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Abstract—Video action recognition has attracted significant re-
search attention over the past several years. Although adversarial
effects and robustness in image classification models have been
heavily investigated, robustness of action recognition models to
natural or adversarial perturbations remain largely unexplored.
Moreover, even though transformer based approaches have
shown great promise on various vision tasks, they have yet to be
evaluated in terms of their robustness. To this end, we propose a
Semantic Video Transformer for Action Recognition (SeViTAR),
which maps visual features obtained by a video transformer
to a more robust visual-semantic representation. We extensively
evaluate the proposed approach on the ROSE Challenge dataset,
and outperform all baselines with a significant margin.

Index Terms—robustness, action recognition, video trans-
former, semantic mapping

I. INTRODUCTION

Due to the availability of extensively annotated large
datasets as well as the development of improved deep neural
network (DNN) architectures, several visual recognition tasks,
such as image classification and video action recognition,
have made significant progress in recent years. Although
they have achieved considerable success, DNNs have been
discovered to be vulnerable to adversarial attacks [1]–[4]. An
extensive body of research has demonstrated that introducing
perturbations into an image or video can cause a given DNN
prediction to be incorrect. Specifically, it was recently shown
that convolutional neural network (CNN) based architectures
for video action recognition are susceptible to such adversarial
attacks and added perturbations can significantly affect their
overall performance. Moreover, natural perturbations to image
or video can happen such as camera shaking due to wind,
poor video quality due to the Internet connection problems,
etc. Machine learning models should be robust to both natural
and adversarial perturbations. While robust image recognition
models have been extensively studied, robustness in video
action recognition still remains largely unexplored.

In the existing research, video action recognition is char-
acterized as a supervised classification problem, in which a
model is trained on a collection of known classes and then
used to classify a set of unknown test videos. Most existing
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approaches rely on extracting visual feature representations
using DNN architectures and then classifying them using
one-hot encoding. In this paper, we argue that using the
inherent semantic information from the class labels can lead
to a more robust representation. For example, classes such
as skiing and slalom skiing might have similar visual feature
representations, and thus not be discriminative enough to be
classified correctly. Hence, we propose leveraging the semantic
information of the class labels to generate a more robust
feature representation.

Fig. 1. t-SNE visualization of the features extracted from the UCF-101 dataset
by I3D (left) and the proposed transformer (right). Each point represents a
video and various classes are represented with different colors. It is seen
that the features learned by the proposed transformer model (right) are more
separable than the I3D features (left). Best viewed in color.

Several existing video understanding works primarily lever-
age 3D convolutional models for extracting spatiotemporal
feature representations from videos, such as C3D [8] or I3D
[9]. However, convolutional kernels are incapable of capturing
spatiotemporal correlations that span a large number of time
instances. Self-attention based transformer models, on the
other hand, have relatively larger receptive fields [10] and
can process longer video sequences, capturing long-range
dependencies more effectively. In Fig. 1, we show the t-
SNE representation of the extracted visual features using the
proposed transformer based approach as compared to the
I3D model. We see that the transformer model learns more
semantically separable features as compared to I3D.

Motivated by these observations, we propose leveraging
self-attention architectures, in particular a spatiotemporal
transformer model, for extracting visual feature representation
from videos. The self-attention approach, in contrast to con-
volutional kernels, can capture long-range dependencies and
is permutation invariant while being computationally efficient



Fig. 2. The proposed semantic video transformer architecture, SeViTAR, for robust action recognition. For feature extraction, any video encoder can be used,
such as the recent video transformers, Swin [5], TimeSformer [6], MViT [7].

during training and inference. With the help of a semantic
embedding mechanism, our semantic transformer approach is
able to learn spatiotemporal features that are more robust to
input perturbations compared to the convolutional models. Our
contributions can be summarized as follows:

• A novel semantic video transformer architecture. We
propose a novel architecture that maps the spatiotemporal
video features learned by a transformer to a semantic
embedding with the help of class labels.

• A robust transformer based approach for video action
recognition. We show that the semantic embedding to-
gether with the spatiotemporal transformer output provide
a more robust feature representation.

• An extensive evaluation of the proposed approach on sev-
eral benchmark datasets. The proposed method outper-
forms existing benchmark approaches by a wide margin
on the ROSE Challenge dataset.

II. RELATED WORKS

Video action recognition has been extensively studied
over the past several years [9], [11]–[14]. Specifically, 3D-
Convolutional models such as C3D [8] and I3D [9] extended
2D-CNN to 3D-CNNs kernels. Recently, transformer based
approaches such as the TimeSformer architecture [6] and
VidTr [10] have shown promising results on video recognition
tasks. While earlier approaches use hand-crafted semantic
features [15], recent works have primarily use Word2Vec [16]

for generating the semantic embeddings from the class labels.
However, such approaches are prone to suffer from the domain
shift problem, which occurs when a model trained on the seen
semantic labels is unable to generalize well to the unseen class
labels [17].

Despite the fact that adversarial attacks on images have
been studied for several years since [2], the vulnerabilities
of video recognition models have only recently come to light
[1], [18]–[20]. However, several recent approaches address the
vulnerabilities of existing deep neural network based models
to perturbations or adversarial effects. Specifically, the most
common perturbation pattern is sending queries to the target
model and estimating gradients to generate adversarial data.
PatchAttack (V-BAD) [21] is the first proposed black-box
video attack. They proposed a method to generate pertur-
bations for each frame of a video, and then updated their
perturbations with queries. Heuristic Attack [22] is another
black-box adversarial attack which uses a query-based attack
strategy to heuristically select the key frames to be attacked.

III. PROPOSED APPROACH

In this section, we present the proposed approach for robust
video action recognition. We introduce a novel transformer
model, SeViTAR (Semantic Video Transformer for Action
Recognition), which leverages spatiotemporal self-attention
and semantic embedding to learn feature representations that
are more robust to video perturbations compared to the bench-
mark convolutional architectures.



Fig. 3. Different types of perturbations from the ROSE Challenge dataset.

A. Problem Definition

Traditionally, video action recognition has been defined as
a supervised classification problem, where given a training set
of videos Xs and labels S from seen classes

{(xs
1, s1), . . . , (x

s
N , sN )},

we aim to accurately classify a set of videos

Xu = {(xu
1 ), . . . , (x

u
M )}

from unknown classes U = {u1, . . . , uM}, where N and M
are the number of training and testing videos respectively.

B. Semantic Video Transformer

Given the promising performance of recently proposed
video transformers, such as TimeSformer [6] and VidTr [10],
we extract visual features from videos using a spatiotemporal
transformer model. Similar to the TimeSformer and VidTr
architectures, we leverage the divided space-time attention
mechanism. Specifically, applying spatial and temporal atten-
tion at the same time requires O(n2) complexity with respect
to the sequence length, which quickly becomes inefficient.
Hence, as shown in Fig. 2, in each encoding block, we first
apply temporal attention followed by spatial attention, both of
which use the standard qkv attention scheme proposed in [23].
The entire transformer consists of A parallel self-attention
heads with L sequential encoding blocks in each head. The
visual feature extraction procedure is as follows.

First, a clip y of F frames and size H×W is sampled from
the input video x. We proceed by converting the entire video
clip y to a sequence of 2D patches of size P × P , given by
ept ∈ R3×P 2

. Here p = 1, . . . , N represents the spatial position
of each patch (i.e., patch index), t = 1, . . . , F denotes the
temporal location of each frame and 3 is the number of color
channels. Finally, we flatten each patch ept into vpt ∈ R3P 2

and linearly map it into a score vector using a trainable linear
projection E ∈ Rq×3P 2

:

zpt (0) = Evpt + µp
t , (1)

where µp
t ∈ Rq is a latent vector learned to encode the

spatiotemporal position of each (p, t) pair. Following the NLP

transformer BERT [24], we add a latent vector z00(0) ∈ Rq for
an additional fictional patch that will be trained to represent
the video’s score vector through time and spatial self-attention.
The input to the model is {z00(0), z

p
t (0)}p,t. Each block l

receives {z00(l − 1), zpt (l − 1)} and produces {z00(l), z
p
t (l)}.

We then use the output of the last step z00(L) as the video’s
visual feature representation (shown as CLS token in Fig. 2).

Next, for a more robust representation, we augment the
visual features with semantic features. Specifically, we obtain
a semantic embedding of the input video x by mapping
visual features z00(L) to a semantic space through a mul-
tilayer perceptron (MLP). We first train the semantic MLP
by minimizing the mean squared error (MSE) between the
output semantic feature vector ŝ and the Sent2Vec embedding
svec of the video class label, s. Finally, the semantic feature
vector ŝ is concatenated with the visual feature vector z00(L) to
form the visual-semantic feature representation [ŝ, z00(L)]. We
finally train the classification MLP on these visual-semantic
representations to classify the input videos using the cross-
entropy loss.

C. Implementation Details

The proposed SeViTAR model is built upon the SlowFast
[25] and TimeSformer packages [6] as the video encoder. We
preprocess the input videos by resizing the shorter side to 256
pixels and then a random crop is applied to create a 224×224
(H × W ) video snippet. Following the Vision Transformer
(ViT) [26] model, we use a patch size of 16 × 16, which
results in a total of N = 196 patches in a frame. During
each encoding block for each patch, the size of the score
vectors (zpt (l)) at each encoding block is q = 768, and the
number of self-attention heads is set as A = 12. The number
of input frames is set as 8. We extracted the features using
4 NVIDIA A6000 GPUs with a batch size of 8. The loss
function is minimized via synchronized SGD with a learning
rate of 0.002. To extract semantic embeddings, we use the
Sent2Vec algorithm proposed in [27].



TABLE I
VIDEO ACTION RECOGNITION PERFORMANCE ON THE PERTURBED DATASETS OF THE ROSE ROBUSTNESS CHALLENGE. THE PROPOSED SEMANTIC

VIDEO TRANSFORMER METHOD OUTPERFORMS THE BENCHMARK METHODS BY A WIDE MARGIN. ∗ONLY 80K VIDEOS FROM KINETICS-400P ARE USED
FOR TRAINING DUE TO TIME AND COMPUTATIONAL CONSTRAINTS.

Method UCF-101P HMDB-51P Kinetics-400P UCF-101PMini HMDB-51PMini
SlowFast [28] - - 55.48 - -
I3D [9] 76.9 - - - -
TimeSformer [6] 88.5 70.48 54.26 - -
SeViTAR (Ours) 89.35 78.92 70.49∗ 90.54 80.98

IV. EXPERIMENTS

A. Datasets

The UCF-101, HMDB-51, and the Kinetics datasets are
three publicly available benchmark datasets that have been
commonly used in the majority of recent studies to evaluate the
action recognition performance. The UCF-101 dataset contains
13,320 videos from 101 classes, with the majority of the videos
focusing on five different types of actions. In the HMDB-51
dataset, there are 6767 videos divided into 51 classes based on
everyday human actions. The Kinetics-400 dataset is one of the
most comprehensive action recognition datasets available with
a total of over 250K videos sourced from YouTube belonging
to 400 different classes. To evaluate the performance of the
proposed approach in terms of robustness, we use the ROSE
Challenge dataset1, which consists of perturbations such as
spatial, temporal, camera-related, and compression corruptions
added to the benchmark datasets. A sample set of the perturba-
tions are shown in Fig. 3. The introduced perturbations make
it significantly more difficult to recognize activities. Moreover,
the intensity of each perturbation is different for each video.

B. Results

In Table I, the performance of the proposed approach is
compared with existing state-of-the-art approaches such as
SlowFast [28], I3D [9] and the TimeSformer [6]. We used
the I3D and TimeSformer models on the ROSE Challenge
dataset to obtain benchmark results. The SlowFast results are
provided by the ROSE Challenge organizers. It is clearly seen
that the proposed SeViTAR model considerably outperforms
all benchmark results. Specifically, we see an improvement
of 8.44% on the HMDB-51P and 15.01% on the Kinetics-
400P datasets as compared to the next best results. These
results demonstrate the robustness of the proposed approach as
compared to existing models. In particular, the improvement
over the TimeSformer results show the contribution of the
semantic embedding part.

It should be noted that the performance of the SeViTAR
approach on the Kinetics dataset leverages only 80K training
videos due to time and computational constraints. It is highly
anticipated that the accuracy will further improve when trained
on the entire Kinetics dataset. The performance of our method
on the mini sets released for the ROSE Challenge are also
provided in Table I.

1https://rosecvpr22.github.io
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VI. CONCLUSION

In this work, we introduce a semantic video transformer for
robust video action recognition, called SeViTAR. Specifically,
our goal is to highlight the robustness of the visual-semantic
embeddings extracted using the proposed SeViTAR model
as compared to the existing 3D-CNN and transformer based
visual models. Through experiments on the ROSE Robustness
Challenge datasets, we show that the proposed approach
significantly outperforms the existing approaches by a wide
margin.
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