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Abstract

While video action recognition has been an active area of
research for several years, zero-shot action recognition has
only recently started gaining traction. In this work, we pro-
pose a novel end-to-end trained transformer model which
is capable of capturing long range spatiotemporal depen-
dencies efficiently, contrary to existing approaches which
use 3D-CNNs. Moreover, to address a common ambiguity
in the existing works about classes that can be considered
as previously unseen, we propose a new experimentation
setup that satisfies the zero-shot learning premise for action
recognition by avoiding overlap between the training and
testing classes. The proposed approach significantly out-
performs the state of the arts in zero-shot action recognition
in terms of the the top-1 accuracy on UCF-101, HMDB-51
and ActivityNet datasets.

1. Introduction

Several visual recognition tasks, such as image classifi-
cation and video action recognition, have made tremendous
progress in recent years, thanks to the availability of ex-
tensively annotated datasets and enhanced deep learning ar-
chitectures. However, collecting and annotating video sam-
ples for every possible interaction between objects is im-
practical, therefore recognizing previously unseen actions
remains a challenging task. On the other hand, humans
are exceptionally good at recognizing new categories with-
out seeing any visual samples. For example, if a person
is familiar with ice skating and understands the concept of
dancing, (s)he will have no trouble recognizing the action
of ice dancing. In the recent literature, this problem has
drawn considerable attention and is known as Zero-Shot
Learning (ZSL) for video action recognition. While sev-
eral approaches have shown promising results in the image
domain, zero-shot video action recognition remains largely
unexplored.

In the existing research, ZSL is characterized as a classi-
fication problem in which a model is trained on a collection
of known classes and then uses semantic attributes to iden-
tify unknown classes. Most existing approaches employ a
3D Convolutional Neural Network (3D-CNN) to extract vi-
sual features from videos. Because the utilized 3D-CNNs
are pretrained on a variety of large-scale datasets, there is no
obvious demarcation between what defines seen and unseen
classes. Several recent techniques, for example, are pre-
trained on the Kinetics-400/600/700 [5,25,37] datasets and
evaluated on the UCF-101 [38], HMDB-51 [28], Olympics
[39] and ActivityNet [11] datasets. However, as shown in
Fig. 1, several classes that are considered as “unseen” are
already present in the Kinetics dataset, which clearly vio-
lates the zero-shot paradigm. On the other hand, even a
human is incapable of recognizing archery as an activity if
he has never seen a bow and arrow before and is oblivious
to the concept of shooting. Thus, it can be argued that it
is redundant to include activities in the test set that are sig-
nificantly dissimilar to the activities present in the training
set. Furthermore, the existing evaluation setup comprises
of randomly splitting the test dataset’s classes into half and
evaluating the proposed approach on that set. However, this
causes an unfair comparison since modifying the split can
significantly alter the result. To this end, we propose a new
ZSL experimentation framework for action recognition, that
addresses these issues and thus would provide guidance for
future algorithm design.

Since the majority of existing works employ 2D or 3D
convolutions as the principal operator for learning spa-
tiotemporal features from videos, they suffer from several
challenges [2]. First, inductive biases such as local connec-
tivity, translation invariance, and a locally restricted recep-
tive field severely limit the learning capability of convolu-
tional models on large datasets. Moreover, convolutional
kernels are incapable of capturing spatiotemporal relations
that span multiple time instances [2]. Finally, even with
advances in hardware acceleration, training and evaluating
deep CNNs on large video datasets remain computationally



Figure 1. In the recent state-of-the-art approaches CLASTER [19],
E2E-664 [4], OD [29], there is a significant overlap between the
training classes and the testing classes. The vertical axis shows
the percentage of test classes in the benchmark datasets (UCF-
101, HMDB, Olympics, ActivityNet) that overlap with the training
classes in the Kinetics dataset, which is significantly larger than
the benchmark datasets used for testing. Since the test classes are
supposed to be previously unseen, such high-percentage overlap
(30%-70%) violates the ZSL premise.

expensive.
Motivated by these observations, we propose leverag-

ing self-attention architectures, in particular a spatiotem-
poral transformer model, for extracting semantic embed-
dings from videos. The self-attention approach, in contrast
to convolutional kernels, can capture long-range dependen-
cies and is permutation invariant while being computation-
ally efficient during training and inference. Our end-to-end
trained transformer based approach is able to learn seman-
tically more separable features as compared to 3D-CNNs.
Our contributions can be summarized as follows:

• A novel end-to-end transformer to learn visual-
semantic representations. To the best of our knowl-
edge, this is the first work to propose a spatiotempo-
ral transformer for zero-shot video action recognition
although there are existing transformer methods for
zero-shot image tasks.

• A thorough analysis of the shortcomings in the existing
ZSL framework for action recognition. We propose a
new evaluation framework that satisfies the ZSL crite-
rion for action recognition.

• An extensive evaluation of the proposed transformer
method on several benchmark datasets. The pro-
posed method outperforms several state-of-the-art ap-
proaches by a wide margin under different experimen-
tal setups.

2. Related Works
Video action recognition has been extensively studied

over the past several years [6, 12–14, 36, 45]. In contrast,
ZSL for video action recognition has only recently started
gaining attention. Broadly, ZSL can be classified into the
inductive setting [3, 21, 33, 50, 52], where the test data is
completely unknown during training, and the transductive
setting [1, 31, 43, 44, 47–49], where the test data without
class labels is available. In this work, we only focus on the
inductive setting.

Existing approaches have been predominantly dependent
on word embeddings to tackle the problem of ZSL. Specifi-
cally, these approaches use a pretrained model to extract vi-
sual features from training videos and map them to a seman-
tic space and hypothesize that a good robust generalization
on the semantic space can lead to improved performance on
unseen classes [3, 4, 15–17, 19, 21, 47–50]. For extracting
the visual features, most recent approaches propose using a
3D-CNN, which takes 16 frames sampled from a video as
input. In [4], Brattoli et al. propose training a C3D [40] and
a R(2+1)D model [41] in an end-to-end fashion for ZSL.
On the other hand, Gowda et al. [19] propose a reinforce-
ment learning based clustering approach, which uses a two-
stream I3D [6] model for learning visual features. However,
we argue that for realistic applications, sampling 16 frames
from a video might not always be sufficient, especially
when it comes to large-scale datasets. In [6,22], it is shown
that increasing the number of input frames only marginally
increases the performance of convolutional models. On the
contrary, recent transformer based approaches [2, 51] have
shown considerable performance gains when number of in-
put frames are increased from 8 to 96, especially on tasks
that require longer temporal reasoning. While earlier ap-
proaches use hand-crafted semantic features [24], recent
works have primarily use Word2Vec [30] for generating the
semantic embeddings from the class labels. However, such
approaches are prone to the domain shift problem, which
occurs when a model trained on the seen semantic labels is
unable to generalize well to the unseen class labels [21].

Recently, Brattoli et al. [4] propose an extension on the
work of Roitberg et al. [35] and formulate a novel evaluation
protocol for satisfying the ZSL paradigm, which involves
removing certain classes from the training set which over-
lap with the test set by using semantic embedding matching.
However, in this paper, we show that such an approach fails
to remove a significant portion of the overlapping classes,
thus still violates the ZSL premise. Alternatively, Gowda
et al. [20] propose a deterministic “TruZe” split for the
UCF-101 [38] and HMDB-51 [28] datasets, by manually
removing all classes which overlap with the Kinetics-400
dataset. While it is a promising approach, we show that it
quickly becomes obsolete since several recent approaches
use Kinetics-600/700 for training, which includes a major-



ity of the classes from the “TruZe” test set. Furthermore,
neither of the proposed approaches remove classes which
are significantly different from any of the classes in the
training set. Hence, we propose a novel test set (Section
3.3) which addresses all of the above mentioned issues.

3. Proposed Approach
In this section, we present the proposed approach for

zero-shot video action recognition. We begin by carefully
defining the problem formulation. Next, we introduce a
novel end-to-end trained transformer model, ViSET (Video
Semantic Embedding via transformer), which leverages di-
vided space-time attention to learn improved semantically
differentiable visual features (Fig. 2). Then, we present a
new data split for more suitable ZSL experimentation. Fi-
nally, we propose to enhance the available semantic embed-
dings using class descriptions instead of labels.

3.1. Problem Definition

Traditionally, zero-shot action recognition has been de-
fined as a classification problem, where given a train-
ing set of videos Xs and labels S from seen classes
{(xs

1, s1), . . . , (x
s
N , sN )}, we aim to accurately classify a

set of videos Xu = {xu
1 , . . . , x

u
M} from previously unseen

classes U = {u1, . . . , uM}, where N and M are the num-
ber of training and testing videos respectively. To satisfy the
ZSL premise, there should be no overlap between the seen
and unseen classes (S ∩ U = ∅).

A broad generalization capability is needed to succeed
in the ZSL action recognition problem. The challenge com-
pared to the regular action recognition task lies in the fact
that no direct mapping from the input videos to the output
unseen class labels can be learned during training. Typ-
ically, semantic embeddings are used to bridge the input
videos and the output unseen class labels, which consist of
words. The idea behind this mainstream ZSL approach is to
learn a semantic embedding model f(x) for the input videos
and choose the class that is semantically most similar.

3.2. Video Semantic Embedding via transformer
(ViSET)

We consider the inductive ZSL approach for training our
model, i.e., during training the model only has access to the
videos and corresponding class labels from the seen classes.
Most existing approaches extract visual features using pre-
trained 3D-CNNs. Recently, it was shown in [4] that end-
to-end training a 3D-CNN performs significantly better than
directly using a pretrained 3D-CNN model. However, the
inability of 3D-CNNs to capture spatiotemporal informa-
tion over a long time span make them unsuitable for large
scale datasets such as Kinetics and ActivityNet. Hence,
we propose a novel end-to-end trained transformer model,
called ViSET (Video Semantic Embedding via transformer).

The overall structure of ViSET is shown in Fig. 2, which
is based on the recently proposed TimeSformer [2] archi-
tecture. Specifically, we leverage the self-attention blocks
from the Vision transformer (ViT) [10] model and space-
time attention from the TimeSformer model. However, con-
trary to existing video transformers, we train our model to
learn visual-semantic representations.

Time Attention

Space Attention

MLP

Input Video Snippet

zpt (0)

MLP

Semantic Embedding

‖f (xsi )− φ(si)‖2

Multi-Head

Self Attention

γspacep,t (1)

γtimep,t (1)

Time Attention

zpt (1)

Figure 2. The proposed spatiotemporal transformer architecture,
ViSET, for video semantic embedding.

Input: Even with a computationally efficient architec-
ture, end-to-end training on the entire video is impractical
due to GPU limitations. Following the existing video clas-
sification approaches, we first sample a clip y of F frames
and size H ×W from the input video x. The standard NLP
transformer architecture [42] requires a 1D sequence of to-
ken embeddings as an input. Hence, as shown in Fig. 2, we
first breakdown the entire video clip y into a sequence of 2D
patches, ept ∈ R3×P 2

, where p = 1, . . . , N represents the
spatial locations (i.e., patch index), t = 1, . . . , F denotes
the temporal index, 3 is the number of color channels, and
P × P is the patch size. Next, we flatten each patch ept into
vpt ∈ R3P 2

and linearly map it into a score vector using a



trainable linear projection E ∈ Rq×3P 2

:

zpt (0) = Evpt + µp
t , (1)

where µp
t ∈ Rq is a latent vector learned to encode the spa-

tiotemporal position of each (p, t) pair. Following the NLP
transformer BERT [9] we add a latent vector z00(0) ∈ Rq

for an additional fictional patch which will be learned to
represent the score vector for the entire video by interact-
ing with all patches through time and space self-attention.
{z00(0), z

p
t (0)}p,t is the input to the transformer model.

Overall Structure: The transformer model consists of L
sequential encoding blocks, each of which includes A paral-
lel self-attention heads. The first encoding block processes
the input {z00(0), z

p
t (0)} in parallel in its self-attention

heads, as explained next, and outputs {z00(1), z
p
t (1)} to the

second encoding block for each patch (p, t). Similarly, each
block l gets {z00(l−1), zpt (l−1)} and outputs {z00(l), z

p
t (l)}.

Finally, the output of the last block z00(L) is used to obtain
the semantic embedding for the video. The role of z00(L) is
to learn an effective summary score for the entire video, as
an alternative to the straightforward approach of simply av-
eraging zpt (L) over all patches and frames. z00(L) is passed
through an MLP with three hidden layers and ReLU acti-
vation function to obtain the semantic embedding f(x) for
video x.

Training and Inference: The whole transformer model
is trained end-to-end by minimizing the loss function

C = ∥f(xs
i )− ϕ(si)∥2, (2)

where ϕ(si) is the semantic embedding of the class de-
scription/label si for the training video xs

i from a Sent2Vec
model [32]. After the model is trained, for ZSL inference,
the semantic embedding of the test video f(xu

i ) is found us-
ing the transformer model, and the class closest to the video
in the semantic space is chosen,

jDcos(f(x
u
i ), ϕ(uj)),

where Dcos is the cosine distance and ϕ(uj) is the Sent2Vec
semantic embedding of the class description uj .

Class Descriptions: Due to the unavailability of class
descriptions or attributes, existing methods in the literature
alternatively use the class labels and Word2Vec to extract
the semantic embeddings ϕ(uj). However, we argue that
such an approach would severely limit the performance of
a model. Specifically, several class labels in all the datasets
are not sufficiently distinctive and could refer to various dif-
ferent activities. For example, diving in UCF-101 could ei-
ther refer to scuba diving, cliff diving, sky diving or spring-
board diving. Furthermore, using Word2Vec on multi-word
labels is not an efficient technique since averaging the se-
mantic embedding over several words might lose the con-
text. This can be also seen in Fig. 3, where the seman-
tic embedding of several multi-word class labels is mapped

incorrectly. To circumvent these issues, we first manually
annotate all the training and testing datasets with one line
class descriptions. We then use a Sent2Vec [32] model to
better capture the semantic information with respect to the
context of the class description sentence. The annotated
class descriptions are available in the supplementary ma-
terial. In Section 4.4, we evaluate the contribution of class
descriptions by comparing the performance of the proposed
ViSET method with class labels and descriptions in an ab-
lation study.

3.3. Fair Zero-Shot Action Recognition

While several recent works have shown promising re-
sults on the benchmark datasets, there are still several short-
comings. In contrast to earlier works, recent approaches
[4, 19, 20, 34] use large-scale external datasets such as the
Kinetics 400/600/700 dataset to pretrain the visual fea-
ture extractors. However, as shown in Fig. 1, there is a
significant overlap between the seen and unseen classes,
S ∩ U ̸= ∅, which clearly violates the ZSL paradigm. Re-
cently, Brattoli et al. [4] proposed a novel training protocol
which involves removing classes from the training set if

min
si∈S,uj∈U

Dcos(ϕ(si), ϕ(uj)) < τ, (3)

where τ is set as 0.05. However, in Fig. 3, we show
that even after applying such a constraint, there are several
overlapping classes which are not removed. This can be
partly attributed to semantic mismatch due to domain shift,
where two very similar classes are called by slightly differ-
ent names. For example, blowing out candles and blowing
candles refer to the same class and yet the cosine distance
between them in the semantic space is much greater than τ .
Moreover, removing overlapping classes from the training
set is a cumbersome approach since it requires retraining
computationally expensive models for every individual test
set. On the contrary, it would be far easier to remove over-
lapping classes from the test set as the class information is
already available in the training data.

Furthermore, it is also worth considering whether a given
test class is completely irrelevant with respect to all the
seen classes. Intuitively, even humans cannot comprehend
a new activity if it involves interactions and objects that
are never seen before. Hence, we also propose removing
classes which are significantly different from the activities
present in the training dataset. While keeping such classes
does not necessarily violate the ZSL premise, it introduces
a source of randomness since no reasonable algorithm can
be expected to recognize such activities.

In the current literature, most approaches randomly split
a single dataset and evaluate performance on it over several
trials. Such an evaluation setup is not practical in a real-
world scenario since most of the videos would have disjoint



Benchmark Dataset Selected Classes

UCF-101 8
HMDB-51 3
ActivityNet-101 19

Table 1. Number of classes from each benchmark dataset in the
proposed test set for Fair ZSL.
sources. Hence, to ensure a realistic ZSL setting, we extend
the setup discussed in [4], which suggests using indepen-
dent datasets for training and testing. However, [4] does not
fully account for overlapping classes between the train and
test sets, as seen in Fig. 3. We propose a new ZSL ex-
perimentation setup for action recognition, called Fair ZSL.
For each dataset, completely removing classes that either
overlap or completely irrelevant with respect to the train set
(Kinetics 600/700) leaves us with a very small number of
test classes per test set (as shown for UCF-101 in Fig. 3).
Hence, we propose pooling the valid test classes from all
benchmark datasets to form a novel test set. In the pro-
posed Fair ZSL setup, there are 30 unique classes1 from the
UCF-101, HMDB-51, and ActivityNet datasets, as shown
in Table 1. Each class was carefully handpicked such that
it does not violate the ZSL premise. Additionally, the pro-
posed test set is also more robust since it evaluates how well
a single model accounts for domain shifts in addition to the
ZSL performance.

3.4. Implementation Details

The proposed ViSET model is built upon the PySlow-
Fast [8] package. For training the model, the shorter side
of the input video is first resized to 256 pixels and then
randomly cropped to form a 224 × 224 (H × W ) video
snippet. The patch size is chosen as 16 × 16, resulting in
N = 196 patches in a frame. The size of the score vectors
(zpt (l)) at each encoding block for each patch is q = 768,
and the number of self-attention heads is A = 12. The size
of the learned semantic embedding f(x) and the Sent2Vec
embedding for class descriptions is 600. We train two ver-
sions of the proposed transformer, ViSET-8 and ViSET-96
for F = 8 and F = 96 frames in the input video snippet,
respectively. In all our experiments, we use the ViSET-96
model unless explicitly stated otherwise. We train the mod-
els on 4 NVIDIA A40 GPUs with a batch size of 16 for
ViSET-8 and 4 for ViSET-96. The loss function is mini-
mized via synchronized SGD with a learning rate of 0.002.
To extract semantic embeddings, we use the Sent2Vec algo-
rithm proposed in [32].

3.5. Computational Efficiency

Thanks to the scalability of the proposed ViSET model,
we are able to vary the length of the input video snippet (i.e.,

1The detailed list of all the classes in the proposed split is available in
the supplementary material.

Figure 3. Visualization of the overlapping classes between UCF-
101 and Kinetics-600/700. The Kinetics classes in green are con-
sidered as overlapping by the metric given by Eq. (3) and removed
in [4]. The Kinetics classes in red are given by Word2Vec as the
semantically nearest classes to the corresponding UCF-101 class,
but not removed in [4] according to the criterion in Eq. (3). For
several cases, the actual closest Kinetics classes, shown in blue,
are missed by Word2Vec. They are almost identical to the corre-
sponding UCF-101 classes, and thus violate the ZSL idea.

number of frames F ), which also leads to an increase in the
number of input tokens. In Table 3, we see a significant in-
crease in the performance when the number of input frames
are increased from 8 to 96. Increasing the number of video
frames is intuitive since it allows a model to better capture
the spatiotemporal activities that span several frames. How-
ever, due to the current GPU limitations, we are unable to
further increase the input length. On the other hand, even af-
ter increasing our model complexity to accommodate 96 in-
put frames, our model is still more computationally efficient
as compared to the I3D model with 8 input frames, which



requires 10.8 TFLOPS for inference, in contrast to the pro-
posed ViSET-8 model, which only requires 0.79 TFLOPS,
and ViSET-96, which requires 7.57 TFLOPS.

4. Experiments
4.1. Datasets

Most of the recent works evaluate their performance on
three publicly available benchmark datasets, namely the
UCF-101, HMDB-51 and Olympics dataset. The UCF-101
dataset consists of 13,320 videos from 101 classes, primar-
ily focusing on five types of actions. The HMDB-51 dataset
consists of 6767 videos from 51 classes based on daily hu-
man actions. The Olympics dataset consists of 16 cate-
gories, related to an Olympic sport. Recently, Brattoli et
al. [4] evaluated the performance of their approach on the
ActivityNet dataset by extracting labelled frames from ev-
ery video. As compared to the other benchmark datasets,
ActivityNet is considerably more comprehensive, consist-
ing of 27,801 videos from 200 classes related to daily activi-
ties. The Kinetics-700 dataset is the largest dataset available
for video action recognition, with more than 500K videos in
700 categories sourced from YouTube. Since several classes
from Kinetics-700 were not available or had files corrupted,
we use the Kinetics-600 dataset in our experimental setup.
Due to its small size and significant overlap with Kinetics,
we do not consider the Olympics dataset in our evaluations.

4.2. Experimental Setup

To analyze the performance of our proposed ViSET
model and provide a fair comparison with benchmark al-
gorithms, we first follow the training and evaluation proto-
cols used in the existing papers. The existing training pro-
tocols can be broadly classified into two categories, open-
ended and restrictive. Most existing works are based on the
open-ended formulation, whereas a few recent approaches
[4, 20, 35] use the restrictive one.

Open-Ended: In this setup, a model is first trained on a
large-scale visual dataset such as the Kinetics dataset with-
out removing any classes, and then evaluated on a smaller
application specific dataset such as UCF or HMDB. A
few approaches also further fine-tune their models on the
smaller dataset by randomly splitting it into train and test
sets; however doing so does not necessarily improve perfor-
mance. Moreover, as also suggested in [4], a model ideally
should have separate video sources for training and testing
to evaluate its generalization capability.

Restrictive: In the restrictive training approach pro-
posed in [4], we remove all classes from Kinetics-600
whose distance to any class in UCF ∪ HMDB is smaller
than τ when testing on UCF or HMDB, which results in a
subset of Kinetics with 564 classes. For testing on Activi-
tyNet, an even more restrictive approach is proposed which

involves removing all classes whose distance to any class in
ActivityNet ∪ UCF ∪ HMDB is smaller than τ . This setting
leads to an even smaller subset of Kinetics with 505 classes.

For the open-ended formulation, we train our model on
the entire Kinetics-600 dataset and choose to forgo fine-
tuning on UCF or HMDB since transformer based models
require significant amount of data to learn meaningful rep-
resentations. To make our evaluation comparable to the ex-
isting approaches, we first randomly split the test dataset in
half and evaluate our proposed approach on it over 10 trials.
For the restrictive approach, in addition to the random split,
we also evaluate our model on the entire UCF and HMDB
datasets (Table 3) since it allows for a more robust evalua-
tion due to lack of randomness.

Fair ZSL: Since neither of the existing training proto-
cols provide the true essence of ZSL, we propose a new
setup where a model is trained on the entire Kinetics-
600/700 dataset and evaluated on the proposed test set dis-
cussed in Section 3.3. For evaluation, we compare our ap-
proach in Table 4 with the recently proposed E2E model [4]
and our implementation of the CLASTER model [19]. Re-
cently, [7] proposed an elaborate rehearsal approach which,
in addition to a 3D-CNN, explicitly uses an object classi-
fier trained on ImageNet to learn objects detected in videos.
Since their approach and problem setup is significantly dif-
ferent from the existing approaches, we do not compare our
approach with them.

4.3. Results

In the model name “ViSET-X(Y) + Z”, X refers to the
number of frames used in the analysis of each video, Y de-
notes the number of the classes from Kinetics-600 used in
training, and Z represents the data type used for class se-
mantic embedding (CD for class descriptions and CL for
class labels). The impacts of frame number and class de-
scriptions are analyzed in Section 4.4.

We first compare the proposed method with the state-of-
the art approaches under the dominant random split setup
in Table 2. However, [18] have presented their results us-
ing a different split (e.g., 78-23 for UCF-101), so we do not
include their results in Table 2. The test datasets are ran-
domly split into half using the seed 10, as in [4]. It is seen
that the proposed spatiotemporal transformer based ZSL
approach consistently outperforms all other state-of-the-art
approaches under all settings. On the UCF-101 dataset,
we notice a significant improvement of 21.9% and 5.2%
over the next best results, for the OE and R protocols, re-
spectively. On the HMDB-51 dataset, the improvements of
the proposed method are 3.4% and 1.8% for the OE and
R protocols, respectively. None of the existing approaches
present their results on the ActivityNet dataset for the OE
protocol, hence we could not compare our result on it. How-
ever, for the R protocol, we outperform the E2E approach



Method Protocol UCF HMDB ActivityNet

DataAug [49] OE 18.3 19.7 -
InfDem [34] OE 17.8 21.3 -
Bidirectional [44] OE 21.4 18.9 -
TARN [3] OE 19 19.5 -
Action2Vec [21] OE 22.1 23.5 -
OD [29] OE 26.9 30.2 -
CLASTER [19] OE 46.4 36.8 -
DASZL [27] OE 48.9 - -
GGM [29] OE 20.3 20.7 -
ViSET-96(600) + CD (Ours) OE 68.3 40.2 44.8

E2E (605classes) R 44.1 29.8 26.6
E2E (664classes) R 48 32.7 -
PS-ZSAR (662 classes) [26] R 49.2 33.8 -
ViSET-96(505) + CD (Ours) R 45.6 31.3 35.8
ViSET-96(564) + CD (Ours) R 53.2 34.5 -

Table 2. Comparison with the state-of-the-art methods on standard
benchmark datasets using the open-ended (OE) and Restrictive (R)
protocols. All the methods are evaluated by randomly splitting the
dataset in half and averaging the results over 10 trials.

by a wide margin of 9.2%.
A disjoint training and testing split allows us to evaluate

our model on the entire UCF-101, HMDB-51 and Activi-
tyNet datasets without any random split. As shown in Ta-
ble 3, the performances drop compared to the random split
case in Table 2. However, we still considerably outperform
the E2E based approach under the R protocol while using
the class descriptions and class labels. Since the rest of the
existing state-of-the-art approaches use some part of UCF-
101 or HMDB-51 for fine tuning their models, we could not
compare our results with them in this setup.

Finally, we also consider the Fair ZSL protocol proposed
in Section 4.2. Here, we compare our model with the E2E
[4] method and our implementation of the CLASTER [19]
method. We again notice a significant improvement of 5.9%
over E2E, which shows the robustness and generalization
capability of the proposed method. It should be noted that
we use the E2E model trained on 664 classes for compari-
son since the model trained on all 700 classes is not avail-
able. However, since we train on Kinetics-600, which has
even less number of classes, we believe it is a fair compari-
son.

4.4. Ablation Study

In this section, we analyze the contributions of different
components of the proposed approach by performing em-
pirical studies.

Impact of the Spatiotemporal Transformer: Here, we
study how well the proposed ViSET model is able to learn
the spatiotemporal visual features. For comparison, we con-
sider the a state-of-the-art 3D-CNN model called I3D [6],
which has been a popular choice for video action recog-

Method Protocol UCF HMDB ActivityNet

E2E (605classes) R 35.3 24.8 20.0
E2E (664classes) R 37.6 26.9 -
ViSET-96(505) + CD R 36.1 25.7 26.3
ViSET-96(564) + CD R 40.2 30.5 -
ViSET-8(564) + CD R 37.6 27.9 -
ViSET-96(505) + CL R 33.9 25.2 24.7
ViSET-96(564) + CL R 38.3 27.6 -

Table 3. Comparison with the E2E [4] approach under the Re-
strictive (R) protocol using the entire datasets for testing without
any random split. E2E and ViSET are trained on Kinetics-700 and
Kinetics-600, respectively.

Method Protocol FZSL Split

CLASTER FZSL 24.3
E2E (664 classes) FZSL 30.8
ViSET-96(600) + CD FZSL 36.7

Table 4. Comparison with E2E [4] and our implementation of
CLASTER [19] using the proposed Fair ZSL protocol. The mod-
els are tested on the test set proposed in Section 3.3.

nition, and has been used by several existing approaches
[19,29,46] for zero-shot action recognition. For ViSET, we
extract the output of the last block z00(L), which serves as a
visual embedding for the entire video. To extract I3D fea-
tures, we follow the approach employed by [19, 29, 46] and
average the output from the Mixed 5c layer across the tem-
poral dimension followed by pooling by four in the spatial
dimension and finally flattening it to a vector of size 4096.
We use both RGB and flow features and concatenate them to
form a vector of size 8192. In Fig. 5, we present the t-SNE
visualization for the I3D and ViSET features on UCF-101,
where each point represents a video in the UCF dataset. It
is clearly seen that, as compared to the I3D features, ViSET
learns more semantically separable features with more well-
defined clusters. We also quantitatively compare them in
Table 5 by using various statistical metrics. The average sil-
houette score measures how tightly grouped all the points in
the cluster are. The adjusted rand index computes a similar-
ity measure between the clusterings and the ground truth.
The homogeneity score checks if a cluster contains samples
belonging to a single class. Finally, we also apply a simple
k-NN classification algorithm on the extracted features to
compute the accuracy for traditional video classification. In
all metrics, the ViSET features provide a better separation.

Impact of Class Descriptions: In Table 3, we compare
the performance of our approach when class labels (CL) are
used instead of class descriptions (CD). Here, we train the
ViSET model on the semantic embeddings extracted using
the Sent2Vec model on class labels, and test on the entire



Figure 4. Performance of the proposed approach on all classes of the UCF-101 dataset.

Figure 5. t-SNE visualization of the I3D (left) and ViSET (right)
features extracted from the UCF-101 dataset. Each point repre-
sents a video and various classes are represented with different
colors. We see that the features learned by the proposed ViSET
model (right) are semantically more separable than the I3D fea-
tures (left). Best viewed in color.

Method I3D ViSET

Average Silhouette 0.119 0.196
Adjusted Rand Index 0.80 0.88
Homogeneity Score 0.92 0.96
Classification 0.93 0.96

Table 5. Comparison between the ViSET and I3D features in terms
of clustering and classification performance using different met-
rics. The classification accuracy is for the k-NN classifier.

UCF, HMDB and ActivityNet datasets using the restrictive
(R) setting. We see that there is a noticeable improvement
in the performance when class descriptions are used, which
ascertains our conjecture that descriptive semantic embed-
dings are crucial in improving the learned class represen-
tations. Moreover, our performance using class label em-
beddings is still better than existing state-of-the-art, which
shows the efficacy of our proposed ViSET model. While
generating class descriptions require some human involve-
ment, we argue that the cost is still significantly less as
compared to video level annotations required for supervised

learning. Furthermore, manually defined attributes are al-
ready being used for zero-shot image classification [23]
since class labels are not always discriminative enough to
distinguish the context.

Class wise performance: In Fig. 4, we breakdown the
performance of the proposed model over all the classes in
the UCF dataset (i.e., not only the ones included in the pro-
posed test set). We observe that for several classes such
as nunchucks, YoYo, unevenbars, the proposed approach is
unable to classify even a single video correctly. This prob-
lem is not due to the proposed method, but due to the sheer
dissimilarity of these classes with respect to the training
classes in the Kinetics dataset. Since any practical algo-
rithm will miss such classes, this emphasizes the need for
removing classes that are completely irrelevant with respect
to the training set from the test set.

Number of Input Frames: Finally, we analyze the im-
pact of the number of input frames on the ViSET perfor-
mance. As shown in Table 3, there is a 2.6% gain in both
UCF and HMDB datasets when 96 frames are used instead
of 8.

5. Conclusion

In this work, we introduce a spatiotemporal transformer
architecture for zero-shot video action recognition, called
ViSET. Moreover, we highlight several areas where the
existing approaches either violate the zero-shot learning
(ZSL) premise or are unable to perform well due to the lim-
ited capabilities of 3D-CNN based visual extractors. We
propose a new evaluation protocol, Fair ZSL, that strictly
adheres to the ZSL premise. Through several experiments,
we show that the proposed approach consistently outper-
forms the existing approaches under various experimental
setups, including the existing ones in the literature and the



proposed Fair ZSL setup.

References
[1] Ioannis Alexiou, Tao Xiang, and Shaogang Gong. Exploring

synonyms as context in zero-shot action recognition. In 2016
IEEE International Conference on Image Processing (ICIP),
pages 4190–4194. IEEE, 2016. 2

[2] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is
space-time attention all you need for video understanding?
arXiv preprint arXiv:2102.05095, 2021. 1, 2, 3

[3] Mina Bishay, Georgios Zoumpourlis, and Ioannis Pa-
tras. Tarn: Temporal attentive relation network for few-
shot and zero-shot action recognition. arXiv preprint
arXiv:1907.09021, 2019. 2, 7

[4] Biagio Brattoli, Joseph Tighe, Fedor Zhdanov, Pietro Per-
ona, and Krzysztof Chalupka. Rethinking zero-shot video
classification: End-to-end training for realistic applications.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4613–4623, 2020. 2,
3, 4, 5, 6, 7

[5] Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe
Hillier, and Andrew Zisserman. A short note about kinetics-
600. arXiv preprint arXiv:1808.01340, 2018. 1

[6] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6299–6308, 2017. 2, 7

[7] Shizhe Chen and Dong Huang. Elaborative rehearsal
for zero-shot action recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 13638–13647, 2021. 6

[8] Yunpeng Chen, Haoqi Fan, Bing Xu, Zhicheng Yan, Yan-
nis Kalantidis, Marcus Rohrbach, Shuicheng Yan, and Ji-
ashi Feng. Drop an octave: Reducing spatial redundancy in
convolutional neural networks with octave convolution. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3435–3444, 2019. 5

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 4

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 3

[11] Bernard Ghanem Fabian Caba Heilbron, Victor Escorcia and
Juan Carlos Niebles. Activitynet: A large-scale video bench-
mark for human activity understanding. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 961–970, 2015. 1

[12] Christoph Feichtenhofer, Axel Pinz, and Richard P Wildes.
Spatiotemporal multiplier networks for video action recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4768–4777, 2017. 2

[13] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.
Convolutional two-stream network fusion for video action
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1933–1941,
2016. 2

[14] Basura Fernando, Efstratios Gavves, Jose M Oramas, Amir
Ghodrati, and Tinne Tuytelaars. Modeling video evolution
for action recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
5378–5387, 2015. 2

[15] Chuang Gan, Ming Lin, Yi Yang, Gerard De Melo, and
Alexander G Hauptmann. Concepts not alone: Exploring
pairwise relationships for zero-shot video activity recogni-
tion. In Thirtieth AAAI conference on artificial intelligence,
2016. 2

[16] Chuang Gan, Ming Lin, Yi Yang, Yueting Zhuang, and
Alexander G Hauptmann. Exploring semantic inter-class
relationships (sir) for zero-shot action recognition. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015. 2

[17] Chuang Gan, Tianbao Yang, and Boqing Gong. Learning at-
tributes equals multi-source domain generalization. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 87–97, 2016. 2

[18] Pallabi Ghosh, Nirat Saini, Larry S Davis, and Abhinav Shri-
vastava. Learning graphs for knowledge transfer with limited
labels. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11151–11161,
2021. 6

[19] Shreyank N Gowda, Laura Sevilla-Lara, Frank Keller, and
Marcus Rohrbach. Claster: Clustering with reinforcement
learning for zero-shot action recognition. arXiv preprint
arXiv:2101.07042, 2021. 2, 4, 6, 7

[20] Shreyank N Gowda, Laura Sevilla-Lara, Kiyoon Kim, Frank
Keller, and Marcus Rohrbach. A new split for evalu-
ating true zero-shot action recognition. arXiv preprint
arXiv:2107.13029, 2021. 2, 4, 6

[21] Meera Hahn, Andrew Silva, and James M Rehg. Action2vec:
A crossmodal embedding approach to action learning. arXiv
preprint arXiv:1901.00484, 2019. 2, 7

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2

[23] Dat Huynh and Ehsan Elhamifar. Fine-grained generalized
zero-shot learning via dense attribute-based attention. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 4483–4493, 2020. 8

[24] Haroon Idrees, Amir R Zamir, Yu-Gang Jiang, Alex Gorban,
Ivan Laptev, Rahul Sukthankar, and Mubarak Shah. The
thumos challenge on action recognition for videos “in the
wild”. Computer Vision and Image Understanding, 155:1–
23, 2017. 2

[25] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 1



[26] Alec Kerrigan, Kevin Duarte, Yogesh Rawat, and Mubarak
Shah. Reformulating zero-shot action recognition for multi-
label actions. Advances in Neural Information Processing
Systems, 34:25566–25577, 2021. 7

[27] Tae Soo Kim, Jonathan Jones, Michael Peven, Zihao Xiao,
Jin Bai, Yi Zhang, Weichao Qiu, Alan Yuille, and Gregory D
Hager. Daszl: Dynamic action signatures for zero-shot learn-
ing. In Proceedings of the AAAI conference on artificial in-
telligence, volume 35, pages 1817–1826, 2021. 7

[28] Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote,
Tomaso Poggio, and Thomas Serre. Hmdb: a large video
database for human motion recognition. In 2011 Inter-
national conference on computer vision, pages 2556–2563.
IEEE, 2011. 1, 2

[29] Devraj Mandal, Sanath Narayan, Sai Kumar Dwivedi,
Vikram Gupta, Shuaib Ahmed, Fahad Shahbaz Khan, and
Ling Shao. Out-of-distribution detection for general-
ized zero-shot action recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9985–9993, 2019. 2, 7

[30] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013. 2

[31] Ashish Mishra, Vinay Kumar Verma, M Shiva Krishna
Reddy, S Arulkumar, Piyush Rai, and Anurag Mittal. A gen-
erative approach to zero-shot and few-shot action recogni-
tion. In 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 372–380. IEEE, 2018. 2

[32] Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. Un-
supervised Learning of Sentence Embeddings using Compo-
sitional n-Gram Features. In NAACL 2018 - Conference of
the North American Chapter of the Association for Compu-
tational Linguistics, 2018. 4, 5

[33] AJ Piergiovanni and Michael S Ryoo. Learning shared mul-
timodal embeddings with unpaired data. CoRR, 2018. 2

[34] Alina Roitberg, Ziad Al-Halah, and Rainer Stiefelhagen. In-
formed democracy: voting-based novelty detection for ac-
tion recognition. arXiv preprint arXiv:1810.12819, 2018. 4,
7

[35] Alina Roitberg, Manuel Martinez, Monica Haurilet, and
Rainer Stiefelhagen. Towards a fair evaluation of zero-shot
action recognition using external data. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 0–
0, 2018. 2, 6

[36] Karen Simonyan and Andrew Zisserman. Two-stream con-
volutional networks for action recognition in videos. arXiv
preprint arXiv:1406.2199, 2014. 2

[37] Lucas Smaira, João Carreira, Eric Noland, Ellen Clancy,
Amy Wu, and Andrew Zisserman. A short note on the
kinetics-700-2020 human action dataset. arXiv preprint
arXiv:2010.10864, 2020. 1

[38] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from videos
in the wild. arXiv preprint arXiv:1212.0402, 2012. 1, 2

[39] Kevin Tang, Li Fei-Fei, and Daphne Koller. Learning la-
tent temporal structure for complex event detection. In 2012
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1250–1257. IEEE, 2012. 1

[40] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. Learning spatiotemporal features with
3d convolutional networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 4489–4497,
2015. 2

[41] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recogni-
tion, pages 6450–6459, 2018. 2

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 3

[43] Qian Wang and Ke Chen. Alternative semantic representa-
tions for zero-shot human action recognition. In Joint Euro-
pean Conference on Machine Learning and Knowledge Dis-
covery in Databases, pages 87–102. Springer, 2017. 2

[44] Qian Wang and Ke Chen. Zero-shot visual recognition via
bidirectional latent embedding. International Journal of
Computer Vision, 124(3):356–383, 2017. 2, 7

[45] Yunbo Wang, Mingsheng Long, Jianmin Wang, and Philip S
Yu. Spatiotemporal pyramid network for video action recog-
nition. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 1529–1538, 2017. 2

[46] Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep
Akata. Feature generating networks for zero-shot learning.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 5542–5551, 2018. 7

[47] Xun Xu, Timothy Hospedales, and Shaogang Gong. Seman-
tic embedding space for zero-shot action recognition. In
2015 IEEE International Conference on Image Processing
(ICIP), pages 63–67. IEEE, 2015. 2

[48] Xun Xu, Timothy Hospedales, and Shaogang Gong. Trans-
ductive zero-shot action recognition by word-vector embed-
ding. International Journal of Computer Vision, 123(3):309–
333, 2017. 2

[49] Xun Xu, Timothy M Hospedales, and Shaogang Gong.
Multi-task zero-shot action recognition with prioritised data
augmentation. In European Conference on Computer Vision,
pages 343–359. Springer, 2016. 2, 7

[50] Bowen Zhang, Hexiang Hu, and Fei Sha. Cross-modal and
hierarchical modeling of video and text. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 374–390, 2018. 2

[51] Yanyi Zhang, Xinyu Li, Chunhui Liu, Bing Shuai, Yi Zhu,
Biagio Brattoli, Hao Chen, Ivan Marsic, and Joseph Tighe.
Vidtr: Video transformer without convolutions. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 13577–13587, 2021. 2

[52] Yi Zhu, Yang Long, Yu Guan, Shawn Newsam, and Ling
Shao. Towards universal representation for unseen action
recognition. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 9436–9445,
2018. 2


