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Abstract

The ongoing changes, updates, and upgrades of the Smart Grid infrastructure
open up new cybersecurity challenges whose successful and satisfactory handling
is a vital necessity for a viable future of these initiatives. The characteristic
of the Smart Grid that leads to physical damage and cascading power failures
amplifies the severity of security breaches. A set of recent successful Distributed
Denial-of-Service (DDoS) attacks on the Internet, facilitated by the proliferation
of the Internet-of-Things (IoT) powered botnets, shows that the Smart Grid
may become the target and likely victim of such an attack, potentially leaving
catastrophic outage of power service to millions of people. In this paper, under
a hierarchical data collection infrastructure we propose a general and scalable
mitigation approach, called Minimally Invasive Attack Mitigation via Detection
Isolation and Localization (MIAMI-DIL), based on an online and nonparametric
anomaly detection algorithm which is scalable and capable of timely detection.
We provide a proof-of-concept by means of simulations to show the efficacy and
scalability of the proposed approach.

1. Introduction

The vision of the Smart Grid brings about enhanced automation, comput-
ing, communications and control characteristics. At the same time, a vital need
emerges to address the plethora of security and privacy related challenges. The
essential nature of the Smart Grid cybersecurity spans availability, integrity,
and confidentiality of computing, communications, and/or control devices from
intentional or accidental harm and damage. The severity of cybersecurity conse-
quences in the Smart Grid is generally exasperated due to the complexity, sheer
volume of the devices and stakeholders, and highly time sensitive operational
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constraints. For instance, a cascading blackout may leave thousands, if not mil-
lions, of customers without power for long time periods. A recent report by the
University of Cambridge details a severe but plausible cyberattack against the
US grid where about 100M people may be left without power with up to $1
trillion of monetary loss [1].

The recent proliferation of the Internet-of-Things (IoT) devices (8.4B in 2017
and expected to hit 20B by 2020 [2]) significantly expands the attack vectors
of adversaries. Across the industries, and specifically in the power grid, a new
genre of attack vectors and malicious capabilities are emerging as a result of this
constant connection of objects, sensors, and services, commonly referred to as
IoT. A prolific example is the Mirai malware [3]. The Mirai botnet, composed of
a huge army of compromised IoT devices worldwide (mostly IP cameras, DVRs,
and consumer routers with default passwords), and its variants, initiated tens
of thousands of distributed denial-of-service (DDoS) attacks against high-profile
targets such as Dyn, a popular DNS provider [4]. Such recent attacks demon-
strate the ease and effectiveness of this IoT-based security threat by means
of small, resource constrained, and hard-to-patch devices. What is even more
dreading is the fact that Mirai botnet is highly customizable through its open
source code, and it is available for sale as a service in the Dark Web, signifi-
cantly improving the attack capabilities of even unsophisticated malicious actors
[5]. It is just a matter of time before these capabilities are employed against
critical infrastructures and cyber-physical systems, like the Smart Grid. Exam-
ples of vulnerable IoT devices in the Smart Grid include smart meters, smart
light bulbs, smart thermostats, connected vehicles, electric vehicles, smart street
lights, smart home appliances, etc. For instance, through compromised devices,
adversaries can generate false data injection (FDI) attacks by sending manipu-
lated energy consumption data. On the second installment of the Quadrennial
Energy Review (QER) report titled “Transforming the Nation’s Electricity Sys-
tem”, released in January 2017, evolving cyber threats from botnets, especially
via DoS attacks and the associated cybersecurity risks are highlighted. Finally,
in the hands of more sophisticated parties, such as state actors, such attacks
may become even more lethal.

The effects of cyberattacks on the Smart Grid have been manifested recently
in the real-world attacks in Ukraine, both December 2015 and 2016, where
the city of Ivano-Frankivsk with 100K people was cut from power for 6 hours
as a result of a cyberattack. There is also the physical dimension of attacks
on the Smart Grid. Cyber-physical attacks, also called blended attacks, may
cause a greater damage when combined than the individual attacks separately
[6]. An experiment demonstrating cyberattacks that lead to physical harm
was conducted in 2007 in by Idaho National Lab (Aurora Test) where a pure
cyberattack resulted in a diesel-generator going up in smokes and exploding!. A
recent study also demonstrated, through simulations, the feasibility of launching
IoT botnet-initiated attacks leading to disruption of power delivery through

1See the video of the experiment at https://youtu.be/rTkXgqK119A.



three different categories of vulnerabilities based on demand manipulation [7].

Even without any cybersecurity risks, it is generally agreed that the util-
ities should continuously monitor and proactively detect abnormal conditions
to prevent disruption in power delivery and to improve grid reliability. Real-
time analytics is becoming a promising approach for an effective solution to this
end [8]. For example, a key factor for successful deployment of smart meter
infrastructure is reported to be its data analytics [9]. The need is even more
pronounced with the cybersecurity threats.

While there has been some cybersecurity related work on the Smart Grid
related areas, to the best of our knowledge, except the conference version of
this paper [10], there is no other study in the literature to mitigate the afore-
mentioned new genre of IoT-initiated cyberattacks against the Smart Grid,
which seems to be a prime target by many categories of adversaries at the first
opportunity they get, such as nation states, curious/motivated eavesdroppers,
terrorists/cyber-terrorists, organized crime, disgruntled employees, etc.

In this paper, we present several attack scenarios that can be initiated via IoT
devices. We then provide a framework, called MIAMI-DIL (Minimally Invasive
Attack Mitigation via Detection Isolation and Localization). The algorithmic
underpinning of MIAMI-DIL’s anomaly detection is based on an online, and non-
parametric approach with a distributed statistical inference methodology that
scales well to high-dimensional systems and provides small average detection
delay. We specifically note that when the DoS attack is changed from a pure
brute-force method to a more stealth one by trying to hide the attack, the
detection speed of our approach is several orders of magnitude faster than the
parametric alternatives (see Section 5). Compared to the conference version [10]
we provide a much more comprehensive discussion of the topic with asymptotic
performance analysis of the proposed detection method, a detailed mitigation
approach and analysis, as well as significantly expanded simulation results for
average detection delay in different attack scenarios.

The rest of the paper is organized as follows: Related work is presented
in Section 2. The system and threat models are explained in Section 3. Our
anomaly-based intrusion detection system (IDS) formulations with analytical
details are provided in Section 4. Simulation results are given in Section 5.
Finally, we conclude the paper in Section 6.

2. Related Work

Threats and vulnerabilities targeting the availability dimension of security,
under the umbrella name of DoS attacks, are not new. They have been studied
for the Internet for a while with many proposed defense mechanisms, e.g., [11,
12, 13, 14, 15]. Yet, providing efficient and effective solutions and mitigation
techniques for the Internet DoS attacks are still challenging and elusive.

When it comes to the Smart Grid, the potential damage of such attacks is
even more profound and due to the peculiar features of the infrastructure, the
DosS attacks pose an even harder challenge [16]. A specification-based IDS is pro-
posed in [17] tailored for the application layer protocol of ANSI C12.22 to catch



violations of the specified security policy. However, there are other protocols
used in industry and even the same protocol might be deployed with proprietary
implementations to make such an approach infeasible for all cases [18]. Another
packet-level inspection for intrusion detection is proposed in [19] on encrypted
traffic, albeit with the same application layer protocol. A fourth order Markov
Chain is used to model the event logs of data aggregators in [20], which can
only scale to a small number of aggregators and cannot be deployed on the
smart meters. A hierarchical distributed IDS for the Smart Grid is proposed
in [21], designed for specific wireless mesh network technology assumptions. An
anomaly-based IDS is presented in [22] that can only be deployed at headend
and the data aggregators due to its computational complexity. Recently, the
false data injection attacks [23, 24, 25] and the jamming attacks [26, 27, 28, 29]
against the smart grid are extensively studied in the literature. While con-
ventional detectors classify a measurement as anomalous if the measurement
residual exceeds a certain threshold [24, 30, 31, 32], there are also several online
detectors based on the quickest detection theory that improve the timely and
reliable detection of cyber-attacks more reliably [33, 34, 35, 36].

With the above literature review and the pertinent features of the Smart
Grid infrastructure as discussed in Section 3, a pure centralized intrusion de-
tection would not yield acceptable performance due to the heterogeneity of the
constituent and independent networks [17, 37]. A distributed and computa-
tionally efficient technique is needed to facilitate deployment at many system
devices. Finally, to make the deployment feasible to as many systems as possi-
ble, it should not be tied to a specific protocol or data type. We address all of
these features in our approach as explained in the following sections.

3. System and Threat Model

We consider a hierarchical system where a set of electrical devices? is con-

nected to the Smart Grid by means of a smart meter in a Home Area Network
(HAN)? as shown in Fig. 1. Neighborhood Area Network (NAN) or Field Area
Network (FAN) represents a logical association of these smart meters. Data ag-
gregators collect, summarize, and report the data from HAN through the Wide
Area Network (WAN) to the utility’s headend or the control center.

The smart meters may report a variety of different data back to the utility,
from pricing to consumption data to power quality monitoring [38]. In this
study, we do not assume anything about the specific data type and we call this
approach protocol and data type agnostic.

The proliferation of the IoT devices connected to the Smart Grid coupled
with the ease of launching such attacks, as recently exemplified by Mirai bot-

2Smart appliances (e.g., smart bulbs, smart thermostat, electrical vehicle, and other rele-
vant IoT devices) at home, connected machinery in an industrial setting, business equipment
in commercial environment, etc.

3While we have only depicted HAN, our ensuing approach is equally applicable to Industrial
Area Networks (IANs).
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Figure 1: Threat model in our Smart Grid Model: In HAN #3, the attacker(s) try to mislead
the data collection process by means of a classical DoS mechanism, such as jamming, to prevent
data delivery. IoT appliances in HAN #1, 2, and 4, on the other hand, inject superfluous
data to mislead the data collection in order to compromise the availability.

net, presents significantly expanded attack vectors. Thus, our threat model
comprises any legitimate but superfluous traffic or false data packets injected
into the Smart Grid at HAN, NAN, or FAN levels in order to compromise the
system, such as resource exhaustion, routing, reflector, de-synchronization at-
tacks, etc.

More specifically, we first consider a false data injection (FDI) attack through
compromised devices for the purpose of misleading the state estimation subsys-
tem of the power grid at the headend [33], as shown by the dotted lines in
Fig. 1. Another threat we consider is a DoS attack through the prevention
of data transmission from the lower levels to the control center, as shown by
HAN#3 in Fig. 1, possibly by means of simple physical layer jamming attack
[39]. Although FDI attacks are much harder to perform, they are at the same
time much more effective when successful than jamming attacks since they de-
ceive the receiver and may cause wrong decisions systemwide (i.e., wrong data
caused by FDI vs. no data due to jamming). Specifically, in smart grid, FDI
attacks may cause significant errors in state estimation, which may result in
wide-area blackouts. In FDI attacks, an internal intervention to the transmit-
ted data is required. For example, the transmitted signal can be manipulated



either by compromising the transmitting device or by hacking into the communi-
cation channel (i.e., knowing the frequency band and mimicking the modulation
scheme). Whereas for jamming external intervention on the transmitted signal
is sufficient by continuously transmitting noise in a range of frequency bands. In
the considered threats, attackers can manipulate the data content or suppress
the data communication, but not the statistics used for the defense mechanism
(see Fig. 2). We assume that the statistics are transmitted through secure chan-
nels, or the attackers are not aware of the details of defense mechanism, and
thus does not attack the defense mechanism itself. We reserve the case where
the defense mechanism is vulnerable to attacks as a future work.

4. Anomaly-Based IDS and Attack Mitigation
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Figure 2: Proposed hierarchical IDS. Data are shown in black, e.g., x"{ , and statistics are

. ij
shown in red, e.g., s, .

Considering the hierarchical topology of the Smart Grid and security threats
at each level of such a hierarchy, as shown in Figure 1, we propose a hierarchi-
cal and distributed IDS that consists of several subsystems. Specifically, each
smart meter j in each NAN ¢ monitors the streaming data {z}’ R Vk,t} from
each smart home appliance (i.e., IoT device) k in its HAN, and computes a
statistic s;’ at each time t = 1,2, ..., as shown in Figure 2. Similarly, each data
aggregator ¢ monitors the streaming data {y;’ : Vj,t} from each smart meter j
in its NAN, and computes a statistic ul. Furthermore, it gathers the statistics
{sy : Vj,t}, from its smart meters, and combines them in s¢. Finally, the control
center monitors the data {z{ : Vi, ¢} from each data aggregator i, using which
it computes a statistic v, and also combines the statistics {si} and {ul} in s;
and wuy, respectively (see Figure 2).

Using the computed statistics s;, u; and v; the control center performs the
detection and mitigation procedure shown in Figure 3. If an attack is detected
using the method presented in Section 4.3.1, then the mitigation procedure
described in Section 4.3.2 is used to localize the problematic nodes and isolate
the malicious data traffic.
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Figure 3: Flow chart of the proposed detection and mitigation mechanism at the control
center.

For generality, we do not specify the types of data represented by {x? k},
{y”} and {z{}. Some example data types communicated in the Smart Grid
are energy consumption, voltage phase, current, active and reactive power, and
power factor [38]. We only assume the observed data are numerical which
can be normalized, e.g., to lie in [0,1] using upper and lower bounds, x}’ =
[z ... 21757 € 0,1)%. We do not have assumptions on the probability distri-
bution of K data dimensions. For instance, they can be correlated or follow
different probability distributions (see Fig. 12). Normalization within each
dimension is needed to deal with heterogeneity among data dimensions. Nor-
malization by mean and standard deviation or some practical bounds such as
5th and 95th percentiles can be used if the absolute lower and upper bounds
are unknown or have extreme values. The statistics s;’, u¢ and v; are computed
to detect anomalies in the data {z*}, {7} and {z}, respectively. Anoma-
lies might be caused by various types of threats, such as false data injection,
man-in-the-middle, spoofing, and jamming [40]. We show how to compute the
statistics s;’, ui and v, as well as si, s; and u; in Sections 4.2 and 4.3.

4.1. Online Nonparametric Anomaly Detection

Anomaly detection in our Smart Grid model is quite challenging due to the
following reasons:

(C1) The attack patterns are typically unknown since there is a wide range of
vulnerabilities for attackers, especially considering the lack of stringent
security measures in the IoT devices (such as smart appliances). Hence,
parametric anomaly detection-based IDSs that assume probabilistic mod-
els for anomalies, as well as conventional signature-based IDSs are not
feasible in this emerging security threat.

(C2) The problem is inherently high-dimensional given the large number of IoT
devices in a typical HAN (i.e., the dimension of }’) and the number of
smart meters in a NAN (i.e., the dimension of y¢ = [yl ---yi’/]). Thus,
computationally efficient algorithms that can scale well to high dimension-
ality are required.



(C3) Timely and accurate detection is critical given the broad societal impacts
of a successful attack to the Smart Grid, and also due to the stringent
response time requirements in the Smart Grid (e.g., real-time pricing).

Anomaly detection-based IDS has the capability of detecting unknown at-
tacks under certain conditions. It typically needs to know a statistical descrip-
tion of the nominal (i.e., no attack) behavior, denoted as the baseline, and
classifies each outlying instance that significantly deviates from the baseline
as an anomaly. This conventional interpretation of anomaly detection is also
called outlier detection. Ideally, with the nominal probability distribution fy
completely known, an instance x is deemed an outlier if its likelihood under the
nominal distribution is smaller than a predefined threshold. Equivalently, = is
declared an outlier if it is outside the most compact set of data points under
the nominal distribution, called the minimum volume set €2, given by

Qo = argmin/ dy subject to / foly)dy > 1 —a, (1)
A Ja A

where a data point is deemed nominal in the region A, and « is the signifi-
cance level, i.e., constraint on the false alarm probability. In high-dimensional
problems like the one considered in this paper, even if fy is known, it is com-
putationally very expensive (if not impossible) to determine Q,. Hence, in the
literature, there are various methods for learning minimum volume sets [41].
One of them, called Geometric Entropy Minimization (GEM), is shown to be
very effective with high-dimensional datasets [42] while asymptotically achieving
the performance of minimum volume set [43].

The GEM approach provides a scalable nonparametric anomaly detector,
addressing the first two challenges (C1) and (C2); however, it lacks the tem-
poral aspect in the third challenge (C3), i.e., analyzes each time instance sepa-
rately. As a result, it does not accumulate the anomaly evidences, as opposed
to the sequential (i.e., online) detection techniques such as the Cumulative Sum
(CUSUM) algorithm, which are tailored for timely and accurate detection [44].
Specifically, an outlying instance is a nominal tail event (i.e., false alarm) with
probability « (e.g., @ = 0.05 is a typical value), but the probability of consecu-
tive outliers being nominal is much lower.

4.2. Online Discrepancy Test (ODIT)

Recently a GEM-based online and nonparametric anomaly detector, called
Online Discrepancy Test (ODIT), was proposed in [45] to timely detect abrupt
and persistent anomalies. ODIT combines the simplicity of the GEM approach
with the timely and accurate detection capabilities of the CUSUM algorithm
to enable online anomaly detection in high-dimensional problems. Hence, in
this paper, we use ODIT to develop an effective and efficient IDS for mitigating
ToT-based DoS attacks in the Smart Grid.

We next show the ODIT procedure for smart meter j under data aggregator
i, which observes the data vector x;’ at each time ¢t. ODIT assumes a training
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Figure 4: ODIT procedure with Ny =10, No =20, M =9, k=2,s=1,yv=1. L1 — L(M)
and Lo — L5y are used as in (3) for online anomaly detection (see also Figure 5). First test
point is from the same nominal distribution as training points, which is a two-dimensional
Gaussian with independent components with 0.5 mean and 0.1 standard deviation. Second
test point is from uniform distribution over [0, 1].

dataset Xy = {m’f yeen 7a:ﬁ{,} that is free of anomaly, and randomly separates it
into two subsets XMt and X2 for computational efficiency, as in the bipartite
GEM algorithm [42]. Then, for each point in X it finds the k nearest neighbors
from X2, and forms an M-point k-nearest-neighbor (M-kNN) Euclidean graph
G = (X)), E) by selecting the M points Xpy* in XM with the smallest total
edge length and their k closest neighbors in X2, where E = {emn)} is the
set of edges with e, (,) denoting the edge between point m in XM and its nth
nearest neighbor in X2, The total edge length of a point m in X is given by

k

Ly, = Z Iem(n)‘fya (2)

n=k—s+1

where |e,,(,)| is the Euclidean distance between point m and its nth nearest
neighbor in X N2 1 < 5 < k is a fixed number introduced for convenience, and
~ > 0is the weight. It is known [42] that X ﬁl converges to the minimum volume
set 0, as
lim M/N;y—1-q.
M,Ni—oc0

An example M-kENN graph is shown in Figure 4, where “Training set 1” and
“Training set 2” denote X' and X™2, respectively, and the edges are shown
with solid lines. In this M-kNN graph, 9 out of 10 points in X" are connected
to their 2 nearest neighbors in X™> with Lnry showing the longest edge in the
graph. Two test points and their longest edges (L; and L) are also shown.



In outlier detection by bipartite GEM [42], each test point a:ij is classified
as an outlier if its total edge length L; is greater than that of the Mth point,
which has the largest total edge length, in Xﬁl, i.e., Ly > Ly On the other
hand, in ODIT,

Dy = Ly — L (3)

is treated as some positive/negative evidence for anomaly, which approximates

("’1 [H1)
B p(}’ [Ho)
claiming x}’ is anomalous (z;’ ¢ Q,) and the null hypothesis Ho claiming a;’
is nominal (z € Q,) [45].

the log-likelihood ratio ¢; = 1og between the alternative hypothesis H1

Theorem 1. As the training set size increases (N1, Na — 00) we have the
following asymptotic relationships

lim Dt monotonlc log fO(w:x) , (4)
N1, Nz =00 fo(xy)
and sign < lim Dt> = sign [ log Jo(®a) , (5)
N1, No—ro0 fo(x)

monotonic . . . .
where ~ denotes a monotonic relationship between two variables, fo de-

notes the nominal probability distribution, x, is a boundary point of Q. (see
(1)), Ny and Ns are the size of two partitions in the training set, and the test
statistic Dy (given in (3)) is the difference between the total edge lengths of the
new point x,” and w(M) the Mth point in Xﬁl, which has the largest total edge

length in Xﬁl,
Proof. The asymptotic properties in (4) and (5) follow from the asymptotic

optimality of GEM. We start with (5). It is known [42] that the decision rule of
GEM converges to that of the minimum volume set €, given by “choose Hg if

fo(x) > folza), ie., log Jf”((wf’;)) < 0, and choose Hy otherwise”, hence the sign
property in (5). To prove (4) assume that, as Ny — 00, also k — oo such that
the total edge length Ly (:ct ) of a pomt a:t remains a constant. In that case,

Lk(aztl) < Li(x) for all ) and x;) such that fo(fﬂtl) > fo(a:tQ) Since
D; = Lk(mt) Lk( (M))7 (6)

we have the monotonicity property stated in (4). Note also that SCE]M) — X4 as
Ny, M — oo such that M/N; =1 — a. O

Theorem 1 shows the structural resemblance of D; to the log-likelihood ratio

between the boundary point x, and mij . To see the geometric relationship
—6(x;,0)

consider the case where fj is from the exponential family, i.e., fo = €
where 0 is the parameter vector and 6(x;’,0) is a distance term causing the
fO(ma)

exponential decay in the probability density function. In this case, log @) =
t

10



§(z7,0) — 6(x4, 0) is a distance metric that is similar to Dy as shown by (6).
They also asymptotically share a very similar structure (see Theorem 1).

Assuming the data wij is independent over time, Zthl D, gives the aggregate
anomaly evidence until time 7T, similar to the running log-likelihood ZtT:l Uy,
which is the sufficient statistic for optimum statistical detection.

In the sequential change detection problem, it is assumed that the actual
probability distribution of the data ;' is initially the nominal distribution
fo(z}’), but after some random time 7 (e.g., attack time), an abrupt and persis-
tent change occurs and the actual distribution switches to an anomalous distri-
bution fi (). A commonly used performance criterion is the minimax criterion
in which the worst-case expected detection delay E[Ty—7|{z7,...,x7 }, Ta > 7]
is minimized while satisfying a false alarm constraint, where Ty is the detection
time. More information on sequential change detection can be found in [44].

CUSUM is the optimum sequential change detection algorithm in terms
of the minimax criterion when both the nominal distribution fo(x;’) and the
anomalous distribution fi(x}’) are completely known [44]. This is not a realistic
assumption for intrusion detection in the Smart Grid as the attack patterns are
typically unknown, and even estimating the nominal distribution is intractable
due to high-dimensionality, as noted in the challenges in Section 4.1. General-
ized CUSUM, which is used in [33, 35] for detecting false data injection attacks
against voltage phase estimation in the Smart Grid, assumes parametric dis-
tributions for fp and fi, and estimates their parameters from data. CUSUM
can be regarded as a clairvoyant detector in the considered Smart Grid secu-
rity problem. Yet, the timely detection capability of CUSUM is very attractive
here. Therefore, leveraging the analogy between the anomaly evidence D; and
the log-likelihood ¢;, shown in Theorem 1, ODIT mimics the CUSUM procedure
for online and nonparametric anomaly detection (see [45] for a more technical
discussion).

In particular, when the running log-likelihood Zthl £y crosses a lower bound,
say at time 77, CUSUM decides that there is no change and restarts the test by
considering ZtT:Tl 41 %t- The test continues until ZtTiTn 41 4t crosses an upper
bound the first time, say after n restarts. In this case, CUSUM stops the test and
decides for a change (e.g., an anomaly). Actually, in the CUSUM procedure, the
lower bound is set to zero not to waste time to decide for a no change decision
because it is known that initially there is no change. Hence, it is possible
to recursively update the CUSUM statistic as £; = max{L¢—1 + ¢;,0}, where
Ly = 0. Then, the stopping time of CUSUM is given by T; = min{t : £; > h},
where h > 0 is a predetermined threshold. Similarly, the ODIT procedure is
given by

Ty =min{t : s > h}, s/ = max{s? | + D;,0}, s =0, (7)

where Dy is given in (3), and h > 0 is a predetermined threshold. An example
of 537 and the detection procedure is shown in Figure 5.

The detection threshold h manifests a trade-off between minimizing the de-
tection delay and minimizing the false alarm rate, as can be seen in Figure 5.

11
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Figure 5: ODIT statistic and decision procedure using the setup in Figure 4 and anomalous
test points from uniform distribution over [0,1]. Anomaly starts at ¢ = 6, and detected at
t = 7 with the shown threshold.

Particularly, smaller threshold facilitates early detection, but also increases the
probability of false alarm. In practice, A can be chosen to satisfy a given false
alarm rate.

4.8. Proposed IDS and Attack Mitigation

After detecting an anomaly in the system, which potentially corresponds
to an attack, control center takes action to mitigate its effects in a minimally
invasive fashion (i.e., with minimal service interruption). Specifically, it first
isolates the information flow from suspected nodes, and then localizes the actual
attack places via further investigation. We call this framework MIAMI-DIL
(Minimally Invasive Attack Mitigation via Detection Isolation and Localization),
which is summarized below.

4.3.1. Detection

We presented the ODIT anomaly detector for a single smart meter in Section
4.2. Leveraging the spatial diversity that is inherent to the hierarchical structure
as shown in Figure 2, we propose a system-wide IDS in which each smart meter
j does not decide alone based on its data {x;}, but instead cooperates with
other smart meters by passing its test statistic sy’ to its parent node, data
aggregator i. Gathering {s¥/} data aggregator i fuses them into s¢ = ijl s
and passes it to the control center, together with the statistic u; of data {yzj }
it receives from its children. It computes u} in the same way as s,”, as shown
in (7). Note that s;” denotes the evidence for anomaly at smart meter j, and
summing the independent evidences {s;’ : Vj} from different smart meters we
get the total evidence si among smart meters. Summing {s;’ : Vj} coincides
with summing the independent CUSUM statistics to obtain a global CUSUM
statistic, which is known to be optimum when the change times at different

12



nodes (where independent CUSUM statistics are computed) are not restricted
to be identical [46].

Finally, control center, receiving the statistics {si,ui} obtains s; = Zfil st
and u; = Zf\; ui, and computes, following (7), the statistic v, of data it re-
ceives from data aggregators. The statistics s, us, and v; measure the anomaly
(i.e., attack) evidence at different levels of hierarchy, namely smart appliances,
smart meters, and data aggregators, respectively; hence they potentially exhibit
heterogeneity. For instance, when there is an attack to data aggregators, the
statistical evidence for attack would appear in v; only, whereas the evidence for
an attack targeting smart appliances could be visible in all layers s;, us, and v;.
Using each of them control center runs three separate ODIT procedures

T = min{t : 8¢ > hg}, T, = min{t : uy > hy}, Ty, = min{t : v > hy,}  (8)
decides for an anomaly the first time one of them stops, i.e.,

Tq = min{T}, T, T, }. (9)

Control center gathers data and statistics from the network, and sequen-
tially detects possible anomalies in the system using the IDS given by (9). The
mitigation approach, which consists of localization and isolation, is explained
next.

4.3.2. Mitigation

To protect the control center from going offline due to data flooding (DoS)
and making wrong decisions due to falsified data, the components under attack
should be localized, and the data coming from them should be disregarded, i.e.,
the components under attack should be isolated from the data communication
infrastructure until they are cleared from the attack.

After detection, control center identifies the data aggregators which posi-
tively contributed to s; or u; or v;. Identifying data aggregators with highly
positive s! and u! is straightforward. To identify data aggregators that con-
tribute to highly positive v; we compare, with a threshold, the average contri-
bution of each dimension (i.e., data aggregator) to the total edge length L; of
data vector z; (see Figure 2) since the last time v; was 0 (denoted by 7) until the
detection time T,;. That is, data from aggregator ¢ is identified as problematic
if

1 .
T 2 n>h (10

where S > 0 is a threshold chosen to strike a balance between high detection
probability (true positive rate) and small false alarm probability (false positive
rate), and r? is the sum of distances of the data z{ to the ith dimension of the
considered nearest neighbors (see (2)).

Depending on the attack characteristics (e.g., change in data content or
number of data packets in different sets of nodes) there might be different com-
binations of increase in these statistics. In order to have a general mitigation
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mechanism for a variety of attacks, considering vulnerable data aggregators we
propose that

e the control center localizes the attack by identifying the suspected data
aggregators using (10), and

e the identified data aggregators are temporarily isolated from the network
(i.e., data from them is disregarded) until further investigation.

After the attacked nodes are further localized through human investigation, data
communication resumes immediately with the clean nodes (if the data aggre-
gator itself is also clean from attacks) and after a cleaning/securing procedure
with the attacked nodes.

Note that the security level increases in the higher levels of network, i.e.,
data aggregators are typically much more secure than smart meters and smart
appliances. If the data aggregators are highly trusted to be secure by design,
localization of attacked smart meters can be performed automatically without
human investigation and there is no need to isolate the entire data coming from
identified aggregators. Following the procedure given in (10)

e each identified data aggregator localizes the suspected smart meters, and
e the traffic coming only from these suspected meters are isolated.

In this case, human supervision is only needed to fix the attacked nodes. For
a data aggregator using (10), the mitigation statistic ] represents the sum of
distances of the data y;’. We should note that the procedure in (10) requires
some memory to store the most recent Ty — 7 distance values for all dimensions
local to the node performing the procedure.

5. Performance Evaluation

In this section, we numerically evaluate the performance of the proposed
IDS. We consider a Smart Grid that consists of a control center, N = 10 data
aggregators, J = 100 smart meters under each data aggregator, and K = 10
smart appliances under each smart meter, yielding a total of 10,000 smart
appliances and 1,000 smart meters system-wide.

Baseline Model: In each home-area network, we assume data from appli-
ances are independent and identically distributed (iid) with z7* ~ A(0.5,0.01),
similar to the IoT dataset in [47] 4. Note that the nominal data traffic is com-
monly modeled as Gaussian, e.g., [48]. For generality, we do not specify the
data type. An intuitive example is future energy consumption data, that can
be predicted by the IoT using the scheduled usage and historical data. Smart

4This dataset can be found at https://archive.ics.uci.edu/ml/datasets/detection_
of _IoT_botnet_attacks_N_BaloT#
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meters can use this data for energy hedging to gain robustness to the volatility
of real-time prices. In case of a successful attack, falsified data not only misleads
pricing and hedging, but may also cause a demand-supply imbalance in the sys-
tem, which might destabilize the grid and cause catastrophic outcomes such as
a wide-area blackout. In line with this example, each smart meter sends the
anticipated average energy consumption in the HAN, i.e., y’ = & Zszl ik,
and similarly each data aggregator reports z} = % Z'].Izl yzj .

Attack Model: Note that the security level typically decreases as we go
down the hierarchy of Figure 2, hence we consider a practical scenario where
smart appliances (i.e., IoT devices) and smart meters could be under attack,
but data aggregators are secure. In the considered scenarios, 3% of the 1,000
HANSs are attacked. In each attacked HAN, with probability 0.5 data from each
smart appliance is manipulated by means of a DoS attack, for example through
through jamming, or by a false data injection attack. In the former, variance
is increased, /7% ~ N(0.5,(0.17)2),n > 1, and in the latter, mean is changed,
2% ~ N(0.54 A,0.01),A € R.

1) DoS via jamming: We first analyze the jamming-type DoS attack
targeting the availability of the data at the smart meters or data aggregators.
This can be realized through increasing the variance of transmitted data from
compromised smart appliances or smart meters. Numerically we simulate this
type of attack by significantly increasing the variance of z/*. In Figure 6, where
the variance is 25 times the nominal value (i.e., n = 5), sample test statistics
of the proposed ODIT detector and the parametric CUSUM detectors from a
single trial are shown.

CUSUM is a clairvoyant detector, which is assumed to know the baseline and
anomalous probability distributions exactly, and hence is not of practical inter-
est. Specifically, it sequentially tests the baseline distribution N'(z,’; 1(0.5], I[0.01))
against the anomalous distribution A/ (wij ;110.5), L[0.25)), where 1[4 is the vector
with all entries a, and I, is the diagonal matrix with entries a. Generalized
CUSUM (G-CUSUM), which is the practical version of CUSUM, on the other
hand estimates the parameters of the baseline distribution and tests it against
an assumed anomalous distribution. In Figure 6 and Figure 7, to show the
effect of mismatch between the actual and estimated/assumed values for G-
CUSUM we set the estimated baseline mean and variance as 0.505 and 0.0102,
and the assumed anomalous mean and variance as 0.505 and 0.3672 (i.e., n = 6),
respectively. Note that G-CUSUM still knows the true distributions — in prac-
tice, there might be also mismatch between the actual and estimated/assumed
distributions.

It is clearly seen in Figure 6 that all three detectors detect the attack im-
mediately after it occurs, i.e., there is a clear distinction between the pre-attack
and post-attack behaviors of the test statistics. This is actually the case in all
trials, thus exhibiting perfect detection with no false alarms for all three detec-
tors. There is an obvious trade-off in selecting the jamming magnitude 7. Large
values such as the one in Figure 6 has the potential to completely make the data
unavailable at the smart meter, but at the same time are easily detectable.
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Figure 6: Sample test statistic s; under jamming-type DoS attack (n = 5) for ODIT, CUSUM,
and Generalized CUSUM. Attack starts at ¢ = 51.

Alternatively, attacker might favor small 7 values to avoid detection (stealth
attack) while still targeting the availability of data by increasing the noise level.
We investigate this case in Figure 7, where average detection delay is plotted
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Figure 7: Average detection delay vs. jamming noise level in terms of the nominal standard
deviation.

versus different n values. The detection delay in each trial refers to the time
lag between the initialization of the attack and its detection. For all n values,
average delay is measured considering the perfect detection case with no false
alarm. It is observed that after n = 3 (i.e., noise level becomes 9 times the
nominal variance), all three detectors achieve zero delay as also illustrated for
n = 5 in Figure 6. However, for smaller attacks there is a huge performance
gap between ODIT and the CUSUM detectors. Even the clairvoyant CUSUM
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detector performs much worse than ODIT for n < 2.5.
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Figure 8: Probability density function for the baseline (variance 0.01) and three different
jamming scenarios.

This result may sound counter-intuitive at first as CUSUM is typically known
to be the optimum sequential change detector, however it should be noted that
CUSUM is only minimaz optimum, i.e., in terms of minimizing the worst-case
average detection delay, not optimum per se in all cases. CUSUM compares the
likelihoods under baseline and anomaly distributions, whereas ODIT measures
only the discrepancy of data with respect to the nominal distribution. As shown
for the univariate case in Figure 8, for n = 2, the region where the anomaly
likelihood is smaller than the baseline likelihood holds a significant probability
mass, hence the large detection delay in this case. As 7 increases (e.g., n = 3
and n = 5), the probability mass for which the anomaly likelihood is greater
than the baseline likelihood increases, and as a result the attack becomes much
more detectable. On the other hand, in ODIT, since there is no such comparison
with the anomaly distribution, even the small discrepancies with respect to the
baseline distribution accumulate and enable timely detection.

2) False Data Injection: We next investigate the false data injection
attack scenario in which the mean of the data is altered by A. In Figure 9,
A = 0.2 (twice the nominal standard deviation) is considered. It is seen that
ODIT significantly outperforms G-CUSUM, which estimates the baseline pa-
rameters with 1% error and tests the baseline against the 3 standard deviation
mean-shifted versions in both directions. Estimation errors and mismatch in
the assumed parameters for the unknown anomaly distribution causes a large
performance degradation in G-CUSUM compared to CUSUM. The proposed
nonparametric ODIT detector, on the other hand, achieves a close performance
to the clairvoyant (non-practical) CUSUM detector.

We also analyze the combined attack scenario in which jamming and false
data injection attacks are performed together. For the combination of previously
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Figure 9: Average detection delay vs. false alarm probability under false data injection attack.

considered attack scenarios with A = 0.2 and n = 5, Figure 10 similarly shows
that ODIT achieves much lower average detection delays than G-CUSUM for
the same false alarm rates.
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Figure 10: Average detection delay vs. false alarm probability under combined false data
injection and jamming attack.

3) Identification of Compromised Nodes: In addition to detection, we
now evaluate the mitigation performance of the proposed MIAMI-DIL frame-
work (i.e., isolation and localization techniques) by quantifying the performance
for identifying the compromised appliances and meters. The false data injection
scenario above is considered. In Figure 11, the Receiver Operating Characteris-
tic (ROC) curve of the identification procedure given by Equation (10) is shown.
It shows that a very high detection probability (true positive rate) is achieved
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even for very small false alarm probability (false positive rate) constraints.
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Figure 11: ROC curve for the mitigation (isolation and localization) procedure given by (10)
under the false data injection attack scenario considered in Fig. 9.

4) Heterogeneous Data: We finally illustrate that our proposed method
is capable of handling heterogeneous data after proper normalization thanks to
its nonparametric (i.e., model-free) nature. Consider a two-dimensional highly
heterogeneous system (e.g., two disparate IoT devices) with the first dimension
following exponential distribution with mean 0.1, z}’/ e Exp(10), and the sec-
ond dimension following Gaussian distribution with mean 10,000 and standard
deviation 1,000, z7% ~ N(10%,10%). For simplicity, we consider a single-layer
detector in which smart meter j runs ODIT using the statistic s;’. After nor-
malizing the data using the mean and standard deviation values estimated from
the training data for each dimension, the proposed detection method timely and
accurately detects an increase in the mean of first dimension from 0.1 to 0.5, as
shown in Fig. 12. Since the first dimension takes much smaller values than the
second dimension, such an increase in the first dimension would normally be
invisible (buried under the large nominal values of the second dimension) unless
data is properly normalized.

6. Conclusion

The elusive and challenging goal of providing effective and efficient solution
to intrusion detection for the Smart Grid is poised to present more menac-
ing, and thus more interesting research difficulties than in the Internet domain.
Particularly, the mushrooming of the IoT devices, coupled with the ease of
triggering cyberattacks even from unsophisticated malicious parties, make the
challenge even more formidable. In light of these developments, we present two
potential attack vectors, including a stealth one, facilitated by the expanded
set of new IoT appliances and devices in the Smart Grid. Then, we develop
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Figure 12: The average performance (average detection delay vs. false alarm rate) of the
proposed detector in a highly heterogeneous system consisting of data following exponential
distribution with mean 0.1 and Gaussian distribution with mean 10% and standard deviation
10%. Attack increases only the mean of the exponential data to 0.5 without affecting the
Gaussian data.

a novel intrusion detection framework, called Minimally Invasive Attack Mit-
igation via Detection Isolation and Localization (MIAMI-DIL) that employs
a timely, distributed, scalable, and nonparametric intrusion detection system
(IDS). Another important, distinguishing feature of MIAMI-DIL is that it is
protocol-agnostic and free from data-type assumptions. We have numerically
shown that in a challenging high-dimensional scenario, the proposed IDS is ca-
pable of timely and accurately detecting cyber-attacks, in some cases even more
quickly than the optimally designed, clairvoyant Cumulative Sum (CUSUM)
detector. Specifically, in detecting stealth DoS attacks, our approach is sig-
nificantly faster than the clairvoyant CUSUM and its more practical version
Generalized CUSUM (G-CUSUM), which estimates the model parameters. In
this work, we did not consider the attacks targeting the proposed defense mech-
anism to focus on the novel framework. We reserve this interesting extension,
as well as more challenging DoS attacks such as intermittent DoS and low-rate
DoS to future works.
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