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ABSTRACT Radio frequency (RF) fingerprinting is a hardware-based authentication technique utilizing
the distinct distortions in the received signal due to the unique hardware differences in the transmitting
device. Existing RF fingerprinting methods only utilize the naturally occurring hardware imperfections
during fabrication; hence their authentication accuracy is limited in practical settings even when state-of-
the-art deep learning classifiers are used. In this work, we propose a Chaotic Antenna Array (CAA) system
for significantly enhanced RF fingerprints and a deep learning-based device authentication method for CAA.
We provide a mathematical model for CAA, explain how it can be cost-effectively manufactured by utilizing
mask-free laser-enhanced direct print additive manufacturing (LE-DPAM), and comprehensively analyze the
authentication performance of several deep learning classifiers for CAA. Our results show that the enhanced
RF signatures of CAA enable highly accurate authentication of hundreds of devices under practical settings.

INDEX TERMS 3D printing, additive manufacturing, deep learning, device authentication, RF fingerprint-
ing, physical layer, wireless communications, security.

I. INTRODUCTION
As the number of Internet of Things (IoT) devices and amount
of wireless data communication rapidly increase, so does the
threat posed by adversarial parties trying to exploit the vul-
nerabilities of wireless systems. Hence, it is vital to develop
more secure methods of authentication and communication
while satisfying the quality and efficiency constraints. With
current technology, security at higher levels in the system
(such as storing a secret key in nonvolatile memory to
perform cryptographic primitives) is not sufficient against
sophisticated attacks. In addition, invasive and non-invasive
attacks have been shown to learn secret keys [1], [2] as the
key must exist at all times in digital form. Cryptography
can also be prohibitive for certain low-cost, lower-power,
and resource-constrained IoT devices. With ever increasing
technology available to attackers and the emergence of much
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faster computing methods, traditional encryption techniques
will not always be as secure as they currently are [3]. To this
end, hardware-based security methods can complement the
upper layer defenses, e.g., multi-factor authentication through
radio frequency (RF) fingerprinting.

RF fingerprinting is a promising authentication technique
for physical layer security. The classical RF fingerprinting
methods utilize the small amplitude, phase, and frequency
variations that are unique to each device due to the inevitable
randomness during the fabrication of the RF integrated cir-
cuits (ICs) connected to the antenna elements [4], [5]. How-
ever, since ICmanufacturing is tailored towards cost-effective
and high volume manufacturing of identical devices, the
fingerprint signatures from ICs are weak. For example, while
being detectable by Machine Learning (ML) algorithms [6],
state-of-the-art deep neural networks could only achieve
around 63% accuracy in authenticating 250 devices when
trying to make use of these small signatures [7]. In this work,
we build upon our previous findings, [8], to leverage a novel
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randomized antenna array concept, called Chaotic Antenna
Array (CAA), for significantly enhanced RF signatures, and
in turn, highly accurate authentication.

In CAAs, shapes of the antenna elements, their loca-
tions within the array grid, and their feed networks are
intentionally randomized based on a desired probability
density function. Although such geometry randomizations
can possibly be realized with several techniques, such as the
widely available printed circuit board (PCB) manufacturing,
3D-printing techniques such as laser-enhanced direct print
additive manufacturing (LE-DPAM), stand out as strong
candidates. Unlike many types of traditional manufacturing,
LE-DPAM is mask-free and generates the device structure
layer-by-layer, making randomizations available for little
to no cost. We have shown capabilities of LE-DPAM in
realizing antennas and arrays with embedded control ICs
and RF/digital lines - paving the way for introducing
randomizations at any level of the device structure [9], [10],
[11], [12].

Our prior theoretical work [13] on device authentication
with CAAs assumed that the user with the CAA has
knowledge of the wireless channel and most importantly,
its own phase signatures. Moreover, the phase signatures
were assumed to be transmitted equally in all directions
with no spatial variation. However, if phase signatures are
known by the device utilizing the CAA (i.e., stored in
memory), the device will be prone to secret key based
security attacks, as the keys are also stored in memory.
Hence, the device with the CAA must be unaware of
its own phase errors for the most beneficial, real-world
application. In this paper, our goal is to extend the CAA
based authentication concept to work without knowledge of
the wireless channel or its own signatures by resorting to deep
learning-based detection algorithms. Another key novelty
is related to the antenna element position randomization.
This type of randomization generates an antenna element
specific phase error (i.e., RF fingerprint) which is transmitted
with spatial (i.e., θ , φ) variance with respect to the classical
antenna array factor. This type of spatial variation greatly
benefits physical layer authentication. When combined with
antenna element-specific feed line length randomization
(which creates a large scale phase error, but with no spatial
variance), the CAA provides an order of magnitude enhanced
RF fingerprint, which forms a strong signature for ML-based
authentication techniques. Overall contributions reported in
this manuscript can be summarized as:

• We comprehensively analyze the authentication per-
formance of CAAs through mathematical modeling,
numerical simulations, and preliminary experimental
results; and show that highly accurate (nearing 100%)
authentication with hundreds of devices is possible
through deep learning methods. Neither the CAA
device nor the authenticator need to know/store the RF
signatures (i.e., phase differences).

• We explain an interesting phenomenon: a performance
drop in deep learning-based authentication when the

authentication duration matches the channel coherence
time.

• Through theoretical array factor, we show that the
CAA exhibits a direction-dependent signature due to
the randomized antenna location. This can provide extra
security against attackers who might try to capture the
RF signature. In traditional RF fingerprinting, attackers
can simulate the signature by collecting data from any
direction and using them to train ML algorithms [14].

• We provide a practical discussion of how the antenna
elements of CAAs can be designed and manufactured
using LE-DPAM. We also demonstrate that antennas
with randomized locations and feed line lengths may
perform with good impedance matching while offering
phase error variations that are within the entire 2π range.

The remainder of the paper is organized as follows: In
Section II, the mathematical model of a CAA is presented.
The proposed authentication scheme based on CAAs and
deep learning is studied in Section III. Section IV explains
cost-effective practical implementation of CAAs. Finally, the
paper is concluded in Section V.

II. CHAOTIC ANTENNA ARRAY MATHEMATICAL MODEL
In this section, we consider the mathematical model of the
Chaotic Antenna Array (CAA) to study the electric field for
a randomized antenna array. We start with the traditional
rectangular array consisting of M × N antennas arranged
uniformly on a rectangular grid. Centers of antenna elements
in a traditional array are illustrated by the filled green circles
in Fig. 1. The center position of antenna element (m, n),
m = 1, 2, . . . ,M , n = 1, 2, . . . ,N without any perturbation
is denoted by the position vector rmn, which can be written
as:

rmn = (m− 1)dx x̂+ (n− 1)dyŷ, (1)

where x̂ and ŷ are unit vectors, dx and dy are the distances
between the two antenna elements in the direction of x-axis
and y-axis, respectively. Throughout themanuscript, bold text
is used for vectors. Each antenna element, by itself, at the
center of the coordinate system radiates the electric field

Emn = emn(θ, φ)
e−jkr

r
(2)

where emn represents the field pattern in spherical coordinate
system as a function of θ and φ, r is the distance to
observation point, k is the wavenumber given by 2π f /c,
where f denotes frequency and c is the speed of light.
Ignoring the mutual couplings, and assuming identical
antenna elements for the array, we can express emn(θ, φ) =

e(θ, φ) ∀mn. Although randomization of antenna shapes is
also possible, we do not investigate such randomizations in
this work.

We proceed by perturbing the location of each antenna
element within the uniformly spaced antenna array. The
locations of the antenna elements are denoted by the unfilled
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FIGURE 1. Traditional uniform rectangular array antenna center locations are shown with green filled circles. Left: Randomized
antenna center locations in the CAA are shown with red unfilled circles. 3D array geometry to study electric field radiation.
Right: 2D sketch of the CAA with randomized antenna elements shown as red squares.

red circles in Fig. 1 and can be expressed as

r′mn = (m− 1)dx x̂+ (n− 1)dyŷ+ αmn(x̂ cos γmn + ŷ sin γmn)

(3)

where αmn ∈ U (0, αmax) and γmn ∈ U (0, 2π ) are uniformly
distributed perturbation magnitude and angle. αmax denotes
the maximum radius of perturbation. In a practical CAA
realization, αmax will be restricted by the amount of mutual
coupling that can be tolerated by the wireless communication
system. For a regular antenna array with antenna elements
spaced in half-wavelength increments, αmax therefore will be
limited to fractions of a wavelength, generating phase errors
not reaching up to the full 2π range. To address this, we also
introduce a random perturbation in the feed line length of
each antenna element, which will generate an additional
phase term of e−jLmn in the electric field equation, where
Lmn ∈ U (0, 2π ).

Based on the well-known far-field approximations in
antenna theory [15], the electric field radiated by an antenna
element located at r′mn can be written as

Emn = e(θ, φ)
e−jk(r−r̂.r

′
mn)

r
e−jLmn , (4)

where

r̂ = x̂ sin θ cosφ + ŷ sin θ sinφ + ẑ cos θ (5)

is the unit vector along the direction of observation.
Rearranging and carrying out the vector dot product in (4)
leads to the expression

Emn = e(θ, φ)
e−jkr

r
× ejk(m−1)dx sin θ cosφejk(n−1)dy sin θ sinφ

× ejkαmn cos γmn sin θ cosφejkαmn sin γmn sin θ sinφ

× e−jLmn . (6)

FIGURE 2. Phase signature w.r.t. a reference antenna in spherical
coordinates. The circular angle represents φ and the radius (i.e.,
concentric circles) represents the θ variation. The colormap illustrates the
phase difference. Left: Feed line randomization generates a constant
signature in all transmission directions. Right: Antenna geometry
randomization creates θ, φ dependent signature.

The second line in equation (6) is well recognized as
the terms of the array factor belonging to a traditional
uniformly spaced antenna array structure. The terms in the
third and fourth lines are generated by the randomizations
introduced to create the CAA. Therefore, the phase delays
implied by these terms can also be considered as ‘‘phase
errors’’ or ‘‘phase signatures’’ that are unique to the CAA.
More specifically, the terms in the third line stem from the
antenna location randomizations αmn and γmn. These terms
are dependent on (θ, φ), implying a spatial variance in 3D
space. The fourth line is the phase delay due to the feed line
randomization Lmn. This term has no (θ, φ), hence the phase
delay is transmitted identically to entire 3D space. Fig. 2
presents an example to illustrate the phase signature and
spatial variance properties of an antenna element of a CAA
with respect to its own unperturbed location and reference
line. Feed line length randomization alone creates a signature
transmitted equally in all directions, similar to a traditional
RF fingerprint, but significantly enhanced. Likewise, when
antenna position randomization is incorporated alongside
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feedline randomization, a phase variation that depends on
the direction of radiation is generated, as evidenced by the
colored phase distribution in Fig.2. It is important to note that
since the equations are based on the far-field approximations,
they are not applicable in the near-field region. The scenario
in which the authenticator is placed within the near-field of
the CAA must be investigated separately and is beyond the
scope of this manuscript.

FIGURE 3. Circuit diagram of a CAA. Each chaotic antenna element is
sequentially turned on using switches and has a random and
direction-dependent phase signature due to its unique geometry.

III. AUTHENTICATION
Early RF fingerprint authentication schemes used statistical
detectors [16], and wavelet transforms [17], [18], [19]. More
recently, traditional machine learning methods have been
applied to this problem, such as k-Nearest Neighbors (kNN)
or Support Vector Machines (SVM), among others [20], [21].
Present state-of-the-art relies on deep neural networks [7],
[22], [23], where deep convolutional neural networks (CNNs)
can successfully authenticate naturally occurring signatures
in the RF chain in idealized setups with a small number of
devices, according to recent literature [22], [23]. However,
[7] recently showed in a sizable study that naturally occurring
RF fingerprints are insufficient even for cutting-edge deep
CNNs (63% accuracy) under realistic circumstances with a
large number of devices. They go on to show that under
differing training and test environment conditions, accuracy
can drop as low as 35%. This section presents the proposed
authentication scheme based on CAA and shows that the
enhanced RF fingerprints of CAA enable close-to-perfect
(99%) authentication accuracy in scenarios similar to the
ones considered in [7]. Fig. 3 depicts the circuit diagram
of the CAA used within the proposed scheme. The terms
which follow the switches and digital phase shifters represent
spatially dependent phase signatures of each antenna element,
denoted by ejψi(θ,φ), i = 1, 2, . . . ,H , where H = MN .
The digital phase shifters are an essential part of the system
for analog beamforming during the wireless communication
stage. In addition to phase shifters, switches are included to
provide access to individual antennas during the proposed
CAA-based authentication scheme.

A. AUTHENTICATION WITH CAA AND THREAT MODEL
Consider a physical layer (PHY) authentication system
employing CAAs, in which a set L of K legitimate users

FIGURE 4. Threat model for authentication. Targeted: attacker knows the
login credentials of a legitimate user and tries to spoof its RF fingerprint.
Untargeted: login credentials are not used in upper layers and
authenticator checks only the RF fingerprint: AUTH if f (yk,i ) ∈ {1, ..., K },
NAUTH if f (yk,i ) = 0.

need to first authenticate their identity before receiving
service (Fig. 4). During authentication, user k transmits
a complex pilot signal by sequentially turning on its H
antennas using the switches as shown in the block diagram
of CAA in Fig. 3. This provides the authenticator with
an H -dimensional complex fingerprint xk ∈ CH , which
includes the random phase response of each antenna element.
A distorted fingerprint yk,t ∈ CH is received by the
authenticator during the authentication session because of
wireless channel uncertainties such as multiplicative and
additive noise, multipath fading, Doppler shift, etc. To deal
with such uncertainties, the authenticator builds a function
f ({yk,t }t ) ∈ {0, 1, . . . ,K } in a secure training session using
several training data instances received from all legitimate
users. Success in authentication is defined as f ({yk,t }) = k
for k ∈ L or f ({yj,t }) = 0 for an illegitimate user j /∈ L.

An impersonation attack [24] is defined as an illegitimate
user j ̸∈ L trying to authenticate as a legitimate user. If there is
also an upper-layer authentication system, such as passwords
or MAC addresses, in addition to PHY authentication, then
the attacker must target a specific legitimate user. In such
targeted attacks, as shown in Fig. 4, the attacker aims to
design an RF fingerprint x j ≈ xk , different from its own
fingerprint xj through software, so that f ({yj,t }) = k , where
{yj,t } is the received signal as a result of transmitted x̄j. When
there is no additional authentication system, the attacker may
also perform an untargeted attack by simply trying to get
authenticated as any of the legitimate users, i.e., f ({yj,t }) ̸= 0.

B. SIMULATION SETUP
For a study on the feasibility of CAA-based RF fingerprint
authentication, we generated data using the mathematical
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TABLE 1. Dataset parameters.

framework described in Section II. From this framework,
1200 antennas were simulated, which were grouped into
K = 300 CAAs, each with H = 4 antenna elements
configured in a square grid as M = 2 and N = 2.
αmax was set at 4 mm, dx and dy were both set at 26 mm,
and the radial distance r to the observation point was
set at 5 m. The azimuth angle φ and the polar angle θ
from the transmitting CAA to the receiver are randomly
selected within [−180◦, 180◦] and [0◦, 75◦], respectively.
We simulated an f = 5 GHz WiFi environment with Rician
multipath fading, in which people may be moving between
the device and the receiver. Considering a movement speed
Vmove ranging from 0.1 m/sec to 10 m/sec, the maximum
Doppler shift fd is between 16.67 Hz and 166.7 Hz following
the formula fd = (Vmove/c)f . The channel coherence
time under Clarke’s model, Tc = 0.423/fd , ranges from
approximately 0.0254 to 0.00254 sec. Also, the sampling
rate Fs is varied between 10 KHz and 1 MHz to test the
robustness to different test environments. By varying Vmove
and Fs, 7 different datasets were created to allow testing
under different scenarios. Table 1 summarizes the different
datasets and their properties. The rationale behind selecting
these values is explained in Sec. III-D.
In each authentication sequence, the 4 antennas in a CAA

are turned on sequentially to transmit a complex pilot signal.
The authenticator receives the in-phase and quadrature (I/Q)
samples through multipath fading channels in addition to
additive white Gaussian noise:

yi,t = hi,t ∗ xi + wi,t (7)

where xi = ejψi(θ,φ) is the transmitted pilot signal from
antenna i of CAA k with constant amplitude and the
corresponding phase signature ψi(θ, φ) (array index k is
dropped for notational simplicity), hi,t is the multipath
fading channel impulse response, ∗ denotes the convolution
operation, andwi,t ∼ Nc(0, σ 2

w) is the additive white complex
Gaussian noise. The impulse response of multipath fading
channel can be represented as [25]:

hi,t =

N−1∑
n=0

ai,nejθi,nδ(t − τi,n) (8)

where N is number of multipath components, ai,nejθi,n is
the complex amplitude of the n-th multipath component
for antenna i, which in our channel model follows a
Rician distribution, τi,n is the propagation delay for the n-th
multipath component, and δ is the Dirac delta function.

The I and Q samples are the real and imaginary parts of the
received signal yi,t . With 4 antenna elements in each array
and collecting I and Q samples of the received signal from
each antenna, the data used to authenticate a CAA has a
size of Na × 8, where Na and is the number of instances
within an authentication session. In our experiments, we used
Na = 1, 000. The CAA phase signatures and the received
signals through multipath fading channels were simulated
using MATLAB’s Communications Toolbox. In this simu-
lation, a strong direct path exists between the transmitting
antenna and the authenticating receiver, accompanied by
scattering in the vicinity of the receiver’s position. Given
that the distance between the transmitting antenna and the
authenticating receiver is significantly larger compared to
the scattering area, the angular spread of the departing rays
is minimal [26]. Consequently, all propagation paths are
assumed to experience approximately the same phase error
induced by the CAA. This corresponds to a line-of-sight
(LOS) scenario, where the user and authenticator maintain
direct visibility, while objects in the vicinity of the receiver
introduce additional reflections.

However, in the initial field experiments described in
Section III-E we show that the proposed CAA-based
authentication system is not restricted to the assumed
channel conditions in the simulations with scatterers focused
around receiver. In the field experiments, the transmitter
and receiver were positioned closer to each other, resulting
in stronger scattering effects on the transmitter side and
all along the channel. A horn antenna was used at the
receiver, where no objects were present in its immediate
vicinity. This experimental setup closely resembles the
deployments of practical communication systems, where
receivers are often installed in environments with minimal
surrounding scatterers. As shown in Sections III-D and III-E,
our authentication system achieves high performance under
different channel conditions with different scatter and fading
settings.

We include the naturally occurring signatures, used
in traditional RF fingerprinting, by modeling the power
amplifier non-linearities [27], [28], [29]. In the literature,
models with or without memory are used. A model with
memory using Volterra series is described in [29]. Power
amplifier models without memory typically use a Taylor
Series model,considering odd or even powers of the signals.
A model using odd powers is discussed in [28]. More
recently, in [27], the authors used a Taylor series model
with even powers, which is the model we incorporate in our
experiments:

fPA(xt ) = xt (1 + ψ0|xt |2 + ψ1|xt |4), (9)

where xt is the most recent I/Q sample, and ψ0, ψ1 are
coefficients unique to each power amplifier. We randomly
generate the values of ψ0 for each antenna array from a
Gaussian distribution with mean 0.2 and standard deviation
0.01. Similarly for ψ1, the mean and standard deviation are
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FIGURE 5. Input data to the authentication algorithm visualized as a
color map. Each row corresponds to a CAA, and each image represents
data received in an authentication session under different channel
conditions. The first 8 of the 1, 000 instances in an authentication session
are shown for clarity. The 8 columns in each image correspond to the I
and Q samples from 4 antenna elements in each array. A consistent
pattern is observed for each array.

0.15 and 0.01, respectively. The mean and standard deviation
values are obtained from [27] and [29], respectively.
Fig. 5 visualizes simulated data from four CAAs. For each

CAA, each row shows data received by the authenticator
through multipath fading channels in four different sample
authentication sessions. The original 1, 000 × 8 input data is
trimmed to an 8×8 image in the figure for better visualization.
The eight columns in each authentication session (i.e., image)
are the I and Q samples from four antenna elements in the
array, as explained earlier in this section. The phase signature
ψi(θ, φ) of each antenna i in an array is clearly seen in the
vertical colored pattern within a column in each image. The
signatures of all antenna elements in an array (i.e., colorful
columns in an image) together form the signature of the
array within each image. Despite the significant randomness
across the four authentication sessions performed at different
times due to multipath fading channel noise, one can still
observe a signature pattern for each array thanks to the
enhanced RF fingerprints of CAAs. For instance, while the
second and third columns of Array 1 typically have lower
values (represented by blue),its last columns typically have
higher values (represented by red). We see such distinct
but significantly noisy patterns in each array, which makes
deep learning classifiers, in particular Convolutional Neural
Networks (CNNs), promising for learning those patterns to
accurately authenticate hundreds of CAAs.
Remark 1: As shown in the literature [7], as well as our

results in Figs. 6 and 7, even with deep learning classifiers,
the naturally occurring phase signatures in traditional RF
fingerprinting are not distinct enough to survive the noise of
multipath fading channels in realistic scenarios.

Remark 2: Although there is an underlying pattern across
the images in each row, it is subject to challenging
levels of randomness in different authentication sessions
due to multipath fading channels. Such a complex pattern
recognition task neccesitates the use of sophisticated deep
learning classifiers, which is the topic of next section, instead
of simpler statistical detectors.

C. DEEP LEARNING CLASSIFIERS
CNNs are particularly well-suited for capturing the subtle
phase differences and distortions in I/Q samples due to their
inductive bias towards local spatial structure, which aids in
modeling the phase relationships between the signals. The
convolutional filters in CNNs can learn spatially correlated
patterns within the data, allowing the network to discern
the consistent phase shifts that come from the CAAs.
Furthermore, CNNs are robust to noise, allowing them to
isolate device-specific distortions in signal characteristics,
even in the presence of multipath fading channel noise,
enhancing the model’s capacity to generalize across diverse
channel conditions.

To study the effectiveness of ML algorithms for authenti-
cating CAAs, we test a spectrum of CNN based classification
models. The baseline model is a simple CNN, consisting
of two convolution-max pooling-ReLU layers, followed by
a single dense layer (CNN-3). The four other models are
described below. The model receives equalized I/Q samples
of size 1000× 8× 1, where the 8 columns correspond to the
I and Q signal samples from the 4 antenna elements.

First, we consider VGG-16 [30], a neural network architec-
ture with 16 layers. This model contains the most parameters
out of any model tested (138M ). We trained VGG-16 from
scratch on our data.

Our next model, ResNet-50 [31], introduces residual con-
nections, which effectively mitigates the vanishing gradient
problem. This in turn facilitates the training of deeper
networks with enhanced accuracy. We selected ResNet-50
for our tests, and considered two different approaches for
training. In addition to fully training a randomly initialized
version on our data, we also fine-tuned a version that was
pretrained on the popular ImageNet-1K dataset.

Following ResNet-50 is InceptionV3 [32], characterized
by its ‘‘network within a network’’ architecture, which
enables deeper and more efficient feature learning with-
out significantly increasing computational demand. Our
InceptionV3 was pretrained on ImageNet-1K before being
fine-tuned on our data.

The final model chosen is Xception [33], which incor-
porates separable convolutional layers alongside residual
connections. Xception represents the most cutting-edge
model for off-the-shelf CNN-based classification methods.
Like ResNet-50, we use both fully trained and fine-tuned
(pretrained on ImageNet-1K) versions of Xception.

For all models, except the simple CNN-3 network,
we slightly modify the first layer in the model to accept the
I/Q samples as input.
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Through MATLAB simulations, 110 authentication
sequences for 300 CAAswere formed. The data is partitioned
using a 100-10 split for training and testing, respectively.
We train each model with Adam [34] optimizer, a learning
rate of 10−5, decay of 10−6, for 200/500 epochs, depending
on the model. Batch size depends on model architecture, and
was selected for each model to fill the GPU VRAM. During
offline training, the 5 classifiers described above are trained
to map the input xk , k ∈ L, to probabilities {pi} for each user
i ∈ L, where

∑
pi = 1, indicating the probability of the input

sequence xk belonging to user i. The output probability vector
is used to compute the cross-entropy loss:

LCE = −

L∑
i=1

zi log pi (10)

where zi represents the one-hot-encoded ground truth, taking
the value 0 for every user in L except the user which
transmitted the data. The resulting loss is back-propagated
using Adam to optimize the network parameters over the
training process. For inference, we declare the transmitting
device to be î for which pi is maximized:

î = argmax
i
pi (11)

The overall accuracy over the test set is defined as the sum of
correct classifications divided by the number of test instances.

All models mentioned are implemented using PyTorch.
The experiments were conducted using an RTX 4090 GPU
with 24GB of VRAM. The training time for each network
depends on the architecture, number of trainable parameters,
batch size, and processing power.

The selection of classifiers was informed by each model’s
differing structural advantages, to provide a wide range of
comparisons on the unique challenges presented by I/Q signal
data classification. VGG-16 has a straightforward, densely
connected structure, providing a baseline to determine if
more complex architectures are necessary for acceptable
performance on this data type. ResNet-50, InceptionV3, and
Xception, in contrast, have advanced architectures, each
designed to mitigate the vanishing gradient issue in different
ways. These models thus facilitate deeper learning of features
which we hope to see improve authentication performance
under unideal channel conditions.

D. RESULTS
Table 2 shows the test classification accuracy for each of
the networks trained and tested on each dataset mentioned in
Section III-B. For 5 out of the 7 datasets, all models, including
the baseline CNN-3, score significantly above the 63% state-
of-the-art accuracy in the literature achieved by ResNet-50
using the traditional (non-CAA) RF fingerprints [7] in a
similar setup. The performance drop in sets 5 and 6 are
analyzed in detail in the following paragraphs. Comparing
the performance between the fully trained and fine-tuned
versions of the models, we notice no significant difference
in accuracy. This indicates that pretraining on large image

FIGURE 6. Test set classification accuracy of pretrained Xception when
sweeping Tc/Ta at SNR = 20dB. Smaller/larger Tc/Ta values correspond
to faster/slower fading channels. While the traditional RF signatures
without CAA only work in scenarios where the channel varies slowly with
respect to the authentication frequency, the proposed enhanced RF
signatures with CAA enable accurate authentication in both fast and
slow-fading channels with a caveat of performance drop in a mid-range
band where the channel’s fading pattern overlaps and causes
interference with the authentication pattern (Tc/Ta ≈ 1).

FIGURE 7. Authentication accuracy of pretrained Xception on traditional
RF signatures without CAA generated by the power amplifier model in
equation (9). Movement speed in the channel is set at Vmove = 20 m/s.
Successful authentication is observed at sampling rates close to 100 MHz.

datasets is not necessary for RF fingerprinting. Thorough
training on the I/Q data itself is sufficient to provide optimal
performance under these circumstances.

It is seen in Table 2 that the classification accuracy
depends heavily on the ratio between the channel coherence
time Tc and authentication duration Ta = Na/Fs, reported
as a subscript in the column headings, where Na =

1, 000 is the number of samples in an authentication
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TABLE 2. Test accuracy on data generated with CAA for SNR = 20 dB. Sets are represented with (Fs, Vmove)Tc /Ta , where Tc and Ta denote the channel
coherence time and authentication duration.

TABLE 3. Test accuracy on data generated with CAA for different SNR values for ResNet-50 model. Sets are represented with (Fs, Vmove)Tc /Ta , where Tc
and Ta denote the channel coherence time and authentication duration.

TABLE 4. Test accuracy on data generated without CAA (regular antenna arrays with only power amplifier signatures) for SNR = 20 dB. Sets are
represented with (Fs, Vmove)Tc /Ta , where Tc and Ta denote the channel coherence time and authentication duration.

sequence and Fs is the sampling frequency. In sets 1, 2, 3,
we initially increase Vmove ∈ {1, 5, 10} m/s while keeping
the sampling frequency fixed at Fs = 10 kHz to study faster
fading channels. In those scenarios, the channel coherence
time Tc ∈ {0.025, 0.005, 0.003} sec and the Tc/Ta ∈

{0.25, 0.05, 0.025} ratio both decrease, i.e., more random
channel realizations are observed during an authentication
sequence. Although counterintuitive, the performance of all
five methods increase as the wireless channel becomes more
challenging. To complete the picture, we also investigate
slower fading channels by decreasing Vmove ∈ {0.5, 0.1} m/s
in sets 4 and 5 compared to set 1. In these scenarios,
the channel coherence time Tc ∈ {0.05, 0.25} and the
Tc/Ta ∈ {0.5, 2.53} ratio both increase. Interestingly, the
performance drops across all algorithms while the channel
becomes less challenging (elaborated in Remark 3). We also

increase the sampling frequency Fs ∈ {100K , 1M} Hz in
sets 6 and 7 while keeping Vmove constant to further study
the increasing Tc/Ta ratio (even less channel randomness in
an authentication sequence). As Tc/Ta increases to 25.36,
the performance of all algorithms again climb above 90%
accuracy, reaching up to 99.9%.
Remark 3: It is observed that the performance drop,

demonstrated by the green curve in Fig. 6 for Xception,
happens in a band of scenarios in which the Tc/Ta ratio
is around unity. In those cases, the authentication duration
and channel coherence time are comparable, meaning that
during each authentication sequence the channel is renewed.
Coherence time denotes the duration in which the channel’s
effect on the transmitted signal becomes uncorrelated. When
the channel coherence time and authentication duration
coincide, there is another pattern, the channel’s fading cycle,
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that is overlaid on top of the authentication signature. As the
channel’s fading pattern collides with the authentication
pattern, destructive interference occurs between the two,
causing a performance drop for classification algorithms.

To measure the robustness of CAA-based authentication to
noise, we tested the performance of pretrained ResNet-50 for
various values of Signal-to-Noise Ratio (SNR) ranging from
−30 dB to 30 dB. The results are summarized in Table 3.
We see that the phase-based signatures introduced by CAA
are very resilient to high levels of noise.

1) CAA VS. TRADITIONAL RF FINGERPRINTING
Next, to evaluate the contribution of CAA signatures, we gen-
erated additional datasets for regular non-CAA antenna
arrays using only the power amplifier model in Eq. (9) under
the same 7 scenarios of (Fs,Vmove) values as in the previous
experiment for CAAs. The results in Table 4 show that
without CAAs, the models perform extremely poorly on all
datasets, except dataset 7, inwhich the channel is almost static
within the authentication sequence. To analyze this trend in
detail, we generatedmore scenarios for regular antenna arrays
with different combinations of moving speed and sampling
frequency. As the results in Table 5 show, highly accurate
authentication with regular antenna arrays is only possible
under idealistic scenarios where the channel does not change
significantly during the authentication process, i.e., channel
coherence time is much longer than the authentication
duration. This fact is demonstrated by the red-colored curve
in Fig. 6. It is seen in Fig. 6 that under fading channels
(log(Tc/Ta) < 1), traditional RF fingerprinting signatures
without CAAs are not sufficient to be reliable, while the
enhanced RF signatures of CAAs enable high accuracy
across fast and slow-fading channels, with a caveat of some
performance drop in a mid-range band where the channel’s
fading pattern overlaps and causes interference with the
authentication pattern (Tc/Ta ≈ 1). Even in that case, the
performance of CAAs does not drop below 65% accuracy.
Note that such a potential performance drop can be easily
avoided with rough knowledge of the channel condition
by selecting the sampling frequency (e.g., downsampling
in software) small enough to ensure a relatively fast-fading
channel (lower Tc/Ta values in Fig. 6). This is a remarkable
feature of CAA, as non-CAA RF signatures do not yield
acceptable results under fast-fading channels.

Since it is shown that the authentication performance
depends on the ratio between channel coherence time and
authentication duration, it seems possible to deal with the
fast-fading even with traditional antenna arrays without
CAAs by increasing the sampling frequency. To verify,
we conduct further experiments on traditional RF fingerprints
by keeping Vmove constant at 20m/s (typical vehicle speed)
and varying sampling frequency. From the results shown
in Table 6 and Fig. 7, it is observed that highly accurate
authentication is possible when the sampling frequency
approaches 100 MHz. At sufficiently high sampling rates for
a given fast-fading channel, the channel is practically static,

allowing the weak signatures introduced by the amplifiers
to be picked up by the classifier. In contrast, at lower
sampling frequency values, the channel is varying, and thus
the signatures introduced by the power the amplifier alone are
not enough for reliable authentication. However, in practice,
implementing a receiver with such high sampling rates is
more costly and complex compared to a receiver with a lower
sampling rate.

In general, power consumption and circuit complexity in
ADCs increase with increasing sampling frequency. This
means the cost of ADCs increases with higher sampling
frequency, as observed for the figure of merit P vs Cost graph
in [35]. The theoretical lower bound for sampling power
is discussed in [36]. This bound is known to be directly
proportional to the sampling frequency. Extrapolating the
power consumption graph shown in [37], it can be seen that
for 10 KHz sampling frequency the power consumption is
in the µW range, while for 100 MHz is in the mW range.
The actual power consumption depends on the ADC type and
other design factors, but in general increases with increasing
sampling frequency, as observed from experimental data
collected in [38]. Another consideration when designing
ADCs is the complexity of the ADC circuit as sampling
frequency increases. In [35], in a design of Sigma-Delta
ADC, the increase in filter order is discussed as sampling
frequency increases. Specifically, for 10 MHz sampling
frequency, the filter order could be as high as 5,000. In [39],
the authors discuss the increased difficulty in implementing
high sampling rate ADCs due to mismatches in sampling
speeds of different sampling circuits, leading to the need
of larger sized devices which in turn lead to parasitic
capacitances.

The CAA-enabled authentication system thus gives a con-
siderable advantage over traditional RF-based fingerprinting
in terms of power consumption and circuit complexity, result-
ing in cost savings in a practically feasible implementation,
which is elaborated in Section IV.

2) WIRELESS CHANNEL IMPACT
To analyze the impact of the Rician channel on the phase
of the transmitted signal, we plot and compare the phase of
the input signal and the output signal after passing through
the Rician channel. The analysis is conducted for the first
antennas of four CAAs, with a fixed position chosen for
each array, consistent with the simulation setup. The phase
plot of the input signal is depicted in Fig. 8, while the
phase plot of the output signals for various walking speeds
are shown in shown in Figs. 9, 10, and 11. The input
data sequence consists of all ones, and the memoryless
non-linearity effects of the amplifier are incorporated into the
input data phase. Additionally, the phase contributions from
the CAA position and feed line randomization are included.
Since the array position remains fixed, the phase contribution
from the CAA remains constant throughout the transmission
for a single array. Consequently, distinct but constant phase
values for each array are observed in Fig. 8. The signal
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TABLE 5. Test accuracy on data generated without CAA (regular antenna arrays with only power amplifier signatures) for SNR = 20 dB increases as the
channel becomes static. Sets are represented with (Fs, Vmove)Tc /Ta , where Tc and Ta denote the channel coherence time and authentication duration.

TABLE 6. Test accuracy on data generated without CAA (regular antenna arrays with only power amplifier signatures) for SNR = 20 dB increases with
higher sampling rates. Sets are represented with (Fs, Vmove)Tc /Ta , where Tc and Ta denote the channel coherence time and authentication duration.

TABLE 7. Model parameters, computational complexity, and inference
speed (Authentications per Second - APS) for each model.

is then transmitted through a Rician channel, with the
Doppler shift determined by walking speed. Higher walking
speeds correspond to more dynamic channels, resulting in
faster fading. Two walking speeds, 1 m/s and 10 m/s, are
considered to demonstrate the effects of slow and fast-fading
channels, respectively. At a walking speed of 0 m/s, zero
Doppler spread is observed, and the phase variations are
solely due to AWGN, as illustrated in Fig. 9. In the case
of a slow-fading channel with additive white Gaussian noise
(AWGN), as shown in Fig. 10, a walking speed of 1 m/s and
a sampling rate of 10 kHz result in the received signal phase
remaining approximately constant over longer time intervals
before changing. For the fast-fading channel scenario, the
walking speed is increased to 10 m/s while maintaining
the 10 kHz sampling rate. In this fast-fading scenario,
the channel becomes highly dynamic, with phase values
fluctuating significantly over short time intervals, as shown
in Fig. 11. This corresponds to a much shorter channel
coherence time compared to the slow-fading case. Phase
plots effectively illustrate the behavior of the received signal
under realistic slow and fast-fading conditions, consistent
with theoretical expectations. Presented work shows that
these challenging phase signatures under realistic channel
conditions can be detected by ML algorithms with high
accuracy.

FIGURE 8. Phase of an input signal plotted after adding phase terms due
to memoryless non-linearities in addition to CAA at a fixed position for
each of the first antenna of the first four arrays.

FIGURE 9. Phase of a received signal for a walking speed of 0 m/s and
sampling frequency of 10 KHz, corresponding to static channel with only
AWGN added.

3) COMPUTATIONAL COMPLEXITY
Table 7 compares the model paramters, computational com-
plexity, and inference speed (measured as Authentications
per Second - APS) for the deep learning models used in this
study. All models were tested on an Nvidia RTX 4090 GPU.
The baseline CNN-3 model is the most lightweight by
far, with 2.4 million parameters and 0.0012 GFLOPs,
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FIGURE 10. Phase of a received signal for a walking speed of 1 m/s and
sampling frequency of 10 KHz, corresponding to slow-fading scenario.

FIGURE 11. Phase of a received signal for a walking speed of 10 m/s and
sampling frequency of 10 KHz, corresponding to fast-fading scenario.

resulting in 2430 APS. This makes it extremely efficient
for scenarios with many devices, but as shown in this
section, lacks the accuracy of other methods. VGG-16,
ResNet-50, Xception, and InceptionV3 each offer different
trade-offs between complexity, size, and speed. ResNet-50
and Xception have similar GFLOPs values (1.25 and 1.24,
respectively), yet Xception outperforms ResNet-50 in terms
of APS, with 116 vs 109, likely due to Xception’s factorized
convolutions which optimize computation. InceptionV3,
with 27.8 million parameters, has much lower GFLOPs
complexity than other other advanced methods yet barely
passes 60 APS, indicating that some other bottleneck exists
for this model, likelymemory speed and number of sequential
operations. VGG16, on the other hand, has vastly more
parameters and GFLOPs compared to the other models
selected (139 million parameters and 15.5 GFLOPs), but
at the same time, vastly outperforms them on APS, with
437.5. This is due to VGG16’s highly parallelizable design,
allowing the GPU to very quickly infer from the input
data.

E. EXPERIMENTAL VERIFICATION
To evaluate the performance of the CAA-based authentica-
tion system using real-world data rather than synthetically
generated data, we are developing a testbed in our labo-
ratory. As shown in Fig. 12, the testbed includes software
defined radios (SDRs), CAAs manufactured in our labo-
ratory, necessary control electronics to turn on/off antenna
elements of the CAAs, software for controlling the testbed

FIGURE 12. Testbed setup with the CAAs shown on the left and
Authenticating Receiver shown on right.

and data collection. Full verification of the CAA based
authentication technique presented in this manuscript, par-
ticularly the training/authentication demonstrations involving
spatially variant fingerprints of the CAAs, involve many
sets of systematic data collections that are currently being
investigated. In addition, systematic data collection under
different wireless channel conditions is planned using the
testbed. Consequently, the details of the testbed (hardware
design and manufacturing, hardware characterization, SDR
programming, wireless channel scenarios, description of
data sets and their collection conditions such as the CAA
positions) and comprehensive experimental verifications of
CAA based authentication will be reported in a future
work.

The first set of experiments performed with this testbed
have the CAAs at fixed positions during the data collection.
The testbed utilizes four CAAs, each comprising four antenna
elements arranged linearly with randomized positions and
feed line lengths. Although our simulations modeled a
square array in this manuscript, this difference is negligible
since the angle-dependent signature exists both in square or
linear array arrangements. A horn antenna is connected to
an Ettus USRP X440 SDR, which serves as the receiver.
Data was gathered by sequentially activating each antenna
element in a cyclic manner. The data format matched that
of the synthetic data, allowing seamless input into our
model without modification. A total of 110 samples, each
containing 1000 sequences were collected, to match the
simulations in number. To ensure consistency with the Rician
channel model used in the simulations, a direct line-of-sight
path was maintained between the CAAs and the receiver.
However, the scattering objects in the environment are spread
around the room, including the vicinity of transmitters,
as opposed to the channel environment in the simulations in
the previous section. This experimental setup let us show that
the proposed authentication system is not restricted to the
considered simulation environment with focused scatterers
around the receiver using the MATLAB Communications
Toolbox.
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TABLE 8. Test accuracy on field experiment data with linear CAA and
fixed array positions.

FIGURE 13. Substrate stack-up of the aperture-coupled patch antenna
designed for the practical realization of CAAs.

The performance results of the real-world data, processed
using the same models as for synthetic data, are presented
in Table 8. The table demonstrates that the CAA system
performs exceptionally well in field experiments, achieving
100% accuracy in three out of the four tested models. The
experiments were conducted in a dynamic lab environment,
with people walking in the background and nearby reflective
surfaces to account for multipath effects and the presence of
external interference sources, such as Wi-Fi signals.

Initial datasets collected with each CAA transmitting in
multiple different positions are also showing strong per-
formance with accuracy approaching 98% with ResNet-50.
However, as stated, we must significantly expand the
data sets by performing many systematic characterizations.
Hence, we plan to report the details of the testbed and a
comprehensive set of experiments conducted with it in a
future work to better assess the performance of CAA-based
authentication in increasingly realistic scenarios.

IV. PRACTICAL REALIZATION OF CAA ELEMENTS USING
ADDITIVE MANUFACTURING
Randomization in antenna positions and feed line lengths can
be carried out with traditional manufacturing technologies;
however, this is expected to be costly since low-cost is
only achieved by replication of identical circuits. To enable
cost effectiveness, we investigate practical realization of the
CAAs using additive manufacturing (AM). AM is mask-free

and can form a 3D structure layer by layer. Hence, random-
ization of geometry can be carried out with no additional
cost by randomizing the printing files and/or the motions
and materials of the manufacturing heads. Recent research
work has already demonstrated that laser enhanced direct
print additive manufacturing (LE-DPAM) can be employed
to realize multilayered patch antennas [10], [40], structurally
embedded ICs [9], and packaging of ICs with antennas [41]
up to mm-wave frequencies, with performances comparable
to those attainable from conventional manufacturing.

Fig. 13 presents the 3D structure of the antenna ele-
ment proposed for practical CAA realizations. Although
LE-DPAM can manufacture the entirety of the shown struc-
ture, a hybrid assembly is proposed to combine the best of two
manufacturing techniques (i.e., low-cost and rapid production
of detailed but identical geometries with PCB vs. low-cost
manufacturing of randomized geometries with LE-DPAM).
To minimize the area of conductive traces manufactured with
LE-DPAM (for faster manufacturing speed), an aperture-
coupled patch antenna is considered. The LE-DPAM (i.e.
3D-printed) part consists of four material layers. Two of these
are dielectric acrylonitrile butadiene styrene (ABS) layers
(ϵr = 2.6, tan δ = 0.0085) that are manufactured by the
Fused Deposition Modeling (FDM) capability of LE-DPAM.
The remaining two layers are formed fromCB028 conductive
paste (σ = 1 × 106 S/m) by using the microdispensing
capability of LE-DPAM. Laser processing or micro-milling
the edges of the conductive traces are likely not needed for
the shown conductive layers (i.e., antenna andmicrostrip line)
due to the larger dimensions for operation at the 5.8 GHz ISM
band. The 3D-printed part is designed to be manufactured
on the LE-DPAM platform in an upside-down manner (as
in [10]). First, the 0.5 mm ABS is printed using FDM to form
the material base. This layer also acts as a cover to hide the
antenna element from visual inspection. The process follows
with microdispensing of conductive paste to form the patch.
Subsequently, the 3 mm thick ABS material is printed using
FDM. This layer acts as the antenna substrate and mainly
controls the antenna bandwidth. Finally, the microstrip line is
microdispensed to complete the production of the 3D-printed
structure. Antenna position (relative to the coupling slot)
and microstrip line lengths are randomized geometry
parameters.

The 3D-printed structurewill be screwed (or glued/bonded)
on to the PCB as illustrated with the substrate stack-up
shown in Fig. 13. The PCB is a 0.508 mm thick Rogers
4003C substrate layer (ϵr = 3.55, tan δ = 0.0027) with
two layers of conductive traces. One layer carries the RF
and antenna ground plane with the antenna coupling slot
and a larger cutout area for preventing the overlap with the
microdispensed microstrip lines. Inside the cutout area, two
very short microstrip lines are included as pads to overlap
with the tips of the microdispensed microstrip line when the
entire structure is assembled. The second layer carries the
RF microstrip feed line that enters the PCB and extends over
the coupling slot to feed the antenna element. In addition,
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FIGURE 14. Layout details of the CAA element in Fig. 13. Dimensions that
are randomized (feed line length, and antenna location) are underlined.

this layer carries a rectangular-shaped trace to act as the
ground plane of the microdispensed microstrip line. This
trace is connected to the main ground using a set of 0.3 mm
diameter conductive vias to prevent undesired radiation. Two
0.6 mm diameter conductive vias are used to connect the RF
microstrip line with the microstrip line pads on the opposite
side of the board. After entering the board from the first
conductive layer (i.e., the bottom layer in Fig. 13), the RF
signal travels to the second conductive layer, passes over
a randomized microdispensed microstrip line, and travels
back to the first conductive layer to feed the antenna element
through a coupling slot.

Fig. 14 presents the layout of the aperture-coupled patch
antenna. Although patch dimensions can be randomized to
create differences in cross polarization and phase delay, they
are left constant in this study. An important aspect of the
design is the choice of a relatively thick 3 mm antenna
substrate. Since impedance matching aperture-coupled patch
antennas is sensitive to the coupling slot position and its
dimensions, the thick antenna substrate is utilized to obtain
a wideband operation when the antenna element is centered
over the coupling slot as shown in Fig. 14. The relative
position of the patch with respect to the coupling slot is
randomized as described in Section II (αmax = 4 mm).
This results in a frequency shift in the antenna element,
but the antenna remains impedance matched due to its
wideband characteristics. The microdispensed feed line is
bent to fit more line length within the half-wavelength
space of an antenna array, as shown in Fig. 14. Each bent
section can assume a length between 2.5 mm and 16.5 mm.
Considering the 2.5 mm length as the reference state, the total
microdispensed line length can be randomly enlarged from
0 mm to 28 mm, where the latter corresponds to a ≈ 360◦

phase shift within the shown substrate stack-up. 2.5 mm is
the length allocated for the overlap with the pads of the feed
line on the PCB. This contact-based electrical connection can

FIGURE 15. |S11| performance of 1200 antenna elements as their
geometry is randomized.

be further strengthened with the application of silver epoxy.
It is also important to note that the feed line width is 1.1 mm
for the bottom conductive trace of the PCB since the trace is
modeled to be open to air whereas the microdispensed line is
an embedded line.

The Ansys Electronics Desktop (EDT) HFSS simulation
of the antenna element (with the shown 52 × 52 mm2 cross
section, but with a short 6.5 mm feed line) shows that the
unperturbed antenna operates with 9.4% |S11| < −10 dB
at the center frequency of 5.75 GHz. The realized gain is
6.7 dBi at 5.8 GHz, corresponding to a radiation efficiency
of 93%. AMATLABm-file was written to create a script that
automates Ansys EDT HFSS to simulate antenna elements
with randomized locations and feed line lengths. The script
is also capable of exporting the parameters of interest and
repeating the process over the desired number of antenna
realizations. Both geometry randomizations are based on a
uniform distribution, as discussed in Section II. Fig. 15 shows
the |S11| (dB) (i.e., port reflection coefficient) performance
of the 1200 antenna elements automatically simulated with
the MATLAB - Ansys EDT HFSS framework. Resonance
frequency shifts are notably visible due to displacement of
the antenna element over the coupling slot.

However, it is important to note that the CAA concept
is not limited to the aperture-coupled patch antenna design
presented in this study. Alternative antenna configurations,
such as probe-fed patch antennas, could minimize or
eliminate frequency shifts. For example, prior work [9], [11],
[42] has demonstrated the feasibility of implementing vertical
interconnects in 3D-printed substrates using conductive ink-
filled vias, which could support such designs. While these
approaches are effective, they involve additional manufac-
turing steps that may extend the production time and we
prefer to avoid in our initial prototypes. The aperture-coupled
patch antennas are specifically designed with a much broader
bandwidth than the intended communication band, ensuring
that the expected resonance frequency shifts not change the
fact that the antennas remain well-matched with |S11| <

10 dB, allowing for over 90% power acceptance. The
presented study validates this fact with all 1200 antenna
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instances maintaining a lower than −10 dB |S11| across
the 5.8 GHz ISM band. Comprehensive manufacturing
details, their usage within test nodes and testbeds employing
software defined radios will be the subject of a future study.
Additionally, future work will explore alternative antenna
designs to further mitigate resonance frequency shifts and
enhance compatibility with specific wireless standards.

A. WIRELESS COMMUNICATIONS WITH CAAS
The randomized antenna positions in the CAA share sim-
ilarities with non-uniform antenna arrays, such as thinned
or sparse arrays that have been explored extensively in the
literature. For a system that can be designed to make CAAs
perform beamforming by relying on analog phase shifters
behind each antenna element, we restricted the average
spacing among the antenna elements to half-wavelengths
and avoided the issues of grating lobes. Moreover, the
magnitude of the vector used to randomize the positions of
the antennas were restricted to keep mutual coupling among
the antennas low. Under scenarios when the randomizations
are not known by the user of the CAA, pilot signal training
sequences can be employed to perform analog beamforming
as demonstrated in our recent work [43]. While pilot signal
adds an extra step for point-to-point communications, the
process aligns well with the training requirements when the
analog beamforming arrays are operated within scattering
or non-line-of-sight environments. It is important to note
that the CAA concept can also be employed within systems
that will perform fully digital beamforming, where the
digital system can optimize the transmission coefficients
from the CAAs to achieve the best data rates. Consequently,
CAA concept can support both authentication and commu-
nication functionalities, most likely without compromising
wireless communication system performance. Future work
will also focus on the utilization of CAAs during wireless
communications, while investigating their data rates along
with their potential for hindering eavesdropper success
capabilities.

V. CONCLUSION
A novel machine learning (ML) based wireless device
authentication concept based on enhanced RF fingerprinting
through the utilization of chaotic antenna arrays (CAAs)
was investigated. A range of neural network architectures
were trained on several wireless channel scenarios with
varying fast- and slow-fading conditions. The authentication
performances of these trained models were shown to be
promising for advancement of the state-of-the-art in RF
fingerprinting-based authentication, with even simpler neural
networks performing extremely well. It is also seen that
more advanced networks achieve perfect accuracy under
a variety of scenarios. Relative performance degradation
under scenarios where channel coherence time nears sample
duration suggests that the sampling rate of the authenticator
should be set according to the channel statistics to avoid
possible interference from channel patterns. The results as

they stand, however, indicate that enhanced fingerprints
offered by CAAs nevertheless allow for highly accurate RF
fingerprint authentication. More specifically, the results of
deep learning-based authentication utilizing CAA-based RF
fingerprints were shown to be significantly outperforming the
existing state-of-the-art results based on traditional RF fin-
gerprints found in all wireless communication devices. While
the weak signatures used in traditional RF fingerprinting are
only useful under idealistic conditions where the channel is
static during authentication, the enhanced RF signatures of
CAAs enable highly accurate authentication under realistic
fast-fading wireless channel scenarios. Moreover, we showed
that the randomized antenna locations in CAAs result in
a direction-dependent signature, which can provide extra
security against RF signature capturing attacks, which are
known to threaten traditional RF fingerprinting. We also
presented a mathematical model of the CAA’s electric field
and explained how CAAs can be realized using practical
manufacturing techniques. The authenticator is assumed to
be in the far-field of the transmitters. Although the antenna
shapes could also be randomized, we considered only loca-
tion randomization in this work for mathematical tractability.
A future research direction is to expand the preliminary
experimental study with the testbed for a comprehensive
empirical analysis of the proposed CAA-based authentication
system.
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