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Abstract: In this paper, we address the problem of detecting and learning anomalies in high-
dimensional data-streams in real-time. Following a data-driven approach, we propose an online
and multivariate anomaly detection method that is suitable for the timely and accurate detection of
anomalies. We propose our method for both semi-supervised and supervised settings. By combin-
ing the semi-supervised and supervised algorithms, we present a self-supervised online learning
algorithm in which the semi-supervised algorithm trains the supervised algorithm to improve its de-
tection performance over time. The methods are comprehensively analyzed in terms of computational
complexity, asymptotic optimality, and false alarm rate. The performances of the proposed algorithms
are also evaluated using real-world cybersecurity datasets, that show a significant improvement over
the state-of-the-art results.

Keywords: anomaly detection; change detection; online learning; self-supervised learning; sequential
analysis

1. Introduction

Anomaly detection, that can be summarized as detecting unexpected data patterns [1],
has many real-world applications, such as cybersecurity [2–4], hardware security [5],
medical health care [6], surveillance videos [7], aviation [8], transportation [9], power
systems [10], and time series problems [11]. A detected anomaly may be a sign of an
unwanted and often actionable event, such as a cyber-attack, suspicious human behavior,
system failure, etc. In many applications, the timely and accurate detection of abnormal
data patterns is crucial as it allows for proper countermeasures to be taken in a timely
manner to counteract any possible harm. For example, the quick detection of an abnormal
behavior observed in the telemetry observations of a spacecraft could prevent a catastrophic
loss [12].

The online learning of anomalies in a self-supervised fashion, as they are detected,
can facilitate the fast and accurate detection of the same anomaly type when it hap-
pens again. Such self-supervised training without requiring human-labeled instances can
greatly improve the detection performance over time. While deep neural network-based
methods have been quite popular in many machine learning tasks, including anomaly
detection [13–15], they are not amenable for continually learning new anomaly types in
an online fashion due to catastrophic forgetting [16]. As they try to learn new patterns
in an incremental fashion, they tend to forget the previously learned patterns. However,
statistical methods that require lightweight training, such as neighbor-based methods, can
continually learn new patterns in an online fashion [17].

In this work, we consider the timely detection and learning of anomalies in high-
dimensional data-streams. Multivariate anomaly detection techniques can detect anomalies
that are manifested in the interactions between several data-streams that cannot be de-
tected by the univariate detection methods [18]. For instance, detecting and mitigating a
stealthy distributed denial-of-service (DDoS) attack requires the joint monitoring of mul-
tiple data-streams [4,19]. This in turn, leads to the high-dimensionality challenge, i.e., an
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effective anomaly detection technique that needs to be scalable for high-dimensional data
in real time.

Motivated by the aforementioned reasons, we propose a neighbor-based, online, mul-
tivariate anomaly detection (NOMAD) technique that can handle high-dimensional and
heterogeneous data in real-time, and that lends itself to a performance analysis.

Contributions: Our contributions in this paper can be summarized as follows:

• Two variations of a data-driven, neighbor-based, and sequential anomaly detection
method called NOMAD are proposed for both semi-supervised and supervised set-
tings depending on the availability of the data;

• The computational complexity and asymptotic false alarm rate of NOMAD are ana-
lyzed, and a procedure for selecting a proper decision threshold to satisfy a desired
false alarm rate is provided;

• A self-supervised online learning scheme that can effectively detect both known and
unknown anomaly types by incorporating the newly detected anomalies into the
training set is introduced;

• Finally, the performance of the proposed methods are evaluated in two real-world
cybersecurity datasets.

The rest of the paper is organized as follows. Related works are discussed in Section 2.
In Section 3, the mathematical formulation of the considered anomaly detection problem
and the relevant background information are provided. We present the proposed anomaly
detection and learning methods, along with the theoretical analysis of the performance and
the computational complexities in Section 4. The experiments are presented in Section 5.
Finally, we conclude the paper in Section 6.

2. Related Work

Anomaly detection has been extensively studied in various domains. For instance,
an SVM-based approach for anomaly detection was proposed in [20]; several theoretical
information measures were proposed in [21] for the intrusion detection problem; and two
new information metrics for DDoS attack detection were introduced in [3]. With the new
challenges, such as high-dimensionality, heterogeneity, and real-time detection posed by
emerging applications (e.g., internet of things, smart city, intelligent transportation systems,
etc.), there is still a significant need for studying the new challenging aspects of the anomaly
detection problem.

Real-time detection can be better addressed by sequential anomaly detection tech-
niques compared to the outlier detection techniques [1]. As opposed to considering each
instance independently, sequential methods also take the history of observations into ac-
count. The cumulative sum (CUSUM) detector [22] is a well-known sequential change
detection technique that assumes probabilistic models for nominal and anomalous data
points, and computes the cumulative log-likelihood-ratio (LLR) over time, declaring an
anomaly if the statistic exceeds a predefined threshold. The accuracy of assumed models,
as well as the estimated parameters, are the key factors in the performance of CUSUM and
more general parametric methods. CUSUM is the minimax optimum under the condition
that the probability distributions before and after the change are completely known [23].
However, this is not possible in many real-world applications with a priori knowledge
of the underlying distributions. Estimating the probability distributions quickly becomes
intractable for high-dimensional data that includes many unknowns, such as the anomaly
onset time, the subset of anomalous dimensions, etc., in addition to the parameters of the
nominal and anomalous models. To tackle this complexity, ref. [24] proposed a relaxed
version of CUSUM, in which each data-stream is assumed to be independent of others.
However, this univariate method is not suitable for detecting changes in the correlation
between data-streams. A sequential test for detecting changes in the correlation between
variables, as well as localizing the highly correlated variables in high-dimensional data-
streams was proposed in [25]. This is a parametric method based on the assumption that
the observed vectors are multivariate Gaussian distributed. It is proposed solely for the
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detection of correlation changes between data-streams and does not generalize for other
changes in the distribution. In this paper, we are interested in detecting general changes in
unknown distributions, including the changes in the correlation structure.

Neighbor distance-based methods are geometric methods that are based on the
assumption that anomalous data instances occur far from the nominal instances. For
instance, refs. [26,27] have proposed non-parametric outlier detection techniques based on
the minimum volume set (MVS) of the nominal data. MVS corresponds to the region of
greatest probability density with minimum data volume, and is known to be useful for
anomaly detection [28] based on the assumption that anomalies occur in the less concen-
trated regions of the nominal dataset. These non-parametric outlier detection methods
estimate the MVS of nominal training samples using neighbor graphs, and declare a data
point as anomalous if it lies outside the MVS. Despite being scalable to high-dimensional
and heterogeneous data, they do not consider the temporal anomaly information, and thus
are prone to higher false alarm rates compared to sequential anomaly detection methods.
Similarly, ref. [29] proposed a neighbor graph-based method that computes an anomaly
score for each observation and declares an anomaly by thresholding the score value. In this
paper, as opposed to the outlier detection methods that treat a single outlier as an anomaly,
we consider an anomaly to consist of persistent outliers and investigate the sequential
and non-parametric detection of such anomalies using the temporal information in data-
streams. Recently, ref. [30] proposed a non-parametric neighbor-based sequential anomaly
detection method for multivariate observations. This method computes the test statistic
based on the number of neighbor edges at different splitting points within a window and
stops the test whenever the test statistics exceed a threshold. Due to its window-based
nature, this method has inherent limitations in achieving small detection delays. It also
recomputes the neighbor graphs at every time instance and for every splitting point; there-
fore, its computational complexity is not suitable for real-time applications. In another
recent work, [31] proposed a distance-based and CUSUM-like change detection method for
attributed graphs. Attributed graphs are first mapped into numeric vectors, and then the
distance between the mean response of an observation window and the mean response
of the training data are computed via a CUSUM-like sequential algorithm. In addition to
the limitations arising from the window-based nature of the method, the local relations
between samples are disregarded due to considering only the mean response of the training
set. As a result, in the cases where training data have a multimodal distribution, this
method will not be effective. As compared to [31], we take into account the local relations
between the data instances.

In addition to classical machine learning techniques, such as the PCA-based [32],
KNN-based [30,33], exponential weighted moving average [34], and feature bagging net-
works [35], deep neural networks have recently become popular in anomaly detection,
as in other machine learning fields. For instance, a deep auto encoder-based detection
method was proposed in [36]. The deep auto encoder, that first encodes the inputs to a
compressed representation, and then decodes the original inputs from the representations,
is trained on nominal data and is expected to have small reconstruction errors when faced
with nominal data during testing. Interestingly, for anomalous data, it is expected to
produce statistically larger errors. It raises alarm if the majority of the instances within a
window have reconstruction errors larger than a threshold and are marked as anomalous.
Another auto encoder-based anomaly detection method was proposed in [37]. A generative
adversarial network (GAN) is an effective deep neural network architecture for learning
to generate samples from a complex probability distribution. In [38], the authors used a
convex combination of reconstruction error and discriminator error of the GAN to compute
an anomaly score for each instance. Similarly, the MAD-GAN algorithm proposed in [39]
uses a combination of reconstruction and discriminator errors of the LSTM-based GAN.
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3. Problem Formulation

Suppose that a system is observed through d-dimensional observationsXt = {x1, x2, . . . , xt}
in time. The objective is to detect an anomaly occurring at an unknown time τ as soon as
possible while satisfying a false alarm constraint. This problem can be formulated as a
change detection problem as follows:

f = f0, t < τ, f = f1( 6= f0), t ≥ τ, (1)

where f is the true probability distribution of observations and f0 and f1 are the nominal
and anomaly probability distributions, respectively. The objective of the problem is to find
the anomaly time T that minimizes the average detection delay while satisfying a false
alarm constraint, i.e.,

inf
T

Eτ [(T − τ)+] subject to E∞[T] ≥ β, (2)

where Eτ represents the expectation given that change occurs at τ, (.)+ = max(., 0), and
E∞ denotes the expectation given that no change occurs, i.e., E∞[T] denotes the expectation
of the false alarm period.

Lorden’s minimax problem is a commonly used version of the above problem [40],
in which the goal is to minimize the worst-case average detection delay subject to a false
alarm constraint:

inf
T

sup
τ

ess sup
Xτ

Eτ [(T − τ)+|Xτ ] s.t. E∞[T] ≥ β, (3)

where “ess sup” denotes the essential supremum. In simple words, the minimax criterion
minimizes the average detection delay for the least favorable change-point and the least
favorable history of measurements up to the change-point while the average false alarm
period is lower-bounded by β.

4. Proposed Methods

Neighbor-based methods maintain their popularity due to their competitive perfor-
mance, computational efficiency, analyzability, and interpretability [41,42]. In this section,
we present our k-nearest-neighbor (kNN) based NOMAD algorithm, extensively analyze its
computational complexity, and provide an asymptotic upper bound on its false alarm rate.
Then, we also propose a supervised extension for NOMAD for the cases where training
data are available for some anomaly settings. Finally, we introduce a unified framework
for the two NOMAD detectors.

The intuition behind using kNN distance for anomaly detection is the similarity
between the inverse kNN distance and likelihood. Specifically, for f (xi) ≥ f (xj), xi, xj ∈ X ,
it is expected that the distance gk(xi) of xi to its kth nearest neighbor inX is smaller than that
of xj. This probability increases with the size of X , i.e., lim|X |→∞ P(gk(xi) ≤ gk(xj)) = 1.
This, in turn provides grounds for using the difference of kNN distances in NOMAD to
approximate the log-likelihood ratio.

4.1. NOMAD Algorithm

In the training phase, assuming a training set XN consists of N nominal data instances
using the kNN distances {gk(xm)} between each node xm ∈ XN and its k nearest neighbors,
NOMAD finds a baseline statistic that represents a boundary between the observations
under nominal operations and the tail events under nominal operations at significance level
α. Then, in the test phase, it compares the kNN distances gk(x) between test data instance x
and its k nearest neighbors in XN with the boundary statistic to compute negative/positive
anomaly evidence for observation x, and accumulates it over time for reliable detection.
Roughly, the greater gk(x) is, the less likely x comes from the same distribution f0 as the
nominal points.
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Specifically, in the training phase, NOMAD ranks the points in XN in ascending order
{x(1), . . . , x(N)} in terms of the total distance:

Lm =
k

∑
n=1

gn(xm)
γ, (4)

where gn(xm) is the distance between point xm ∈ XN and its nth nearest neighbor in XN ,
k controls the nearest neighbors in the calculation of the total distance, and γ > 0 is the
weight. The first K points with the smallest total distances {L(1), . . . , L(K)} represents the
denser parts of the data distribution, and the L(K) is selected as the borderline total distance,
separating the dense area from the tail evenly. K is chosen as K = bN(1− α)c, where b·c is
the floor operator.

In the test phase, for each data instance xt, NOMAD firstly computes the total distance
Lt with respect to the training set XN , as in Equation (4). Then, it computes the anomaly
evidence that could be either positive or negative by comparing Lt with the borderline total
distance L(K)

Dt = log Ld
t − log Ld

(K), (5)

where d is the number of data dimensions. Dt is a measure of how well the observation
fits the nominal distribution. Finally, it updates a detection statistic ∆t that accumulates
the anomaly evidence Dt over time, and raises an anomaly alarm the first time ∆t crosses a
predefined threshold,

∆t = max{∆t−1 + Dt, 0}, ∆0 = 0,

T = min{t : ∆t ≥ h}.
(6)

The NOMAD procedure is summarized in Algorithm 1.

Algorithm 1 The proposed NOMAD procedure

1: Input: XN , k, α, h
2: Initialize: ∆← 0, t← 1
3: Training phase:
4: For each xm ∈ XN compute Lm as in Equation (4)
5: Find L(K) by selecting the Kth smallest Lm
6: Test phase:
7: while ∆ < h do
8: Get new data xt and compute Dt as in Equation (5)
9: ∆ = max{∆ + Dt, 0}

10: t← t + 1
11: Declare Anomaly

4.2. Analysis of NOMAD

Theorem 1. As N → ∞, for a given threshold h, the false alarm period of NOMAD is asymptoti-
cally lower-bounded by

E∞[T] ≥ eω0h, (7)

ω0 = vd − θ − 1
B
W
(
−Bθe−Bθ

)
,

θ =
vd

evd Ld
(K)

,

where ω0 > 0, W(·) is the Lambert–W function, vd = πd/2

Γ(d/2+1) is the constant for the d-

dimensional Lebesgue measure (i.e., vdLd
(K) is the d-dimensional volume of the hypersphere with

radius L(K)), and B is the upper bound for Dt.
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Proof. See Appendix A.

The bound B for Dt is obtained from the training data. The Lambert–W function
is easily computed with built-in functions in popular programming languages, such as
Python and MATLAB. Note that Equation (7) gives an upper bound on the false alarm rate
(FAR) since

FAR = E∞[T]−1 ≥ e−ω0h,

which can be used to select a threshold value h to satisfy a false alarm constraint β:

h = − log β/ω0. (8)

Due to its sequential nature, the parameters of NOMAD control the fundamental
trade-off between minimizing the average detection delay and false alarm rate. Parameter
k determines how many nearest neighbors to take into account when computing the total
distance Lm, given by Equation (4). A smaller k would result in it being more sensitive to
the anomaly, hence it supports the earlier detection, but at the same time it causes it to
be more prone to the false alarms due to nominal outliers. A larger k would result in the
opposite. 0 < γ < d is the weight that determines the emphasis on the difference between
the distances.

The alarm threshold h in Equation (6) directly controls the trade-off between mini-
mizing the detection delay and false alarm rate. Decreasing h will yield smaller detection
delays, i.e., earlier detection, but also more frequent false alarms. It is typically selected
to satisfy a false alarm constraint, as shown in Equation (8). The significance level α is at
a secondary role supporting h. For a fixed h, a larger α would result in smaller detection
delays, but also more frequent false alarm, since more nominal data points will lie outside
the selected dense area.

Complexity: Next, we analyze the computational complexity of our proposed method.
The training phase of NOMAD requires the kNN distances between each pair of the data
points in the training data to be computed. Therefore, the time complexity of the training
phase is O(N2d), where d and N are the dimensionality and size of the training data,
respectively. The space complexity of the training is O(dN), since N points are stored for
testing. Note that training is performed once offline, thus, the time complexity of online
testing is usually critical for scalability. In the test phase, computing the kNN distance of a
test point to all points in the training data takes O(dN) computations. Since the test statistic
is updated recursively, the space complexity of testing is not significant. Consequently,
the proposed NOMAD algorithms linearly scale with the number of data dimensions d in
both training and testing. It also linearly scales in the online testing with the number of
training points.

Computing the nearest neighbors of a query point is the most computationally expen-
sive part of the algorithm, as the distance to every other point in the train data needs to
be computed before the k smallest of them is selected as the k nearest neighbor. As the
dimensionality increases and the training size grows, the algorithm becomes less efficient in
terms of the running time. The computational complexity of the algorithm can be reduced
by approximating the kNN distance rather than computing the exact value. Due to the
inaccuracy introduced at the approximated kNN distances, NOMAD’s performance will
drop compared to that of when using the exact kNN distances. However, depending
on the system requirements, e.g., the sampling rate and importance of timely detection,
and the gain from the improvement in running time by employing kNN approximation
can compensate for the exact distances. To evaluate the performance of the method, in
approximate and exact kNN scenarios, we adopted a kNN approximation algorithm [43]
that is scalable for high dimensional data.

In a simulated experiment, we evaluate the performance and computation time of
our algorithm in both scenarios. The experiments are carried out in MATLAB on an Intel
3.60 GHz processor with 16 GB RAM. In simulations, the data dimensionality is 50, and the
training size is 500,000. The anomaly is manifested by a shift in the mean of the observations
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by three standard deviations in 10% of the dimensions. The performance of the original
and efficient NOMADs are shown in Figure 1. The average computation time (computation
of Equations (5) and (6) per observation) for both is also summarized in the Table 1. As
shown by results, approximating the kNN distance decreases the computational overhead;
however, at the cost of a small loss in the performance. In the experiment, the average
running time per observation using the approximation method dropped by a factor of
14. The versions with exact and fast kNN computations can run in real-time at a speed of
13 samples per second and 185 samples per second, respectively.

0 0.5 1 1.5 2

0

1

2

3

0 20 40 60 80 100

0

50

100

Figure 1. Comparison between the performance of NOMAD by computing the exact kNN distance
and approximating the kNN distance.

Table 1. Average computation overhead of the original and efficient NOMAD per sample.

Average Execution Time (s)

Exact kNN Fast kNN

0.075 0.0054

4.3. An Extension: NOMADs

In this section, we consider the case of having an additional anomaly training dataset
along with the previously discussed nominal dataset. Next, we extend the NOMAD
method to take advantage of the anomaly dataset in order to improve its performance.
Consider an anomaly training set X ′M′ = {x

′
1, x′2, . . . , x′M′} in addition to the nominal

set XN = {x1, x2, . . . , xN}. In this case, the anomaly evidence for each instance can be
computed by comparing the total distance Lt with respect to the nominal dataset with the
total distance L′t with respect to the anomalous dataset. Thus, there is no need to learn
the borderline total distance L(K) in training to be used as a baseline for Lt in testing (cf.
Equation (5)). That is, no training is needed for NOMADs. However, before testing, a
pre-processing might be required to remove the data points that are similar to the nominal
training set. The reason for cleaning the anomaly dataset rather than the nominal dataset
is that usually, the anomaly dataset is obtained by collecting observations from a known
anomalous event that may typically include nominal observations too. For instance, in
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a network intrusion detection system (IDS), after the occurrence of an attack, several
observations could still be of nominal nature. The cleaning step is carried out by finding
and removing the data points of the anomaly training set that lie in the dense area of the
nominal training set,

X clean
M = X ′M′ \ {x

′
m ∈ X ′M′ : Lx′m ≤ L(K)}, (9)

where Lx′m is the total distance of x′m with respect to the nominal points in XN . Hence, the
training procedure of NOMAD that finds L(K), can be used for preprocessing the anomalous
training data.

While testing for each testing data instance xt, the anomaly evidence is calculated by

Dt = d(log Lt − log L′t) + log(N/M), (10)

where Lt and L′t are the total distances of xt computed using Equation (4) with respect to
the points in XN and X clean

M , respectively; and N and M are the number of points in the
nominal and (cleaned) anomalous training sets. The statistic update and decision rule of
NOMADs are the same as in NOMAD, given by Equation (6). In the NOMADs procedure,
and different from Algorithm 1, Equation (10) is used in line 9 to compute the anomaly
evidence Dt.

In practice, there is a typical imbalance between the sizes of the nominal and anomaly
training sets due to the inherent difficulty of obtaining anomaly samples. Since the total
kNN distances in a dense nominal set XN are expected to be smaller than those in a sparse
anomaly dataset, for an anomalous data point, Lt can be smaller than L′t, resulting in
negative anomaly evidence, that can lead to poor detection. In order to deal with the
imbalance of datasets, the term log(N/M) in Equation (10) acts as a correction factor.
Specifically, for N > M, log(N/M) > 0 compensates for Lt being unfairly small compared
to L′t. This correction factor naturally appears in the asymptotic optimality proof, as
shown next.

Theorem 2. When the nominal distribution f0(xt) and anomalous distribution f1(xt) are finite
and continuous, as the training sets grow, the NOMADs statistic Dt, given by Equation (10),
converges in probability to the log-likelihood ratio,

Dt
p→ log

f1(xt)

f0(xt)
as M, N → ∞, (11)

i.e., NOMADs converges to CUSUM, which is the minimax optimum in minimizing the expected
detection delay while satisfying a false alarm constraint.

Proof. See Appendix B.

4.4. Unified Framework for Online Learning

The availability of the labeled training data is a major limiting factor for improving
the performance of anomaly detection techniques. In several applications, obtaining a com-
prehensive and accurate labeled training dataset for the anomaly class is very difficult [1].
In contrast, in most applications, a typically sufficient amount of comprehensive nominal
training data is available. Semi-supervised techniques, including NOMAD, constitute a
popular class of anomaly detection methods that require labeled training data only for
the nominal class. These techniques try to build a model of nominal operation/behavior.
Hence, anomaly detection is performed by detecting data that significantly deviate from
the constructed nominal model. Supervised techniques, moreover, assume availability
of both nominal and anomalous datasets, and build models for classifying unseen data
into nominal vs. anomaly classes. NOMAD, as a supervised technique, outperforms the
semi-supervised NOMAD technique for the known anomaly types, as shown in Section 5.
However, NOMADs, and in general supervised anomaly detectors, may fall short of de-
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tecting unknown anomaly types while NOMAD, and in general semi-supervised anomaly
detectors, can easily handle new anomaly patterns as they do not depend on assumptions
about the anomalies.

Combining the strengths of NOMAD and NOMADs, we propose a self-supervised
online learning scheme called NOMADo, that is capable of detecting new anomaly types
and at the same time is capable of improving its performance for detecting the previously
seen anomaly types. Particularly, in the unified NOMAD method, both NOMAD and
NOMADs run in parallel to detect anomalies, and the anomalous data instances first
detected by NOMAD are included in the anomalous training set of NOMADs in order to
empower the detection of similar anomaly types. Since the NOMADs procedure involves
all of the necessary elements for NOMAD, there is no further computation overhead
induced by the unified approach. Keeping track of the cumulative decision statistics of
NOMAD and NOMADs, the unified NOMAD scheme, NOMADo, stops the first time
either NOMAD or NOMADs stops:

∆(1)
t = max{∆(1)

t + D(1)
t , 0}, (12)

∆(2)
t = max{∆(2)

t + D(2)
t , 0}

T = min{t : ∆(1)
t ≥ h1 or ∆(2)

t ≥ h2}, (13)

where D(1)
t and D(2)

t are the anomaly evidences given by Equations (5) and (10), respectively,
and h1 and h2 are the decision thresholds for NOMAD and NOMADs. For the known
anomaly patterns on which NOMADs is trained in a self-supervised fashion, it is expected
that ∆(2)

t ≥ h2 happens earlier, whereas ∆(1)
t ≥ h1 is supposed to detect new anomaly

types. If the alarm is raised by NOMAD, then the anomaly onset time is estimated as the
last time instance the NOMAD statistic was zero, i.e., τ̂ = max{t < T : ∆(1)

t = 0}, and
the data instances {xτ̂+1, . . . , xT} between τ̂ and T are added to the anomaly training set
of NOMADs. For reliable enhancement of the NOMADs anomaly training set with the
newly detected instances, the NOMAD threshold h1 needs to be selected sufficiently high
to prevent false alarms by NOMAD, and thus false inclusions into the NOMADs training
set. Obviously, large h1 will increase the detection delays for previously unseen anomaly
types, however, avoiding false training instances is a more crucial objective.

5. Experiments
5.1. N-BaIoT Dataset

We evaluate the proposed NOMAD algorithms using the N-BaIoT dataset, that consists
of real IoT data traffic observations, including botnet attacks. These data are collected from
nine IoT devices, including doorbells, thermostats, baby monitors, etc., infected by the
Mirai and BASHLITE malware [36,44]. Here, we only consider the Mirai attack dataset.
The benign and attack datasets for each device are composed of 115 features summarizing
traffic statistics over different temporal windows. The dataset is collected for each device
separately, and lacks a timestamp. The number of instances is varied for each device and
attack type. Therefore, we formed the training and testing sets by randomly choosing data
instances from each device. To form a network-wide instance for multivariate detection,
we stack the chosen instances from nine devices into a single vector of 1035 dimensions.
This way, we obtain a nominal training set with N = 10,000 instances. We also build an
anomalous training set with M = 5000 instances for the Ecobee thermostat device (device 3).
To test the performance of NOMADs for both known and unknown attack types, we let
NOMADs train only on attack data from device 3, and test under two scenarios:

(i) Device 3 (Ecobee Thermostat) is compromised (known anomaly type);
(ii) Device 6 (Provision PT-838 security camera) is compromised (unknown anomaly

type).
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We form the testing data in similar fashion to the training data, assuming that the respective
device is compromised and starts sending malicious traffic at t = 101. In the NOMAD
algorithms, we set the parameters as k = γ = 1, α1 = 0.05, α2 = 0.1.

NOMAD is able to detect the attack with zero detection delay and zero false alarm in
all trials in both known and unknown attack scenarios (Figure 2). As for NOMADs that
trains also on attack data from device 3, in the known attack scenario, zero detection delay
with zero false alarm in all trials is achieved, similar to NOMAD. Figure 2 demonstrates the
average performance of both variants for the detection of attack when device 6 is compro-
mised, i.e., an unknown anomaly type for NOMADs. In this scenario, although NOMADs
is not trained on this anomaly type, it is still able to detect it, yet with a slight degradation in
performance as compared to the known anomaly case. The detection of unknown anomaly
types by NOMADs is not guaranteed to happen in general, and it depends on whether the
anomalous observations are relatively similar to the nominal dataset or to the anomalous
dataset. Both the unsupervised and supervised NOMAD algorithms achieve much quicker
detection than the state-of-the-art sequential detectors NEWMA [34] and nearest neighbor
(NN) based change detection methods in [30]. NEWMA [34] is an online and multivariate
change detection algorithm that is based on the exponential weighted moving average
method. The NN method [30] is based on the two-sample test method proposed in [45,46],
which, given two sample sets, determines whether they belong to the same distribution by
employing a kNN similarity graph. We tried different window sizes for NEWMA and NN,
and found the optimum for both to be 50.
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Figure 2. Performance comparison between NOMAD, NOMADs, and the existing methods in the
unknown attack scenario for the N-BaIoT dataset.

We also compare the performance of NOMAD with the deep auto encoder-based de-
tection method, that was proposed in the paper that presented the N-BaIoT dataset [36], as
they both train only on the nominal data. The auto encoder method marks each observation
instance as nominal or anomalous, and employs majority voting on a moving window of
size ws∗ (to control the false positive rate), raising alarm only if the majority of instances
within the window are marked as anomalous. Due to its window-based majority rule,
the sample detection delay (i.e., the number of anomalous instances observed before the
detection) is at least bws∗

2 c+ 1. Whereas, the sequential nature of NOMAD enables the
immediate detection together with zero false alarm, as demonstrated in Figures 3 and 4.
Following the analysis in [36] for each device, the sample detection delay and the false
positive rate of both methods are compared in Figures 3 and 4, respectively. The optimum
window sizes reported in [36] for each device are used for the auto encoder method.



Electronics 2023, 12, 1971 11 of 17

Online Learning Scheme (NOMADo): Here, we present the experiment results to
demonstrate the practical advantage of the self-supervised online learning framework
NOMADo, proposed in Section 4.4. Following the experiments of Section 5.1, we train
the algorithms on the nominal data and anomaly data for a specific attack type. For the
N-BaIoT dataset, we repeat the Scenario 2 test, in which device 6 (Provision PT-838 security
camera) starts sending malicious traffic while only the attack data from device 3 is used to
train NOMADs.

1 2 3 4 5 6 7 8

0

10

20

30

40

1 2 3 4 5 6 7 8
0

0.05

Figure 3. Average detection delay of the auto encoder method [36] and NOMAD in terms of the
number of samples for each device attack scenario.

1 3 4 5 6 7 8

0

0.025

Figure 4. False positive rate of the auto encoder method [36] and NOMAD for each device attack scenario.

Figure 5 shows the average detection delay by NOMADs for a constant false alarm
rate of 0.01, versus the number of the data points from the new anomaly type added to
the anomaly training set. As the number of confirmed instances added to the anomaly
training set grows, NOMADs detection delay decreases. The confirmation can be through
either a human expert or a sufficiently high decision threshold for NOMAD that avoids
false alarms, as explained in Section 4.4. Although in general NOMADs may not detect an
unknown anomaly at the first encounter, it is able to detect the unknown anomaly in the
N-BaIoT dataset at the first encounter with an average delay of 0.79, and the average delay
converges to zero as the training set is enhanced with instances from the new anomaly type.
In this way, NOMADo, in general, detects the unknown anomaly types through NOMAD,
and over time learns the pattern of new anomalies, and improves its detection performance
through NOMADs.
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Figure 5. Average detection delay of NOMADs vs. the number of the new anomaly instances added
to the training set for the N-BaIoT dataset.

5.2. Cyber Physical System: SWaT Data Set

We further analyze our algorithm on an operational test bed setup called the secure
water treatment (SWaT) system. The data were collected with Singapore’s Public Utility
Board to ensure the resemblance of the system to real systems in the field. The data were
collected for 11 days with the system being operational for the entire day. During the last
4 days of the data collection process, a total of 36 attacks were launched with cyber physical
sensors, such as water level sensors, actuators, and valves as the primary target points. The
attacks did not conform to any pattern with respect to intent or lasting duration, with some
attacks lasting for an entire hour. The details of the SWaT system is publicly available on its
website (https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/, last accessed
on 23 April 2023). The SWaT dataset is a high dimensional, multivariate system with data
streaming from 51 sensors and actuators. In all, 496,800 samples were collected under
normal working conditions and another 449,919 samples were collected with the system
under attack. Our proposed NOMAD algorithm is compared with several other algorithms
in Table 2: the PCA-based method in [32], KNN-based method in [33], feature bagging
(FB) [35], auto encoder-based (AE) method in [37], EGAN [38], multivariate generative
adversarial network based anomaly detection method (MAD-GAN) [39], BeatGAN [47],
and deep auto encoding Gaussian mixture model (DAGMM) [48]. As seen in the table, we
achieve the best result in terms of precision, recall, and F1 score.

Table 2. Performance comparison of NOMAD on the SWaT dataset with various algorithms.

Algorithm Pre Rec F1

PCA 24.92 21.63 0.23

KNN 7.83 7.83 0.08

FB 10.17 10.17 0.10

AE 72.63 52.63 0.61

EGAN 40.57 67.73 0.51

MAD-GAN 98.97 63.74 0.77

BeatGAN 64.01 87.46 73.92

DAGMM 89.92 57.84 70.40

Ours 99.76 64.7 0.783

https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/
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6. Conclusions

In this paper, we proposed an algorithm, called NOMAD, that is suitable for quick
and accurate anomaly detection in high dimensional systems that require the multivariate
(i.e., joint) monitoring of system components. Our proposed anomaly detection method
is generic and applicable to various contexts as it does not assume specific data types,
probability distributions, and anomaly types. It only requires a nominal training set. We
analyzed its computational complexity and asymptotic false alarm rate, that yielded a
closed-form expression for setting its decision threshold. We also showed how to benefit
from available anomalous data (NOMADs), and presented an online learning scheme
(NOMADo) that detects unknown anomaly types, and over time improves its performance
by learning on-the-fly. We evaluated the performance of our method in the context of cyber-
attack detection using real datasets. The experiments verified the advantage of the proposed
online learning method, and also showed that the proposed NOMAD methods significantly
outperform the state-of-the-art anomaly detection methods in terms of detection accuracy,
average detection delay, and false alarm rate. The proposed algorithms assume a static
nominal behavior and a static set of data dimensions. Extending it to dynamic settings
with changing nominal behavior remains an important future research direction.
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Appendix A. Proof of Theorem 1

We firstly derive the asymptotic distribution of the anomaly evidence Dt in Equation (5)
in the absence of anomalies. Since

Pr[Dt ≤ x] = P(log Ld
t ≤ log Ld

(K) + x),

it is sufficient to find the probability distribution of log Ld
t and the dth power of kNN at

time t. Independent d-dimensional instances {xt} over time form a Poisson point process.
The nearest neighbor (k = 1) distribution for a Poisson point process [49] is given by

Pr[Lt ≤ r] = 1− exp(−Λ(S(xt, r))),

where Λ(S(xt, r)) is the arrival intensity (i.e., Poisson rate measure) in the d-dimensional
hypersphere S(xt, r) centered at xt with radius r. Asymptotically, for a large number of
training instances as N → ∞, under the null (nominal) hypothesis, the nearest neighbor
distance Lt of xt takes small values, defining an infinitesimal hyper-ball with homogeneous
intensity λ = 1 around xt. Since for a homogeneous Poisson process the intensity is written
as Λ(S(xt, r)) = λ|S(xt, r)| [49], where |S(xt, r)| = πd/2

Γ(d/2+1) rd = vdrd is the Lebesgue

https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT
https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT
https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/
https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/
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measure (i.e., d-dimensional volume) of the hyper-ball S(xt, r), we rewrite the nearest
neighbor distribution as

Pr[Lt ≤ r] = 1− exp
(
−vdrd

)
,

where vd = πd/2

Γ(d/2+1) is the constant for the d-dimensional Lebesgue measure. Now, apply-

ing a change of variables, we can write the cumulative density of Ld
t as

Pr[Ld
t ≤ x] = 1− exp(−vdx). (A1)

From Equation (A1) we find Pr[log Ld
t ≤ x] as

Pr[log Ld
t ≤ x] = 1− exp(−vdex) (A2)

and from Equation (A2) we find Pr[Dt ≤ x] as

Pr[Dt ≤ x] = Pr[log Ld
t ≤ log Ld

(K) + x] = 1− exp(−vdelog Ld
(K) ex) (A3)

By taking the derivative of the above CDFs, we find the probability density function
of Dt as

fDt(x) =
∂

∂x
[1− exp(−vdLd

(K)e
x)] = vd Ld

(K) ex exp(−vd Ld
(K) ex) (A4)

In [50] (p. 177), for CUSUM-like algorithms with independent increments, such as
ODIT, a lower bound on the average false alarm period is given as follows

E∞[T] ≥ eω0h,

where h is the detection threshold, and ω0 ≥ 0 is the solution to E[eω0Dt ] = 1. Using the
probability density derived in Equation (A4), E[eω0Dt ] = 1 can be written as:

1 =
∫ B

−∞
eω0x [vd Ld

(K) ex exp(−vdLd
(K)e

x) ] dx

where −∞ and B are the lower and upper bounds forDt = log Ld
t − log Ld

(K). The lower

bound occurs when Ld
t = 0 and the upper bound B is obtained from the training set. With

a simple change of variable, u = ex we can rewrite the above equation as

1 =
∫ eB

0
uω0 [vd Ld

(K) exp(−vdLd
(K)u) ] du (A5)

1
vd Ld

(K)

=
∫ eB

0
uω0 exp(−vdLd

(K)u) ] du

=
1

(vd Ld
(K))

w0

∫ eB

0
(vd Ld

(K) u)w0 e(−vd Ld
(K) u) du.

(A6)

The integral in above equation is a special integral known as lower incomplete gamma
function, which is defined as

γ(s, x) =
∫ x

0
t(s−1) e−t dt. (A7)

Equation (A6) is then simplified into
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1
vd Ld

(K)

=
γ(w0 + 1, vd Ld

(K) eB)

(vd Ld
(K))

w0+1
(A8)

As N → ∞, since the dth power of (1 − α)th percentile of the nearest neighbor
distances in the training set goes to zero, i.e., Ld

(K) → 0. The asymptotic behavior of the

lower incomplete gamma function is γ(s,x)
xs → 1

s as x → 0; therefore, we have

1
w0 + 1

=
1

(eB)w0+1 vd Ld
(K)

(A9)

w0 + 1 = eB(w0+1) vd Ld
(K). (A10)

We next rearrange the terms to obtain the form of eBx = a0(x + θ) where x = ω0 + 1,
a0 = 1

vd Ld
(K)

, and θ = 0. The solution for x is given by the Lambert–W function [51] as

x = −θ − 1
BW(−Be−Bθ/a0), hence

w0 = −1− 1
B
W(−BvdLd

(K)). (A11)

The bound B for Dt is obtained from the training data. Lambert–W function is easily
computed with built-in functions in popular programming languages, such as Python
and MATLAB.

Appendix B. Proof of Theorem 2

Consider a hypersphere St ∈ Rd centered at xt with radius gk(xt), the kNN distance
of xt with respect to nominal set XN . The maximum likelihood estimate for the probability
of a point being inside St under f0 is given by k/N. It is known that, as the total number
of points grows, this binomial probability estimate converges to the true probability mass

in St in the mean square sense [52], i.e., k/N L2
→
∫
St

f0(x) dx as N → ∞. Hence, the

probability density estimate f̂0(xt) =
k/N

Vdgk(xt)d , where Vdgk(xt)d is the volume of St with the

appropriate constant Vd converges to the actual probability density function f̂0(xt)
p→ f0(xt)

as N → ∞, since St shrinks and gk(xt) → 0. Similarly, we can show that k/M
Vdg′k(xt)d

p→
f1(xt) as M → ∞, where g′k(xt) is the kNN distance of xt in the anomalous training set

X ′M. Hence, we conclude with log
k/M

Vd g′k(xt)d

k/N
Vd gk(xt)d

= d
[
log gk(xt)− log g′k(xt)

]
+ log(N/M)

p→

log f1(xt)
f0(xt)

as M, N → ∞, where Lt = gk(xt) and L′t = g′k(xt) for s = γ = 1.
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