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Abstract—We study sequential anomaly detection for big data
streams where the nominal and anomalous high-dimensional
probabilistic data models are unknown. We propose a model-
free solution approach in that we firstly compute a set of
univariate summary statistics from a nominal dataset in an offline
phase where the summary statistics are useful to distinguish
anomalous data from nominal data. We then evaluate whether
the online summary statistics deviate from the nominal case via
a cumulative sum-like detector. Our experiments with real-world
data illustrate the advantages of the proposed detector in early
and reliable anomaly detection in big data settings compared to
the existing alternatives.

Index Terms—Big data, sequential anomaly detection, model-
free, cumulative sum (CUSUM), summary statistic.

I. INTRODUCTION

Early anomaly detection has a critical importance for safe
and reliable operation of many modern large-scale systems
such as the power networks and the Internet of Things (IoT)
networks that produce big data streams. Anomalies often cor-
respond to changes in the underlying statistical properties of
the observed processes. To detect such changes, the framework
of quickest detection [1], [2] is quite suitable, where the
statistical inference about the monitored process is typically
done through observations acquired sequentially over time and
the goal is to detect the changes as soon as possible after they
occur while limiting the risk of false alarm.

The well-known quickest detection algorithms are model-
based: they require either the exact knowledge or estimates of
the probability density functions (pdfs) of the observed data
stream for both the pre- and post-change cases [1]–[3]. On
the other hand, it is usually difficult to model or intractable
to estimate the high-dimensional multivariate pdfs. Moreover,
it is quite difficult to model all possible types of anomalies
[4], [5]. To overcome such difficulties, we propose to extract
useful univariate summary statistics from the observed data
stream and perform the anomaly detection task based on the
summary statistics, through which we also aim to make more
efficient use of limited computational resources and to speed
up the algorithms, that is especially required in time-sensitive
online settings.

Summary statistics should be well informative to (sta-
tistically) distinguish anomalous data from nominal (non-
anomalous) data, and its computation should be simple to
allow for real-time processing. In this paper, we consider

two alternative summary statistics: (i) if the observed nominal
data has a low intrinsic dimensionality, firstly learning a
representative low-dimensional submanifold for the nominal
data and then computing a statistic that shows how much the
incoming data stream deviates from the nominal submanifold;
(ii) in the general case, learning an acceptance region for the
nominal data via the Geometric Entropy Minimization (GEM)
[6], [7] and then computing a nearest neighbor (NN) statistic
that shows how much the incoming data stream is away from
the acceptance region.

Anomaly detection schemes based on parametric models are
vulnerable to model mismatch that limits their applicability.
For instance, it is common to fit a Gaussian or Gaussian mix-
ture model to the observed data or the data after dimensionality
reduction [8], [9] and to assume Gaussian noise or residual
terms, see e.g., [10]. Such parametric approaches are powerful
only if the observed data perfectly matches with the presumed
model. On the other hand, nonparametric (model-free) tech-
niques are data-driven and hence robust to the data model
mismatch. Moreover, in high-dimensional settings, the lack
of parametric models is common and complicated parameter-
laden algorithms generally result in low performance, over-
fitting, and bias towards particular anomaly types [11]. Hence,
in this paper, we do not make parametric model assumptions
for the observed big data stream nor for the summary statistics.

Conventional anomaly detection schemes ignore the tempo-
ral relation between anomalous data points and make sample-
by-sample decisions [8], [9]. Such schemes are essentially
outlier detectors that are vulnerable to false alarms since it
is possible to observe non-persistent random outliers in a
regular system operation due to e.g., heavy-tailed random
noise processes. On the other hand, if a system produces
persistent outliers, then this may indicate an actual anomaly.
Hence, we define an anomaly as persistent outliers and from
the observed data stream, we propose to accumulate statistical
evidence for anomaly over time, similarly to the accumulation
of log-likelihood ratios (LLRs) in the well-known cumulative
sum (CUSUM) algorithm for change detection [12]. With the
goal of making a reliable decision, we declare an anomaly only
if we have a strong evidence for that. The sequential decision
making based on the accumulated evidence also enables the
detection of small but persistent changes, that would be missed
by outlier detectors.



II. PROBLEM DESCRIPTION

We observe a big data stream, particularly, at each time
t we obtain xt ∈ Rp where p � 1 and the data points
are independent and identically distributed (i.i.d.) over time.
Suppose that an abrupt anomaly happens in the observed
process at an unknown time τ , called the change-point, and
continues thereafter. That is, the process is under regular
operating conditions up to time τ and then its underlying
statistical properties suddenly change at time τ due to an
anomaly. Denoting the pdfs of xt under regular (pre-change)
and anomalous (post-change) conditions as fx0 and fx1 6= fx0 ,
respectively, we have

xt ∼

{
fx0 , if t < τ

fx1 , if t ≥ τ.

We aim to detect the changes as quickly as possible after
they occur. The framework of quickest detection well matches
with this purpose. A well-known problem formulation in the
quickest detection framework is the minimax problem where
the goal is to minimize the worst-case detection delay subject
to false alarm constraints [13]. If both fx0 and fx1 are known,
then the CUSUM algorithm is the optimal solution to the
minimax problem [14]. Let

`t , log

(
fx1 (xt)

fx0 (xt)

)
denote the LLR at time t. In the CUSUM algorithm, the LLR
is considered as the statistical evidence for change at a time
and the LLRs are accumulated over time. If the accumulated
evidence exceeds a predefined threshold, then a change is
declared. Denoting the CUSUM decision statistic at time t
by gt and the decision threshold by h, the CUSUM algorithm
is given by

Γ = inf{t : gt ≥ h},
gt = max{0, gt−1 + `t}, (1)

where Γ denote the stopping time at which a change is
declared and g0 = 0.

Since it is practically difficult to model all types of anoma-
lies, fx1 needs to be assumed unknown for a general anomaly
detection problem. In that case, if only fx0 is known and also
has a parametric form, slight deviations from the parameters
of fx0 can be detected using a generalized CUSUM algorithm
[2], [15], [16]. However, in general, it might be difficult to
model or estimate the high-dimensional multivariate nominal
pdf fx0 . Hence, in this study, we assume that both fx0 and
fx1 are unknown. We propose to use an alternative technique
in that we extract useful univariate summary statistics from
the observed high-dimensional data stream and perform the
anomaly detection task in a single-dimensional space based
on the extracted summary statistics, as detailed below.

III. PROPOSED SOLUTION APPROACH

Firstly, we assume that there is an available set of nominal
data points X , {xi : i = 1, 2, . . . , N}, that are free
of anomaly. Using X , we aim to extract univariate baseline

statistics that summarize the regular system operation such
that the summary statistics corresponding to anomalous data
deviate from the baseline statistics. To this end, summary
statistics should be well informative to distinguish anomalous
conditions from the regular operating conditions.

Let the summary statistic corresponding to xt be denoted
by dt. Since the statistical properties of xt changes at time τ ,
we assume that the statistical properties of dt also changes at
τ . Denoting the nominal and anomalous pdfs of dt as fd0 and
fd1 6= fd0 , respectively, we then have

dt ∼

{
fd0 , if t < τ

fd1 , if t ≥ τ,

where we assume that fd0 and fd1 are both unknown. Nonethe-
less, extracting a set of nominal summary statistics from X
and using this set as i.i.d. realizations of the nominal pdf
fd0 , we can form an empirical distribution function (edf) of
the nominal summary statistics that estimates the nominal
cumulative distribution function (cdf) F d0 of dt. Then, based
on the nominal edf of the summary statistics, for an incoming
data point xt at time t and its corresponding summary statistic
dt, we can estimate the corresponding p-value, denoted with
pt. In statistical outlier detection, a data point xt is considered
as an outlier with respect to the level of α if its p-value is less
than α, i.e., pt < α. Let

st , log

(
α

pt

)
. (2)

Then, for an outlier xt, we have st > 0 and similarly, for a
non-outlier xt, we have st ≤ 0.

Under regular system operation, we may observe random
non-persistent outliers due to e.g., high-level random system
noise. However, if a system produces persistent outliers, then
this may indicate an actual anomaly. Hence, we can model
anomalies as persistent outliers. Considering st in (2) as a
positive/negative statistical evidence for anomaly at time t,
we can accumulate st’s over time and obtain an accumulated
evidence for anomaly. We can then declare an anomaly only
if we have a strong (reliable) evidence supporting an anomaly.
This gives rise to the following CUSUM-like anomaly detec-
tion algorithm where we replace the LLR `t in the CUSUM
algorithm (see (1)) with st:

Γ = inf{t : gt ≥ h},
gt = max{0, gt−1 + st}, (3)

where g0 = 0.
In the following section, we present derivations of the

proposed summary statistics. Then, in Sec. V, we explain the
estimation of the tail probability pt (and hence st) based on
the set of nominal summary statistics, that results in the final
proposed detection algorithm.

IV. SUMMARY STATISTICS

In this section, we firstly explain our methodology to derive
summary statistics for a general high-dimensional data stream.
We then explain the derivation of summary statistics in a



special case where the observed data exhibit a low intrinsic
dimensionality.

A. GEM-based Summary Statistics

Given a nominal dataset X and a chosen significance level
of α, the GEM method [6] determines an acceptance region A
for the nominal data based on the asymptotic theory of random
Euclidean graphs such that if a data point falls outside A, it is
considered as an outlier with respect to the level α, otherwise
considered as a non-outlier. The GEM method is based on the
NN statistics that capture the local interactions between data
points governed by the underlying statistical properties of the
observed data stream.

A computationally efficient GEM method presented in [7]
is based on bipartite kNN graphs (BP-GEM). The BP-GEM
method asymptotically achieves the minimum entropy set, i.e.,
the most compact acceptance region for the nominal data. In
this method, firstly X is uniformly randomly partitioned into
two subsets S1 and S2 with sizes N1 and N2 = N − N1,
respectively. Then, for each data point xj ∈ S2, the kNNs of
xj among the set S1 are determined. Denoting the Euclidean
distance of xj to its ith NN in S1 by ej(i), the sum of distances
of xj to its kNNs can be written as follows:

dj ,
k∑
i=1

ej(i).

After computing {dj : xj ∈ S2}, dj’s are sorted in ascending
order and the (1 − α) fraction of xj’s in S2 corresponding
to the smallest (1 − α) fraction of dj’s form the acceptance
region A. Then, for a new data point xt, if its sum of distances
to its kNNs among S1, denoted with dt, is greater than the
smallest (1− α) fraction of dj’s, i.e.,∑

xj∈S2 11{dt > dj}
N2

> 1− α,

then xt is considered as an outlier with respect to the level of
α, where 11{·} denotes an indicator function.

If xt is an outlier, then it falls outside the acceptance
region A, i.e., the corresponding NN statistic dt takes a higher
value compared to non-outliers. Moreover, if the observed
data stream persistently fall outside the acceptance region,
or equivalently if we persistently observe high NN statistics
over time, then this may indicate an anomaly. Hence, we can
use the GEM-based NN statistic as a summary statistic to
distinguish anomalous data from nominal data. Then, we can
use {dj : xj ∈ S2} as a set of GEM-based nominal summary
statistics.

B. Summary Statistics for High-Dimensional Data Exhibiting
Low Intrinsic Dimensionality

In many practical applications, observed big data exhibits
a low intrinsic dimensionality and hence it can be well
represented in a lower-dimensional subspace. In such cases,
we can model the data as follows:

xt = yt + rt,

where yt is the representation of xt in a submanifold and
rt is the residual term, i.e., the departure of xt from the
submanifold, mostly consisting of noise.

Suppose that we learn a submanifold that the nominal
data are embedded in. Since the learned manifold is mainly
representative for the nominal data, anomalous data points
are expected to deviate from the nominal submanifold and
hence the magnitude of the residual term, i.e., ‖rt‖2, is
expected to take higher values for anomalous data compared
to nominal data. Hence, the magnitude of the residual term
can be used as a summary statistic to distinguish anomalous
data. Given a nominal dataset X , let S1 and S2 be two subsets
of X , i.e., S1,S2 ⊂ X , with sizes N1 and N2, respectively,
where N1, N2 ≤ N . Firstly, using S1, we can determine a
representative submanifold that the nominal data are embedded
in. Then, using S2, we can compute the magnitude of the
residual terms, i.e., {‖rj‖2 : xj ∈ S2}, that can be used as a
set of nominal summary statistics.

There are various methods to determine the underlying
submanifold, among which the PCA is well known model-free
method for learning a linear submanifold, called the principal
subspace [17, Sec. 12.1]. In the PCA method, denoting x̄ as
the sample mean, i.e.,

x̄ ,
1

N1

∑
xi∈S1

xi

and Q as the sample data covariance matrix, i.e.,

Q ,
1

N1

∑
xi∈S1

(xi − x̄)(xi − x̄)T, (4)

firstly, the eigenvalues {λj : j = 1, 2, . . . , p} and the
eigenvectors {vj : j = 1, 2, . . . , p} of Q are computed. Then,
the dimensionality of the submanifold, r, can be determined
based on the desired fraction of data variance retained in the
submanifold, given by

γ ,

∑r
j=1 λj∑p
j=1 λj

≤ 1, (5)

where the r-dimensional principal subspace is spanned by
the orthonormal eigenvectors v1, v2, . . . , vr corresponding
to the r largest eigenvalues λ1, λ2, . . . , λr of Q. Let
V , [v1,v2, . . .vr]. The residual term for xt can then be
computed as follows:

rt = (Ip −VVT)(xt − x̄), (6)

where Ip ∈ Rp×p is an identity matrix.
To obtain the PCA-based nominal summary statistics, firstly,

using S1, we can compute Q based on (4), and then its
eigenvalues and eigenvectors. Then, for a chosen γ (see (5)),
we can determine r and the corresponding V. Finally, using
S2 and (6), we can compute {‖rj‖2 : xj ∈ S2}, that forms a
set of nominal PCA-based summary statistics.

V. SEQUENTIAL MODEL-FREE ANOMALY DETECTION

For outliers, both of the proposed summary statistics, dt
and ‖rt‖2, take higher values compared to non-outliers (see



Sec. IV). Hence, outliers in fact correspond to the right tail
events based on the nominal pdf of the summary statistics.
Let us specifically consider dt. In case the knowledge of the
nominal pdf of dt, i.e., fd0 , is available, we would compute
the corresponding right tail probability as follows:

pt =

∫ ∞
dt

fd0 (z)dz = 1− F d0 (dt),

where F d0 is the cdf of dt. If pt < α, we can then consider
dt (correspondingly xt) as an outlier with respect to the
significance level α.

In our problem, although we do not have the knowledge of
fd0 (and F d0 ), using a set of i.i.d. realizations of the nominal
summary statistics, we can obtain an edf that estimates F d0 .
Let {dj : xj ∈ S2} be the set of nominal summary statistics.
Then, the corresponding edf is given by

F̂ d0,N2
(z) ,

1

N2

∑
xj∈S2

11{dj ≤ z}.

Moreover, by the Glivenko-Cantelli theorem, F̂ d0,N2
pointwise

almost surely converges to the actual cdf F d0 as N2 →∞ [18].
Then, we can estimate pt based on F̂ d0,N2

as follows:

p̂t = 1− F̂ d0,N2
(dt)

=
1

N2

∑
xj∈S2

11{dj > dt}. (7)

That is, p̂t is simply the fraction of the nominal summary
statistics {dj : xj ∈ S2} greater than dt. If p̂t < α, then we
can consider xt as an outlier with respect to the level of α.

Let

ŝt , log

(
α

p̂t

)
.

Notice that for an outlier xt with respect to a level of α, we
have ŝt > 0 and similarly, for a non-outlier xt, we have ŝt ≤ 0.
Then, by replacing ŝt with st in (3), we propose the following
model-free CUSUM-like anomaly detection algorithm:

Γ = inf{t : gt ≥ h},
gt = max{0, gt−1 + ŝt},

where g0 = 01.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
detection schemes using a human physical activity dataset. We
choose α = 0.2 and for all the proposed and benchmark tests,
we obtain the tradeoff curves between the average detection
delay, Eτ

[
(Γ − τ)+

]
, and the average false alarm period,

E∞[Γ], by varying the test thresholds h. In computing the
detection delays, we assume that anomalies happen at τ = 1,
that corresponds to the worst-case detection delay for the

1In case where
∑

xj∈S2
11{dj > dt} = 0, we have p̂t = 0 (see (7)),

and hence gt = ∞. In this case, a small nonzero value, e.g., 1/N2, can be
assigned to p̂t in order to prevent the decision statistic to raise to infinity due
to a single outlier. This modification can be useful to reduce the false alarm
rate especially in the small-sample settings (small N2).

proposed algorithms since the decision statistic gt is equal to
zero just before the anomalies happen (recall that g0 = 0).
We use the following benchmark algorithms: Information
Theoretic Multivariate Change Detection (ITMCD) algorithm
presented in [19], NN-based online change detection algorithm
presented in [20] and the QuantTree algorithm presented in
[21].

The Human Activities and Postural Transitions (HAPT)
dataset [22] obtained from the UCI Machine Learning Reposi-
tory [23] contain data for six physical activities: sitting, stand-
ing, laying, walking, walking upstairs, and walking downstairs.
The first three, i.e., sitting, standing, and laying, are static and
the remaining three are dynamic activities. We divide the given
dataset into two parts based on the given activity labels such
that the first part of the dataset contains data for static activities
and the second part contains data for dynamic activities. We
detect changes from a static to a dynamic activity where each
data point is 561-dimensional. We hence consider the static
activities as the pre-change (nominal) state and the dynamic
activities as the post-change (anomalous) state.

We firstly uniformly select 2500 data points from the set
of data points corresponding to static activities and using the
PCA method, we obtain the eigenvalues of the corresponding
sample data covariance matrix, as shown in descending order
in Fig. 1. We observe through Fig. 1 that the nominal data
exhibit a low intrinsic dimensionality. We then choose the
minimum desired γ as 0.99. Accordingly, we choose r = 115
and retain approximately γ = 0.9903 fraction of the data
variance in the 115-dimensional principal subspace. Then,
for the entire set of static activities (S2 = X ), we compute
the PCA-based nominal summary statistics that form the
histogram shown in Fig. 2.

In cases where the observed data stream exhibits a low
intrinsic dimensionality, we can employ the proposed GEM-
based detection scheme after dimensionality reduction for
time efficiency. That is, after obtaining the matrix V via the
PCA, each data point in the nominal training set, xi ∈ X ,
and also each sequentially available data point, xt, can be
projected onto a r-dimensional space as VTxi and VTxt,
respectively. We then employ the GEM-based detector over
the projected data, where we uniformly choose S1 and S2
with sizes N1 = 1000 and N2 = 4738, respectively. Fig. 3
shows that the proposed algorithms perform superior than the
benchmark algorithms. In the figure, we use an asterisk for the
GEM-based detector to emphasize that it is employed based
on the projected data.

VII. CONCLUSIONS

In this paper, we have proposed data-driven sequential
anomaly detection schemes for big data streams. The proposed
schemes are reliable, effective, and scalable. Moreover, they
are widely applicable in a variety of applications as we do not
make unrealistic data model assumptions. We have considered
both the special case where the observed data stream has
a low intrinsic dimensionality and the general case. In both
cases, we have proposed to extract and monitor univariate
summary statistics from the observed big data streams, where
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Fig. 1. Eigenvalues of the sample data covariance matrix for a representative
set of static activities in the HAPT dataset.

Fig. 2. PCA-based nominal summary statistics for static activities in the
HAPT dataset.

the summary statistics are useful to distinguish anomalous
data from nominal data. We have proposed a low-complexity
CUSUM-like anomaly detection algorithm that makes use of
the extracted summary statistics. Simulations with real-world
data demonstrate the effectiveness of the proposed schemes in
quick and accurate anomaly detection.
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