sample is approximated
by using the distance of the query sample representation from
each prototype in the soft-max function. The objective is
to maximize the class posterior of the query sample labels
given the support samples and the network parameters. How-
ever, computing prototypes from few samples is prone to
over-fitting [7].
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FIGURE 1. Semantic illustration of the proposed ALMO framework when there are M = 2 modalities of object
observations and class meta-data, C = 3 classes, and the dimensionality of the latent space is L = 1. Data in the
support set for class 2 has multi-modal (object, class attribute) data pairs

(
{xi ′,m=1:M , yi ′ }i ′:yi ′ =2, a2,r=1:R

)
, while

class 1 data is missing objects and class 3 data is missing class attributes. The support set data is projected to a
stochastic latent space (orange dotted line) on a per-class basis to learn a latent representation. Given this
representation, a query sample is classified according to a distance computed in the stochastic latent space. In the
zero-shot classification setting, the objects are missing in the support set, e.g., the class 1 support set
{xi ′,m=1:M , yi ′ }i :yi ′ =1 is empty. Whereas in the few-shot classification setting, support data have very few samples,
and may also be missing class attributes, e.g., the class 3 attribute set a3,r=1:R is empty.

To alleviate over-fitting, we use low dimensional latent
variable representations in a Bayesian framework that bene-
fits from uncertainty quantification. Our latent variable mod-
els induce a probability distribution over the representation
space that allows us to integrate multiple modalities into
the any-shot learning framework using probabilistic data
fusion. This results in a method we call any-shot learning
for multimodality observations (ALMO), which offers a uni-
fied stochastic latent representation of prototypes and query
samples. Specifically, we first project the information from
all the samples in the support set, including multi-modal
object and class attribute observations to a lower-dimensional
latent space using neural network encoders. Since there is
more than one information source for the representations,
we adopt a probabilistic data fusion framework to com-
bine the multi-modal projections. Then, the (multi-modal)
observations of each query sample are projected to the same
latent space using modality-specific encoders. Subsequently,
non-parametric classification is performed in this space.
We derive analytical expressions for the classification loss
and class conditional distributions given the support classes
and query objects by integrating out the associated latent
variables. An illustration of the proposed model is given
in Figure 1.

The proposedALMO framework has twomain innovations
relative to previous methods: it enables fusing multi-modal
class and object information for few-shot and zero-shot
learning with a scalable fusion mechanism; and it does this
in a stochastic latent space under a hierarchical Bayesian

model, which provides automatic regularization for improv-
ing generalization performance. We formulate ALMO for
both few-shot and zero-shot classification tasks (Section III)
and conduct experiments on the Omniglot and CUB-200
datasets to demonstrate the effectiveness of the proposed
model (Section IV).

II. RELATED WORK
Early data fusion algorithms for high-dimensional multi-
modal data rely on linear latent variable models. Supervised
PCA [8], [9], PLS [10], CCA [11], and MMFA [12] allow
fusingmulti-modal data by assuming shared low-dimensional
latent variables.

Recent multi-modal data fusion algorithms exploit neural
networks. In [13] and [14] the authors use a single latent vari-
able per object to explain the object modalities. Optimization
of the network weights is performed by maximizing evidence
lower bound (ELBO). To push the model to be more discrim-
inative, the likelihood of the response variable is augmented.
The authors adopt the product of the experts framework to
combine the predictions from each modality. In contrast,
in [15] and [16] the authors use a mixture of experts to com-
bine the encoder predictions. However, this method requires
the ELBO to be computed through the evaluation ofM2 terms
of the conditional likelihood function, which may be com-
putationally prohibitive when the number of modalities M is
large. In [17] the latent variables are separated into two cat-
egories: joint and individual. Joint latent variables are shared
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among the input modalities whereas individual latent vari-
ables are associated only with their correspondingmodalities.
Hence, the objective function includes both discriminative
terms associated with the response variable through the joint
latent variables and the generative likelihoods of the input
modalities through individual latent variables. However, the
authors adopt late fusion [18] to combine multiple predic-
tions of the encoders, which, unlike early fusion, ignores
relevant fine-scale information of the data. Our proposed
model, on the other hand, performs probabilistic data fusion,
which results in better generalization, as we show in Section
IV. Unlike the aforementioned algorithms, the objective of
the ALMO is metric learning (Section III) as contrasted to
maximizing label or modality likelihoods, which makes it
more suitable for few-shot and zero-shot tasks.

Learning class representations in the form of proto-
types [4], [19], [20] is a contemporary technique for few-shot
and deep metric learning [6], [21]. In [4] it is proposed to
learn the class prototypes within the support set, followed
by nearest neighbor classification of the query samples using
Euclidean distance measured in the embedding space. The
objective in [4] is to minimize the classification error of the
query samples. The authors of [20] additionally construct a
linear mapping for each task to achieve task adaptation from
prototypes. In [22] a soft-max attention function is used to
perform the query samples classification. In contrast to these
methods, our model learns the class and object representa-
tions from multiple modalities using latent variables having
attributed uncertainty, which allows us to apply probabilis-
tic data fusion, reducing over-fitting. Similarly, the authors
of [19] learn the parameters of the Gaussian priors associated
with each class from the corresponding support set samples.
Their objective is to maximize the likelihood of the support
set samples given the class labels. Hence, they propose a
generative model that separates modeling class conditional
densities and performs the classification after training, which
is a nonlinear extension of Discriminant Analysis. In con-
trast, our model uses a discriminative objective function
and episodic training, which is more naturally adapted to
few-shot and zero-shot classification tasks. Recently, in [23]
a multi-modal few-shot learning algorithm was proposed,
in which the prototypes are informed from multiple views
of the objects. A fusion method is implemented by the
weighted average over a deterministic latent space with fixed
weights. In contrast, our method performs adaptive weighting
induced by the sample covariance matrices (See Equation 8)
in the stochastic latent space. Notably, in [24] a multi-modal
approach is proposed where one modality is the image itself
and the othermodality is theDiscrete Cosine Transform of the
corresponding image. Their fusion scheme is deterministic,
i.e., a simple concatenation in the latent space.

In the context of few-shot learning, the authors of [25]
and [26] propose a method based on optimizing transforms.
The features obtained from the feature extractor are first
processed using a power transform and then the maximum a
posteriori (MAP) algorithm is used to estimate class centers

by including the labeled and unlabeled data in the query
set. Hence, this method is only applicable in a transductive
setting where the training and test samples are fitted simulta-
neously. Another self-optimal transform method is proposed
in [27], where the cosine similarity matrix is computed from
all training instances. Then, a transport matrix is multiplied
with this matrix to transform all instances into another latent
space. However, this method may suffer from scalability due
to high O(n3) memory requirements and high computational
complexity due to the use of matrix multiply operations.
As another transductive method, [28] extends prototypical
networks to a generalized FSL setting where novel class
training samples are used during training. Data augmentation
is adopted for the limited number of samples in novel under-
represented classes.

For meta-learning tasks, many algorithms based on
class representation learning have been proposed to further
improve few-shot/zero-shot learning performance by focus-
ing on better learning of image representations. The authors
of [29] incorporated PixelCNN [30] when learning class pri-
ors. In [31], [32], and [33] attention mechanisms are used to
jointy perform attribute localization and fine-grained feature
learning.More complicated feature extractionmethods devel-
oped for different learning tasks can also be incorporated,
e.g., federated learning [34], [35]. Our proposed framework
can be used to learn better image representations by modi-
fying the encoders to map the images directly to distribution
estimates of the object-level latent variables. In this paper, the
focus is on improving data fusion and reducing generalization
errors.

In summary, this paper fills a gap by providing a com-
putationally tractable methodology to solve multi-modal
data fusion in few-shot and zero-shot learning settings that
are capable of significantly reducing generalization error.
In Section III, we define the model architecture and formulate
its optimization algorithms.

III. PROPOSED MODEL
A. NOTATION
Define the initial object dataset {xi,m=1:M , yi}Ii=1, where
xi,m=1:M = {xi,m}

M
m=1is the i-th observed object xi,m ∈

RDm in the m-th modality, yi ∈ {1, . . . ,C} is the class
label of object i. Here C is the number of classes, M is
the number of input modalities, I is the number of objects,
and Dm is the dimension of the observation space for the
mth modality. To form a training/testing episode, N classes
are randomly selected, then from each class, K objects are
randomly selected without replacement to form the support
set, and another K object to form the query set. The indices
of the eth support set and the eth query set are stored in Se and
Qe, respectively. Furthermore, let Se,j = {(i′ : yi′ = j) ∈ Se}
and Qe,j = {(i : yi = j) ∈ Qe} denote the subsets that only
contain the sample indexes with label j. The indices of the
sampled class labels are stored in �e. Note that each episode
contains only N distinct classes and 2 × N × K objects.
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Additionally, for class y ∈ {1, . . . ,C} define the meta-data
ay,r ∈ RDr for the r-th modality, r ∈ {1, . . . ,R} andDr is the
dimension of the metadata for modality r . The set of multi-
modal meta-data for class y is denoted ay,r=1:R = {ay,r }Ri=1.
Likewise the meta-data used in the episode e is denoted as
{aj,r=1:R}j∈�e .

B. MODEL DEFINITION
We propose a discriminative latent variable model that can
perform any-shot learning from multi-modal observations.
To this end, specific latent variables are assigned for each
prototype and each query sample. The latent variables share
the same latent space with dimension L. Let ηj ∈ RL denote
the prototype latent variable for class j and zi ∈ RL denote
the object latent variable for query sample i. We assume
the conditional distribution of zi given the query sample is
a multivariate normal distribution with parameters µi and
6i, i.e., p(zi|xi,m=1:M ) = N (zi|µi, 6i). Similarly, the con-
ditional distribution of prototype ηj given a support set is
p(ηj|{xi′,m=1:M }i′∈Se,j ) = N (ηj|mj,Sj). The free parameters
of the distributionsµi, 6i,mj,Sj are parameterized by neural
networks. Since the label is discrete, we use categorical distri-
bution to model the observed labels, i.e., p(yi|zi, {ηj}j∈�e ) =

Cat(yi|νi), where the vector νi, that lies in a N dimensional
probability simplex, is a non-random non-linear transforma-
tion of zi and {ηj}j∈�e . The vector νi is given as follows:

νi =

[ exp(−D(zi, η�e,1
))∑

j′∈�e
exp(−D(zi, ηj′ ))

, . . . ,

exp(−D(zi, η�e,N
))∑

j′∈�e
exp(−D(zi, ηj′ ))

]
, (1)

where D(zi, ηj) is a distance measure between the latent
variables zi and ηj. Given the conditional distributions, the
marginal likelihood of the class label of a query object is given
as

p(yi|xi,m=1:M , Se)

=

∫ ∫
· · ·

∫
p(yi|zi, {ηj}j∈�e )

× p(zi|xi,m=1:M )
[ ∏
j∈�e

p(ηj|{xi′,m=1:M }i′∈Se,j )
]

× dη�e,1
. . . dη�e,N

dzi. (2)

The marginal likelihood involves integrating out normally
distributed random variables over a categorical likelihood,
hence the expression above is intractable to compute. We first
replace the integration with the expectation operator, then
compute the log marginal likelihood of the labels for the
query samples in an episode:

ℓe =

∑
i∈Qe

log p(yi|xi,m=1:M , Se)

≥

∑
i∈Qe

E[log p(yi|zi, {ηj}j∈�e )], (3)

where the last line follows from Jensen’s inequality, and
the expectation is taken with respect to the distributions of
{ηj}j∈�e and zi. From Equation 1, the explicit expression for
the expected log term is given as follows:

E[log p(yi = j|zi, {ηj}j∈�e )]

= E[−D(zi, ηj) − log
∑
j′∈�e

exp(−D(zi, ηj′ ))] (4)

The first term depends linearly on the distance. However, the
second term involves non-linear transformation, specifically
the log-sum-exp function. The complexity of this expec-
tation depends on the distance metric. Given the distance
metric is squared Euclidean, i.e., D(zi, ηj) = ||zi − ηj||

2
2,

and the co-variance matrices 6i = diag([σi1, . . . , σiL]) and
Sj = diag([si1, . . . , siL]) are diagonal, the first term of the
expected log expression can be analytically computed as
follows:

E[||zi − ηj||
2
2] =

L∑
l=1

(µil − mjl)2 + σ 2
il + s2jl, (5)

where l indexes the components of the latent variables.
However, the second term, which involves the log-sum-
exp function, does not have an analytical solution. Hence,
we derive an upper bound for the expected log-sum-exp
function.
Proposition 1: Given the distance measure between inde-

pendent latent variables ηj ∼ N (mj,Sj) and zi ∼ N (µi, 6i)
is squared Euclidean, and the co-variance matrices 6i and
Sj are diagonal, then the expected log-sum-exp function can
be upper bounded as follows:

E[log
∑
j′∈�e

exp(−||zi − ηj′ ||
2
2)]

≤ log
∑
j′∈�e

exp
{ L∑
l=1

−
(µil − mj′l)2

1 + 2(σ 2
il + s2j′l)

−
1
2
log(1 + 2(σ 2

il + s2j′l))
}

(6)

See Supplementary Section I for the proof.
Combining Equation 5 and 6, we can define the overall

objective of a training episode as follows:

ℓ′
e =

∑
i∈Qe

∑
j∈�e

[ L∑
l=1

I(yi = j)[−(µil − mjl)2 − σ 2
il − s2jl]

− log
∑
j′∈�e

exp
{ L∑
l=1

−
(µil − mj′l)2

1 + 2(σ 2
il + s2j′l)

−
1
2
log(1 + 2(σ 2

il + s2j′l))
}]

, (7)

where I() is the binary indicator function. Note that two
consecutive bounds are applied for the sum over the log
marginal likelihood ℓe, which results in a tractable objective
ℓ′
e which is a proper lower bound to ℓe, i.e., ℓ′

e ≤ ℓe.
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Hence, maximizing ℓ′
e guarantees maximizing ℓe. The first

bound is a lower bound due to Jensen’s inequality which is
used to interchange expectation and the log operator, which
results in the analytic computation of the first RHS term
in Equation 4. The second bound is an upper bound to
the log-sum-exp function that results in a lower bound to
Equation 4. This enables taking expectation of log-sum-exp
function with respect to {ηj}j∈�e and zi, therefore, results
in a tractable objective in Equation 7. Note that this objec-
tive is parameterized by neural networks through the free
parameters of the distributions and the gradients of the
objective with respect to the neural network parameters can
be computed using backpropagation without Monte Carlo
sampling.

C. FEW-SHOT LEARNING OPTIMIZATION
We set up feature extractors based on neural networks that
compute low-dimensional representations of the query and
support samples in a common stochastic latent space. Let
fθm : RDm → RL denote a function approximated by a neural
network with parameter set θm, which projects mth modality
of a query sample xi,m to the low dimensional continuous

stochastic latent space, i.e., xi,m
fθm
−→ {µi,m, 6i,m}. Similarly,

let gφm : RDm → RL denote a function with parameter set
φm that projects mth modality of a support sample xi′,m to the

same latent space, i.e., xi′,m
gφm
−−→ {µi,m′ , 6i,m′}.

Let p(zi|xi,m) = N (zi|µi,m, 6i,m) denote the probability
distribution induced over zi by the modality m of the query
sample xi,m. Multiple modalities contribute to the probability
distribution of zi since a single latent variable is assumed
for all the modalities by model definition (See Equation 2).
A natural choice to combine the predictions is to assume
factorization andmultiply the probability density functions of
the modality-specific estimates [13], [36] as p(zi|xi,m=1:M ) =∏M

m=1 p(zi|xm). When the aggregate probability estimate is
denoted as p(zi|xi,m=1:M ) = N (zi|µi, 6i), the free parameters
are given by:

6−1
i =

M∑
m=1

6−1
i,m,

µi = 6i

(
M∑
m=1

6−1
i,mµi,m

)
. (8)

Next, we compute the distributions of the prototypes
assigned for each class. As opposed to the latent vari-
ables of the query samples, the prototypes are inferred
from multiple samples, and each sample has multiple
modalities. Let p(zi′ |xi′,m) = N (zi′ |µi′,m, 6i′,m) denote
the induced distribution from mth modality of i′th sup-
port sample. If we factorize the distribution of the proto-
type as p(ηj|{xi′,m=1:M }i′∈Se,j ) =

∏
i′∈Se,j

∏M
m=1 p(zi′ |xi′,m),

the conditional distribution of prototype ηj is obtained as
p(ηj|{xi′,m=1:M }i′∈Se,j ) = N (ηj|mj,Sj), where the parameters

mj,Sj are given as:

S−1
j =

∑
i′∈Se,j

M∑
m=1

6−1
i′,m,

mj = Sj

∑
i′∈Se,j

M∑
m=1

6−1
i′,mµi′,m

 . (9)

Note that the covariance matrices are assumed to be diago-
nal. Hence, the matrix inverse operations are replaced with
reciprocals, and matrix multiplications are replaced with
element-wise multiplications. See Supplementary Section II
for details on how to perform these computations in a numeri-
cally stable way. Afterwards, one can plug the estimates of the
distributions {µi, 6i}i∈Qe , {mj,Sj}j∈�e in Equation 7 to com-
pute the objective. The pseudo-code for few-shot learning is
given in Supplementary Section III.

D. ZERO-SHOT LEARNING OPTIMIZATION
In the case of zero-shot learning, we observe class meta-data
{aj,r=1:R}j∈�e from Rmodalities in the support set, instead of
the objects xi′,m considered in few-shot learning. In the query
set, like in few-shot learning, we have only objects xi,m. In this
case, Equation 2 can be modified as:

p(yi|xi,m=1:M , Se)

=

∫ ∫
· · ·

∫
p(yi|zi, {ηj}j∈�e )

× p(zi|xi,m=1:M )
[ ∏
j∈�e

p(ηj|aj,r=1:R)
]

× dη�e,1
. . . dη�e,N

dzi, (10)

where the new term p(ηj|aj,r=1:R) denotes the conditional
distribution of prototype ηj, and aj,r ∈ RDr denotes the
r th modality of the meta-data of class j. In this setting, the
conditional distribution of ηj depends on aj,r=1:R. To this
end, we set up neural networks gφr : RDr → RL to
project each modality of class meta-data to the latent space,
i.e., aj,r

gφr
−−→ {µj,r , 6j,r }. Let p(ηj|aj,r ) = N (ηj|µj,r , 6j,r )

denote the induced distribution of aj,r over ηj. Using the simi-
lar factorization used in few-shot setting for the aggregate dis-
tribution p(ηj|aj,r=1:R) =

∏R
r=1 p(ηj|aj,r ), we can compute

the parameters of the conditional distribution p(ηj|aj,r=1:R) =

N (ηj|mj,Sj) as:

S−1
j =

R∑
r=1

6−1
j,r ,

mj = Sj

(
R∑
r=1

6−1
j,r µj,r

)
. (11)

Using the objects in the query set, the distribution param-
eters are computed as in Equation 8, where µi,m and
6i,m are calculated through the neural network fθm . Given
these estimates, one can compute the objective using Equa-
tion 7, to evaluate the zero-shot classification performance.
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The pseudo-code for zero-shot learning is given in Supple-
mentary Section IV.

IV. EXPERIMENTAL STUDY
We conduct experiments on Omniglot [3] and CUB
datasets [37]. Omniglot provides data for 1623 handwritten
characters from 50 alphabets. Each character has 20 drawings
by different people, and each drawing provides an image
and stroke data as two different views of the same object.
We conduct an experiment on the Omniglot dataset to demon-
strate that our stochastic latent space formulation improves
generalization. Then we show that the additional information
from the stroke data can be leveraged by the proposedmethod
to improve few-shot learning performance.

The CUB dataset provides 11788 images of 200 bird
species. Each species has 40 to 60 images. This dataset also
provides class meta-data per species in the form of 312-
dimensional real-valued attribute vectors. Additionally, [38]
collected another meta-data corresponding to the visual
descriptions of the species. On this dataset, we conduct exper-
iments to demonstrate that the proposed method can utilize
images, class attributes, and visual descriptions to improve
the zero-shot and few-shot classification performances.

A. IMPLEMENTATION DETAILS
For theOmniglot dataset, we utilize the original splits, respec-
tively called the background and evaluation sets. To generate
the training episodes, we use 964 characters residing in the
background set. To generate the testing episodes, we use
423 characters residing in the evaluation set. We generate
100,000 training episodes to train the model and 600 testing
episodes to test the few-shot classification performance. Each
episode contains randomly chosen 2×N ×K objects, where
each object has two modalities, i.e., M = 2, as image and
stroke data. The details of how each episode is formed are
given in Section III-A. To preprocess the images, we follow
the procedure of [22].Wefirst downsize the images to 28×28,
then normalize and invert. For the stroke data, we follow [39]
and use a 3-dimensional real-valued sequential data format.
The first dimension of the data is a binary indicator that
corresponds to the first touch of the stylus after a break while
drawing a character. Either on the first touch or on the touch
after a break, this bit is on, otherwise, it is off. The second
dimension corresponds to the coordinates of the stylus which
shows the x-axis of the pixel location, and the third dimension
corresponds to the y-axis. When a touch occurs, the second
and third dimension takes the absolute coordinate, otherwise,
it takes the relative coordinates of the stylus. We fix the
network structures throughout the experiments. For the image
data, we use four stacked 2D Convolution layers each with
64 filters, having a kernel size of 3, and with stride 2. The
ReLU activation function is used in all layers. Then, a final
dense layer with an identity activation is stacked for mapping
the previous layer’s hidden activations to the mean param-
eter, and another dense layer with the same configuration
for mapping the previous layer’s hidden activations to the

diagonal covariance estimates in the stochastic latent space.
For the stroke data, we first zero-pad the sequences to equal
length, then use a masking layer, followed by an LSTM layer
with 128 hidden nodes with RELU activation. Similarly, two
dense layers with identity activations are stacked for the mean
and covariance mappings. We fix the dimension of the latent
space as L = 256.
For the CUB-200 dataset, we use the standard train-

validation-test split described in [40], in which there are
100 training, 50 validation, and 50 test classes. We create
30,000 training and 500 validation episodes where the val-
idation episodes are used for early stopping. In the zero-
shot setting, the support set in each episode contains class
attributes and visual descriptions, whereas the query set con-
tains only the images. In the few-shot setting, both support
and query sets contain all the modalities. For few-shot learn-
ing, choosing 1 and 5 shots for 5-way and 20-way classifica-
tion is common practice in the literature. To be able to align
and compare with the baseline algorithms, we conduct the
few-shot experiments using these settings.

We employ 2048-dimensional numerical features as input,
which are extracted using ResNet for the images by following
the procedure in [40]. Class attributes are 312-dimensional
numerical features, which are provided with the dataset. For
the visual descriptions, we use the 400-dimensional fea-
tures extracted by [38]. All these features are normalized in
advance by using the statistics computed from the training
set. Then, two linear mappings are realized to project the
class attributes and description features to the latent space by
using dense layers with identity activation functions. Another
linear mapping is realized through a dense layer to project the
image features to the latent space. For optimization over the
training data, we use the Adam optimizer with 10−3 learning
rate throughout all the experiments.

B. FEW-SHOT LEARNING
We first conduct an experiment on the Omniglot dataset to
fairly compare the generalization performance of ALMO
with two closely related well-established algorithms by pro-
viding the same experimental conditions, i.e., the network
architecture, latent space dimension, data pre-processing, and
single modality (images). Prototypical networks (PROTO)
that [4] uses deterministic latent space for the embeddings,
and VERSA [41] which amortizes the conditional distri-
butions of task-specific parameters. Specifically, VERSA
induces distributions over the prototypes, however, it assumes
deterministic query embeddings. In addition, VERSA uses
Monte-Carlo integration, which results in crude marginal
likelihood estimation and slow convergence, whereas ALMO
uses analytic integration. These differences translate to signif-
icant performance deviation. Fig 2 shows the learning curves
of the algorithms. PROTO severely over-fits due to point
estimation of the embeddings, especially in 20-way settings.
VERSA does not over-fit, however, it performs inferior to our
algorithm due to the differences mentioned above. ALMO
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FIGURE 2. Learning curves of PROTO, VERSA, and the proposed model ALMO. Overfitting is significant for PROTO when the number of
shots/ways is large. Since the proposed ALMO fuses multimodal data in a stochastic latent space it mitigates over-fitting. VERSA suffers from its
crude Monte-Carlo approximation to the marginal likelihood.

integrates out the latent variables and exhibits robustness to
over-fitting.

We next fairly compare ALMO with several few-shot
learning algorithms in terms of few-shot classification
accuracy by providing the same experimental conditions.
Both Omniglot and CUB-200 datasets are considered.
In addition to PROTO and VERSA, we also imple-
ment well-established Matching Networks (MN) [22], Tap-
NeT [20], and PTMAP [27]. For each algorithm, there are
two variants, -I and -S, which use either images or strokes,
respectively, for the Omniglot dataset. Similarly -I and -D,
use either images or descriptions/attributes, for the CUB-200
dataset. In addition to ALMO as a multi-modal classifier,
we consider MProto [23], which has recently been proposed
as the multi-modal version of PROTO, that fuses the modality
embeddings by average pooling.

Few-shot classification results are compiled in Table 1
for different N (5-way and 20-way) and K (1-shot and
5-shot) settings. The mean accuracy is computed by aver-
aging the accuracies of all testing episodes. The opti-
mizers are stopped early when the validation accuracies
are non-increasing. We observe that ALMO achieves the
highest accuracy by leveraging modalities effectively on
both datasets. For Omniglot, images provide spatial infor-
mation, and strokes/descriptions provide sequential infor-
mation. For CUB-200, multi-modal information on the

class attributes/descriptions is even more effective. It may
be claimed that multiple modalities provide complemen-
tary information for the objects, and ALMO outperforms
ALMO-I, ALMO-S, and other baselines by effectively lever-
aging these different views. 1

C. ZERO-SHOT LEARNING
Next, we conduct an experiment to assess the zero-shot learn-
ing performance of ALMO by using the CUB-200 dataset.
We choose N = 50 to form episodes containing samples
from 50 different classes. For each class, a single image is
chosen randomly as the query object. The optimizer is chosen
as Adam with 10−3 learning rate. After the model is trained,
we report average per-class top-1 accuracy on the test set [40].
In Table 2, we compare the performance with the recent
zero-shot learning algorithms that also utilize ResNet features
for images as a fair comparison. 2

1While the reported results may seem inferior compared to the state-
of-the-art results, see [42] and [43] for the related discussion about fair
comparison and comparable results for several settings.

2Although there are some recently reported better results [33], [44], [45]
based on customized feature extraction via attribute attention for zero-shot
learning, we believe comparison with them would not be fair since our focus
is on fusing different data modalities, not feature extraction. Also, we focus
on inductive zero-shot learning settings where test images are not available
during the training.
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FIGURE 3. Confusion matrices of the test classes that benefit most from the visual descriptions. The left confusion matrix is
obtained when only attributes are used. The right confusion matrix is obtained when both attributes and descriptions are
incorporated. The activation of each modality is given in the rightmost figure.

TABLE 1. Few-shot performance on Omniglot and CUB-200 datasets. Our
proposed ALMO performs the best in 7 of the 8 cases studied.

The competing algorithms use only attributes or descrip-
tions as the class meta-data. On the other hand, our proposed
algorithm ALMO can exploit both visual descriptions and
attributes to achieve higher zero-shot classification accuracy
by leveraging the information coming from both modalities
of the class meta-data. It is clear that such multimodal data

TABLE 2. Inductive zero-shot performance on CUB-200 dataset. The
proposed ALMO performs the best overall.

provide complementary information for some classes and our
algorithm effectively utilizes it.

D. INTERPRETABILITY
The contribution of each modality can be interpreted by
analyzing the data fusion process in the latent space. In the
zero-shot setting, to infer the class-level latent variables, the
predictions computed from the attributes and the descriptions
are combined using the proposed framework, as discussed
in Section III-D. After training, one can compute the KL
divergences between the combined prediction {µj, 6j} and
the individual predictions {µj,r , 6j,r } as a proxy for the con-
tributions of the modalities. A softmax function subsequently
can be used to normalize the weights.

In Figure 3, we show the partial confusion matrices con-
sisting of the classes that benefit most in terms of accuracy
increase when the descriptions are included additionally to
the attributes. The classes are in descending order in terms
of accuracy increase. For instance, the visual descriptions
of the boat-tailed grackle seem very useful to enhance the
classification of the images of this species. We show the
corresponding activation weights associated with each class
on the rightmost matrix. We observe that, in most of these
classes, the activation of the visual descriptions is larger than
the activation of the attributes.
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V. CONCLUSION
A. SUMMARY
In this paper, we developed a framework, ALMO, for
improving any-shot learning for multimodal data. The pro-
posed framework allows diverse information sources to be
fused by implementing an encoder network that exploits the
multimodality nature of the data. The framework is flex-
ible and can incorporate object-level multimodal informa-
tion as well as class-level multimodal information. On the
Omniglot dataset, we demonstrated that ALMO can incorpo-
rate object-level multimodal information (image and stroke)
to improve few-shot classification performance. On the CUB-
200 dataset, we showed that ALMO can exploit class-level
multimodal information (attributes and visual descriptions) as
well as object-level information (image) to improve any-shot
classification performance.

B. LIMITATIONS
As with any model, our framework has some limitations.
First, the main assumption that facilitates analytic compu-
tation of the model objective in Eq. 7 is that the estimated
co-variances are diagonal. Each feature extractor provides a
mean vector of size L and a diagonal covariance vector of size
L for each modality, which implies that estimated distribu-
tions in the latent space have independent components. This
is a common assumption in many probabilistic deep learn-
ing models, for instance, in Variational Auto-encoders [48].
However, this assumption may be overly strong and thus
may reduce predictive accuracy. A straightforward solution
is to compute the full covariance instead. However, this
will increase the number of parameters needed to map the
covariance from L to L2. A compromise would be to esti-
mate the upper triangle using a linear layer with L(L − 1)
parameters. In addition to the diagonal covariance assump-
tion, we have exploited two bounds to derive the analytic
objective, Jensen’s inequality and Taylor series expansion.
Although these types of bounds are common in machine
learning, in particular for variational inference, analysis of the
errors due to minimizing such a bound remains an open prob-
lem. Furthermore, our framework assumes that the distance
between the prototypes and query samples in the latent space
is Euclidean. if other distance metrics are considered, our
analysis would need to be extended, i.e., the analytic objective
should be derived from scratch. Finally, the modalities are
fused using the product of expert formulation in the proposed
framework. Other options, such as mixture of experts, can
be considered as future work. However, using a mixture of
Gaussian instead of a single Gaussian would also require
reformulating the objective function.

APPENDIX A
UPPER BOUND FOR THE LOG-SUM-EXP FUNCTION
Applying first-order order Taylor series expansion to the nat-
ural logarithm function, the expected log-sum-exp function

can be upper bounded as follows:

E[log
∑
j

exp(−||zi − ηj||
2
2)]

≤ log
∑
j

E[exp(−||zi − ηj||
2
2)],

where the inner expression corresponds to the expectation
of the exponential negative squared Euclidean distance. Let
a = zi − ηj, then a ∼ N (m, 6) where m = µi − mj and
6 = 6i + Sj. In the diagonal case, the latent components
are independent. Let the component l be denoted as al ∼

N (ml, σ 2
l ). Then the expectation can be factorized as:

E[e−||a||22 ] =

L∏
l=1

E[e−a
2
l ].

If we re-parameterize al by al = ml+σlϵ where ϵ ∼ N (0, 1),
the expectation for the component l is computed analytically
by solving the following Gaussian integral:

E[e−a
2
l ] =

1
√
2π

∫
e−(ml+σlϵ)2e−ϵ2/2dϵ

=
1

√
2π

e−m
2
l

∫
e−σ 2

i ϵ2−2mlσlϵ−ϵ2l /2dϵ

=
1

√
2π

e−m
2
l

∫
e−

1
2 (ϵ

2(1+2σ 2
l )+4mlσlϵ)dϵ

=
1

√
2π

e−m
2
l

∫
e
−

1+2σ2l
2

[
(ϵ+ 2mlσl

1+2σ2l
)2−

4m2l σ2l
(1+2σ2l )

2

]
dϵ

=
1√

1 + 2σ 2
l

e
−

m2l
1+2σ2l .

Replacing the components into the original vector:

E[e−||a||22 ] = exp
{ L∑
l=1

−
m2
l

1 + 2σ 2
l

−
1
2
log(1 + 2σ 2

l )
}
,

and subsequently replacing the original variables zi and ηj,
we get the following log-sum-exp function:

log
∑
j

E[exp(−||zi − ηj||
2
2)

= log
∑
j

exp
{ L∑
l=1

−
(µil − mjl)2

1 + 2(σ 2
il + s2jl)

−
1
2
log(1 + 2(σ 2

il + s2jl))
}
,

which can be computed analytically in a numerically stable
way by using the conventional log-sum-exp trick.

APPENDIX B
NUMERICAL STABILITY AND COMPUTATIONAL
COMPLEXITY OF THE DATA FUSION
We focus on the parameters of the conditional distribution
for the jth prototype latent variable. The parameters of the
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query latent variables can be computed by analogy. Recall
that the multiplication of the probability density estimates of
each modality and each support sample yields:

S−1
j =

∑
i′∈Se,j

M∑
m=1

6−1
i′,m,

mj = Sj

∑
i′∈Se,j

M∑
m=1

6−1
i′,mµi′,m

 ,

where the covariance matrix 6i′,m = diag([σ 2
i′1m, . . . , σ 2

i′Lm])
is assumed to be diagonal. The neural network estimates a
vector [log σ 2

i′1m, . . . , log σ 2
i′Lm] for each modality m with log

transformation by using an identity activation function on
the last layer. If we denote Sj = diag([s2j1, . . . , s

2
jL]) as the

covariancematrix of the jth the prototype latent variable, then
the estimation of each component l reduces to:

log s2jl = − log(
∑
i′∈Se,j

M∑
m=1

e− log σ 2
i′lm ) = −lse(− log σ 2

jl),

where σ 2
jl = [σ 2

0l0, . . . , σ
2
0lM , . . . , σ 2

Kl0, . . . , σ
2
KlM ] is a vector

consisting of the lth component of each modality and each
support sample variance estimates and lse(x) is log-sum-exp-
function which has to be computed in a numerically stable
way. Specifically, the conventional lse trick, lse(x − b1) +

b, where b = maxl xl , is used for the computation of this
function.

Similarly, the neural network maps each sample to a mean
vector denoted as µi,m = [µi1m, . . . , µiLm], where the com-
ponents are obtained with identity activation function on the
last layer. Denote mj = [mj1, . . . ,mjL] as the mean vector of
the jth prototype latent variable. Then, the expression for the
component l reduces to:

mjl =

∑
i′∈Se,j

∑M
m=1 µi′lme

− log σ 2
i′l∑

i′∈Se,j

∑M
m=1 e

− log σ 2
i′lm

= µT
jlS(− log σ 2

jl)),

where µjl = [µ0l0, . . . , µ0lM , . . . , µKl0, . . . , µKlM ] is a
vector comprising the lth component of each modality and
each support sample mean estimates, and S denotes the soft-
max function. Note that the fusion is achieved through the
weighted average of the means, where the weights are com-
puted via the soft-max function of each component which
takes the corresponding variances as the input. In this expres-
sion, the soft-max function has to be computed in a numeri-
cally stable way. Since logS(x) = x− lse(x), one can use the
above lse trick to compute logS, then take the exponential
of it.

The proposed data fusion algorithm introduces a slight
computational overhead as compared to the deterministic
variants. Particularly, we need to compute component-wise
log-sum-exp functions to obtain the covariances Sj and
component-wise softmax functions to obtain themeansmj for
each prototype. The deterministic variants only compute the

means, which require solely add operators. Hence, we addi-
tionally execute L softmax and L log-sum-exp functions for
each prototype with L × N operators per function, where
L is the latent space dimension and N is the number of
classes in the episode, whereas the deterministic variants
requiring only L × N add operators for each prototype.
Fortunately, the total number of operators induced is linearly
scaled with the latent space dimension and the few-shot
class number, hence does not affect the scalability of the
proposed algorithm. We also empirically observed that this
computational overhead of the operators ALMO additionally
carries is statistically insignificant since the dominant part
of the computations is coming from the feature extraction.
The average running time of ALMO for classifying a sin-
gle query from the Omniglot testing dataset was found to
be 12.169 msec in the 5-shot and 5-way setting, whereas
MProto takes 12.073 msec in an NV 1080TI GPU. In terms
of parameters, ALMO induces additional parameters due to
the extra linear mapping for the variances as compared to
the deterministic data fusion. In particular, ALMO requires
two linear layers to map the final hidden states to the mean
and covariance, whereas deterministic data fusion requires
only a single linear layer to map the final hidden states to
the mean. This overhead is also insignificant because most of
the parameters are devoted to the feature extraction networks
(around %99).

APPENDIX C
PSEUDO-CODE FOR FEW-SHOT LEARNING

Algorithm 1 Few-Shot Optimization per Episode
Input: {xi,m=1:M , yi}i∈Qe , {xi′,m=1:M , yi′}i′∈Se , �e
Initialize θm=1:M
for i′ in Se do
for m = 1 to M do
fθm : xi′,m → {µi′,m, 6i′,m}

end for
end for
for j in �e do
Infer p(ηj|{xi′,m=1:M }i′∈Se,j ) = N (mj,Sj) using Equa-
tion 9

end for
for i in Qe do
for m = 1 to M do
fθm : xi,m → {µi,m, 6i,m}

end for
Infer p(zi|xi,m=1:M ) = N (µi, 6i) using Equation 8
for j in �e do

Compute E[log p(yi = j|zi, {ηj}j∈�e )] using Equa-
tions 4-6

end for
end for
Compute ℓ′

e using Equation 7
for m = 1 to M do
Compute dℓ′

e/dθm and update θm
end for
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APPENDIX D
PSEUDO-CODE FOR ZERO-SHOT LEARNING

Algorithm 2 Zero-Shot Optimization per Episode
Input: {aj,r=1:R}j∈�e , {xi,m=1:M , yi}i∈Qe
Initialize φr=1:R, θm=1:M
for j in �e do
for r = 1 to R do
gφr : aj,r → {µj,r , 6j,r }

end for
Infer p(ηj|aj,r=1:R) = N (mj,Sj) using 11

end for
for i in Qe do
for m = 1 to M do
fθm : xi,m → {µi,m, 6i,m}

end for
Infer p(zi|xi,m=1:M ) = N (µi, 6i) using Equation 8
for j in �e do
Compute E[log p(yi = j|zi, {ηj}j∈�e )] using Equa-
tions 4-6

end for
end for
Compute ℓ′

e using Equation 7
for m = 1 to M do
Compute dℓ′

e/dθm and update θm
end for
for r = 1 to R do
Compute dℓ′

e/dφr and update φr
end for
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