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Abstract

Video action recognition has been an active area of re-
search for the past several years. However, the majority
of research is concentrated on recognizing a diverse range
of activities in distinct environments. On the other hand,
Driver Activity Recognition (DAR) is significantly more dif-
ficult since there is a much finer distinction between various
actions. Moreover, training robust DAR models requires di-
verse training data from multiple sources, which might not
be feasible for a centralized setup due to privacy and secu-
rity concerns. Furthermore, it is critical to develop efficient
models due to limited computational resources available on
vehicular edge devices. Federated Learning (FL), which al-
lows data parties to collaborate on machine learning mod-
els while preserving data privacy and reducing communi-
cation requirements, can be used to overcome these chal-
lenges. Despite significant progress on various computer
vision tasks, FL for DAR has been largely unexplored. In
this work, we propose an FL-based DAR model and exten-
sively benchmark the model performance on two datasets
under various practical setups. Our results indicate that the
proposed approach performs competitively under the cen-
tralized (non-FL) and decentralized (FL) settings.

1. Introduction
The identification of distracted driving is one of the most

crucial, demanding, and time-critical tasks for intelligent
transportation systems (ITS). There has been a steady in-
crease in the number of traffic accidents caused by dis-
tracted driving. According to the National Safety Coun-
cil, distracted driving leads to approximately 1.6 million
crashes every year, with a majority being caused due to mo-
bile phone use [7]. As a result, driver activity recognition
(DAR) has become a subject of increasing interest.

Several computer vision tasks, such as image classifi-
cation and action recognition, have advanced dramatically
in recent years due to improved deep learning architec-
tures and large annotated datasets. Similarly, designing
robust DAR approaches require a tremendous amount of

(a) Non-cooperative.

(b) Cooperative FL.

Figure 1. Non-cooperative training suffers from limited perfor-
mance due to the limited representation power of local data. On
the other hand, FL setup enables training on a diverse dataset while
satisfying privacy and communication constraints.

data from multiple sources and significant computational
resources. However, in such a scenario, centralized train-
ing is impractical due to massive communication and stor-
age overheads. Moreover, centralizing data may also lead
to security and privacy concerns, and violate regulations
such as the General Data Protection Regulation [2]. Fed-
erated Learning (FL) is offered as a distributed model train-
ing method that does not communicate raw data, therefore
maintaining data privacy and saving communication band-
width [16, 26, 36, 37]. Despite the rapid growth of FL re-
search for computer vision, practical applications such as
DAR has received little attention to date.

Specifically, in an FL system, multiple parties train a
machine learning model cooperatively without exchanging
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Figure 2. Various views in the AICITY Track 3 dataset.

raw data [22]. The system generates a common machine
learning model for the parties such that the model learnt
via FL is superior to a model learned via local training
with the same model architecture. Typically, a larger model
trained on sufficient amount of diverse data is known to
improve the overall accuracy compared to simpler models
that would be normally used at the edge devices. On the
other hand, naive FL techniques such as the FedAvg al-
gorithm might overload resource-constrained edge devices
with a large model, and thus would not be practical. To this
end, we propose leveraging a group knowledge transfer al-
gorithm called FedGKT [10], that minimizes edge compu-
tation while maintaining model accuracy comparable to Fe-
dAvg. Particularly, FedGKT uses knowledge distillation to
transfer information from edge devices to a central model.
As illustrated in Fig. 1, it is usually not easy to locally col-
lect and train on a dataset sufficiently representative of all
relevant classes/scenarios. On the other hand, gathering a
diverse dataset from multiple sources and training a model
in a centralized manner is also not feasible in general due
to privacy and communication overhead constraints. An
FL setup can enable continually updating a classification
model with diverse data from multiple sources by sharing
only some processed information instead of raw data.

In summary, we propose the first FL setup for distracted
driver activity recognition. Our proposed approach takes
into consideration the limited computational and commu-
nication resources available on edge devices, and can eas-
ily perform training on edge and real-time inference. The
experimental results reveal that our approach, which has
a resource-efficient FL implementation, is capable of per-
forming competitively and is ranked fifth on the Track 3 test
set of the AI City Challenge 2022 (Fig. 2), with an F1-score
of 0.2921.

2. Related Works

Several recent works consider visual, auditory, and
biomechanical distractions to study driver behavior. The
majority of existing distracted driver studies necessitate the
extraction of certain specific modalities such as head pos-
ture angle, hand and body joint position, and eye track-

ing [24, 28, 35]. However, such approaches require the use
of specialized hardware, making it financially infeasible to
deploy them on a large scale. As a result, an end-to-end
driver activity detection system based on deep CNN models
is proposed in this paper, which is accurate and simple to
deploy.

Broadly, in the existing literature, driver activities are
classified into two classes, maneuvering-based [8, 25, 27]
(starting, changing lanes, etc.) and distraction-based (eat-
ing, drinking, talking, etc.) [1, 4, 9, 20, 21]. In this work, we
primarily focus on the distraction-based activities. In [20],
Martin et al. propose a multi-modal method to combine
multiple streams involving body pose and contextual infor-
mation. Similarly, Behera et al. [4] leverage LSTMs to ex-
tract spatiotemporal features for recognizing various activi-
ties. Recently, Li et al. [14] proposed an egocentric spatial-
temporal interaction based approach to evaluate how drivers
interact with road users.

Early FL algorithms such as FedAvg [23] and FedMA
[32] employ a naive averaging approach and do not ac-
count for computational limitations in edge devices. The
complexity of FL in edge computing and distributed net-
works stems mostly from client heterogeneity [38]. For
example, heterogeneous clients have varying data qual-
ity, data quantity, calculation capability (i.e., compute re-
sources), communication condition, and willingness to en-
gage. More recently, several FL approaches have been pro-
posed [3,5,18,29–31,33] that focus on minimizing the com-
munication overhead, and yet do not account for the compu-
tational cost on edge devices. More recently, a group knowl-
edge transfer based approach called FedGKT was proposed
in [10], that leverages split learning and FedAvg to min-
imize computation and communication overheads without
compromising the model accuracy.

[12] is the first work that applies FL to a real-world
image dataset, Google Landmark [34], which has now be-
come the standard image dataset for FL research. Recently,
[6,15,17] applied FL on medical image segmentation tasks,
where the training data may not be available at a single med-
ical institution due to data privacy regulations. In the object
detection task, [39] proposes a KL divergence method to

2
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mitigate model accuracy loss due to non-IID data. FedVi-
sion [19] is an FL framework for object detection, which
supports object detection models such as FastRCNN and
YOLOv3. For FL in other application domains, we refer
the reader to the survey in [13].

3. Methodology

In addition to accuracy, we also target computational ef-
ficiency for edge computing in vehicles. Despite the fact
that several recent approaches have demonstrated promis-
ing results on current benchmark datasets, they are also as-
sociated with a large amount of computational overhead.
Moreover, it is not realistic to assume homogeneity, i.e., the
availability of sufficient training data for all classes at each
edge device. Rather, in a practical setup it is more com-
mon to observe heterogeneity or non-i.i.d. data distribution,
where several different edge devices observe a diverse range
of classes. Most existing works assume centralizing data
from all such edge devices, which may lead to security and
privacy concerns. In this section, we present our approach
for applying FL to distracted driver activity recognition. We
first present our problem formulation, and then introduce
the proposed FL setup (Fig. 3).

3.1. Problem Formulation

The distracted driver activity recognition task can be de-
fined as a multi-class classification problem where given a
set of N training videos XTrain = {x1, x2, . . . , xN} and
labels yn from C classes, we aim to learn a function F that
classifies a set of test videos XTest accurately. To detect
an activity, we extract frames from each video and treat it
as a image classification problem, primarily because of two
reasons. First, video classification models typically require
significant number of frames to confidently detect an activ-
ity, which might lead to a higher detection delay. Secondly,
2D CNN models require significantly less computational re-
sources as compared to 3D CNN models and thus can eas-
ily run on resource-constrained edge devices in real-time.
Hence, to train the image classification model, we learn F
by minimizing the cross entropy loss Lx given by

Lx = −
N∑

n=1

log[F(xn)]yn
(1)

where yn is the class label index of sample n, F(xn) is the
predicted class probability vector, and [F(xn)]yn

denotes
the predicted probability for class yn.

We evaluate our proposed approach under two different
settings, i.i.d. and non-i.i.d. In the i.i.d. setting, the avail-
able training data is divided homogeneously among all edge
devices, whereas in the non-i.i.d. setting the data distribu-
tion among the edge devices is highly skewed.

3.2. FL Setup

In [22], FL is suggested as an alternative to centralized
learning. In an FL system, a server coordinates with local
nodes (clients) and sends them a global deep neural net-
work model. The clients utilize their own data to train the
model locally, then communicate it back to the server to be
aggregated into an updated global model. The server re-
peats this approach until the global model’s performance on
a task converges. Thus, the data at a local node is never
shared with third parties, providing privacy. To optimize
the training loss across clients, FL algorithms try to obtain
a global model. One of the most popular FL approach is the
Federated Averaging (FedAvg) algorithm proposed in [22].
Specifically, FedAvg optimizes the local training loss using
Stochastic Gradient Descent (SGD). The objective for Fe-
dAvg can be expressed as:

min
w

F (w) =

K∑
k=1

nk

n
Fk(w), (2)

where Fk(w) is the local loss of client k, nk is the number
of training samples on client k, with a total of n training
samples partitioned across all K clients. However, the pri-
mary flaw in such naive FL methods is that they require
similar model architectures at the central server and edge
devices. Hence it might not always be possible to train big
CNNs on resource-constrained edge devices due to a lack
of GPUs and adequate storage. To this end, we propose
leveraging the recently proposed group knowledge trans-
fer algorithm (FedGKT) [10]. It is important to note that
FedGKT takes an alternating minimization (AM) method
to FL, which fixes one random variable (the edge model)
while simultaneously optimizing the server model. As a re-
sult of this change, FedGKT contributes to the development
of a new group knowledge transfer paradigm, which in turn
improves the server model’s performance.

Specifically, FedGKT shifts the computing burden from
resource constrained edge devices to the centralized server.
As shown in Fig. 3, the local edge devices train on the avail-
able data and produce a feature representation of the same
dimension. The feature representations are used as input to
the server model which is trained by minimizing a knowl-
edge distillation-based loss function, given by

Lserver = Lx +

K∑
k=1

DKL(pk || ps) (3)

where Lx is the cross-entropy loss (Eq. 1), DKL is the
Kullback-Leibler (KL) divergence, and pk, ps are the prob-
abilistic predictions of edge model k and server model, re-
spectively, i.e., pk = Fk(x). To further improve the per-
formance of edge devices, the predicted class probabilities
from the server model are used to fine tune the local edge

3
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Figure 3. FL Architecture.

device models using

Lk = Lx +DKL(ps || pk). (4)

During inference, the final model consists of feature extrac-
tors from the local models and the trained server model.

Feature Extractor: Several recent works claim that the
depth of a network is a significant factor in determining
the network’s performance, i.e., using a deeper architecture
leads to improved performance. However, training a deeper
network is difficult due to the well-known gradient vanish-
ing problem. To address this issue, He et al. [11] proposed
a straightforward but effective technique known as residual
neural networks (ResNet). ResNet provides a framework
for training networks that are significantly deeper than those
previously used by leveraging skip connections. In our im-
plementations, we use the ResNet-56 for the server model
and ResNet-8, which consists of 8 convolutional layers, as
a compact edge device model. Note that, FedAvg would re-
quire all server and edge models to be the computationally
expensive ResNet-56.

Implementation Details: The FedGKT framework is
implemented using the FedML library and deployed in a
distributed environment. For the AICITY challenge, we
leverage the computationally expensive Resnet-101 model,

whereas for the federated setup, we leverage the Renet-56
architecture. In the i.i.d. setup, we randomly select videos
from the entire training set and assign them to each node,
whereas in the non-i.i.d. setup each node is assigned a
random set of classes and only observes videos belonging
to those classes. The server model and client models are
trained using 4 NVIDIA RTX 6000 GPUs for 20 epochs.
Based on experimental results, we leverage the Adam op-
timizer and a learning rate of 0.0001 for i.i.d. data and
SGD optimizer with a learning rate of 0.005 for non-i.i.d.
data [10].

4. Experiments

4.1. Datasets

To demonstrate the efficacy of our approach, we use two
benchmark datasets, namely the AI City Challenge dataset
and StateFarm dataset. Since the AI City dataset has limited
number of samples and the training labels are unavailable,
we use the StateFarm dataset to show our FL results. In Fig.
8, we show a few examples from various classes for both
of the datasets. We also analyze the the average activity
duration and number of events per class occurring in the
AI City Dataset in Fig. 4. It is seen that all classes have
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(a) Average Activity Duration

(b) Number of Activities

Figure 4. The average activity duration and number of activities
per class in the AI City Dataset.

almost equal number of samples (Fig. 4(b)) and the average
activity durations are uniformly distributed (Fig. 4(a)).

AI City Challenge: The Track 3 dataset of the AI City
Challenge 2022 consists of 90 videos divided into three sets,
A1, A2 and B each consisting of 30 videos. Each set com-
prises five different drivers performing various actions, cap-
tured from three different angles, the dashboard, the rear
view, and the right side view (Fig. 2). The participants
were only allowed to use video data from one of the views.
Each video is approximately 10-minutes long and captured
in grayscale at a frame rate of 30 fps and a resolution of
1920×1080. The purpose of the challenge is to devise an
algorithm that is capable of identifying all distracted driver
activities with accurate start and end times. For a detected
activity to be considered as true positive, both start and end
times are required to be determined within one second of the
ground truth. Otherwise, it is considered as false positive
even if the predicted label is true and the predicted duration
overlaps with the ground truth. Participants were allowed to
train on the labelled A1 and unlabelled A2 sets. The evalu-
ation metric used was the F1 score.

StateFarm Dataset: StateFarm’s distracted driver
dataset is one of the first publicly available datasets and con-
sists of approximately 102k images for 10 unique driver ac-
tivities. As compared to the AI City dataset, the StateFarm
dataset only consists of images captured from the right side
view.

4.2. Results

AI City Challenge: We show the feature activation
maps of our trained ResNet-101 model in Fig. 5. We ob-
serve that the model is successfully able to detect and acti-
vate regions where the true activity occurs, as seen in the
testing part. However, there are also cases in which the
model is unable to detect the activity correctly since there
are no samples in the training data of a person wearing a
seat belt. To offset this issue, we also train on samples from
the A2 set of the AI City Challenge. In Table 1, we show
the results from the leaderboard of the AI City Challenge
2022. The final F1 score of 0.2921 placed us fifth in the
challenge. We have a precision of 0.4432, which shows that
the proposed approach does not suffer from several false
alarms. On the other hand, our recall of 0.2179 indicates
that the proposed approach misses quite a few activities.
However, this can be attributed to the strict evaluation pro-
tocol, in which any activity not detected within a one second
window is considered as a false negative, and any attempt
failing to do that is considered a false positive. Moreover,
our model is trained to detect a subset of all possible classes
since there are several classes such as texting or adjust con-
trol that cannot be detected from the dashboard view, or are
completely action based and cannot be detected from an im-
age, such as singing or dancing.

Leaderboard
Rank Id Name F1

1 72 VTCC-UTVM 0.3492
2 43 Stargazer 0.3295
3 97 CybercoreAI 0.3248
4 15 OPPPilot 0.3154
5 78 SIS Lab 0.2921
6 16 BUPT-MCPRL2 0.2905
7 106 Winter is Coming 0.2902
8 124 HSNB 0.2849
9 54 VCA 0.2710
10 95 Tahakom 0.2706

Table 1. Result comparison on the Track 3 test set of the AI City
Challenge 2022.

StateFarm Dataset: Due to the limited number of la-
belled instances in the AI City challenge dataset, we lever-
age the StateFarm dataset to evaluate our FL setup. Specif-
ically, we consider the performance of the proposed model
under the i.i.d. and non-i.i.d. setups. In the i.i.d. setup, we
uniformly divide the available training data among all edge
nodes such that each node receives data from each class. In
this work, we consider 4 client edge devices and 1 central-
ized server node. We show the performance of the proposed
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Figure 5. Feature activation map for training and testing on the AI City Dataset.

(a) Accuracy of FL approaches under the i.i.d. setup.

(b) Loss of FL approaches under the i.i.d. setup.

Figure 6. Comparison between the FedAvg and FedGKT algo-
rithms under the i.i.d. setting in terms of the test accuracy and
loss.

FL setup using FedAvg and FedGKT under the i.i.d. setting
in Fig. 6. It is clearly seen that the computationally efficient
FedGKT approach is able to perform competitively with re-
spect to the more computation-intensive FedAvg algorithm,
and nearly outperforms it. While FedAvg uses ResNet-
56 both at the server and the edge nodes, FedGKT uses
ResNet-56 as the server model and ResNet-8 as a compact
edge device model. Fig. 7 shows the performance of the FL
setup under the non-i.i.d. setting, where again the efficient

(a) Accuracy of FL approaches under the non-i.i.d. setup.

(b) Loss of FL approaches under the non-i.i.d. setup.

Figure 7. Comparison between the FedAvg and FedGKT algo-
rithms under the non-i.i.d. setting in terms of the test accuracy and
loss.

FedGKT algorithm is able to perform competitively with
respect to the FedAvg algorithm. We also train a central-
ized ResNet-56 model on the entire dataset which achieves
an accuracy of 0.989. Overall, we observe that the perfor-
mance of the various models under both i.i.d. and non-i.i.d.
settings is quite close to the centralized model performance,
which confirms the efficacy of the proposed decntralized FL
approach.
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(a) AI City Dataset.

(b) StateFarm Dataset.

Figure 8. A few classes from the AI City dataset and the StateFarm dataset. In this work, we use the dashboard videos from the AI City
dataset. The StateFarm dataset only consists of right side view images.

5. Conclusion

In this work, we propose an efficient federated learning
(FL) solution for detecting distracted driver activities. The
proposed solution trains the detection model in a decentral-
ized fashion preserving privacy lowering data communica-
tions, and yet is also able to perform competitively in the
2022 AI City Challenge. Using the FedAvg and FedGKT
algorithms, we demonstrated the proposed FL framework
for the activity detection task. We observe that the FedGKT
approach is able to achieve a close performance to the Fe-

dAvg approach, even after being computationally more ef-
ficient by several order of magnitudes. The FL results stay-
ing close to the centralized results showed that the proposed
approach can be effectively trained in a privacy-preserving
and communication-efficient way.
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