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A B S T R A C T

This paper aims to generalize the quickest change detection (QCD) framework via a data-
driven approach. To this end, a generic neural network architecture is proposed for the QCD
task, composed of feature transformation, recurrent, and dense layers. The neural network
is trained end-to-end to learn the change detection rule directly from data without needing
the knowledge of probabilistic data models. Specifically, the feature transformation layers can
perform a broad range of operations including feature extraction, scaling, and normalization.
The recurrent layers keep an internal state summarizing the time-series data seen so far and
update the state as new information comes in. Finally, the dense layers map the internal state
into a decision statistic, defined as the posterior probability that a change has taken place.
Comparisons with the existing model-based QCD algorithms demonstrate the power of the
proposed data-driven approach, called DeepQCD, under several scenarios including transient
changes and temporally correlated data streams. Experiments with real-world data illustrate
superior performance of DeepQCD compared to state-of-the-art algorithms in real-time anomaly
detection over surveillance videos and real-time attack detection over Internet of Things (IoT)
networks.

1. Introduction

Suppose that a random process generates time-series data 𝐱1, 𝐱2, 𝐱3,… , where 𝐱𝑡 ∈ R𝑝 is the observation made at time 𝑡 and 𝑝 ≥ 1
is the data dimensionality. An abrupt change happens in the observed process at an unknown time 𝜏, called the change-point, such
that

𝐱𝑡 ∼
{

𝑓0, if 𝑡 < 𝜏,
𝑓1, if 𝑡 ≥ 𝜏,

(1)

where 𝑓0 and 𝑓1 denote the pre- and post-change probability density functions (PDFs) of 𝐱𝑡, respectively. In the quickest change
detection (QCD) framework, the objective is to develop a sequential procedure for detecting changes as quickly as possible while
limiting the risk of false alarm.

In the QCD procedures, at each time step, a decision is made based on the available information on whether to stop and declare
a change, or continue to acquire a further observation in the next time interval. The stopping time 𝛤 is a random variable depending
on the observations made so far. That is, {𝛤 = 𝑡} ∈ 𝑡,∀𝑡 ≥ 1, where 𝑡 = 𝜎(𝐱1, 𝐱2,… , 𝐱𝑡) denotes the sigma-algebra generated by
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Fig. 1. Overview of the Introduction section.

the observations up to time 𝑡. The event {𝛤 < 𝜏} corresponds to a false alarm event and (𝛤 − 𝜏)+ is called the detection delay,
here (⋅)+ ≜ max{0, ⋅}. While the goal is to minimize both the average detection delay and the frequency of false alarms, there is
n inherent tradeoff between these two objectives. Ideally the stopping time is chosen to optimally balance the detection speed and
he detection accuracy.

The QCD problem finds diverse applications in many fields such as critical infrastructure monitoring, industrial process control,
nvironmental monitoring, cybersecurity, finance, video surveillance, biomedical signal processing, neuroscience, cognitive radio,
nset of a disease outbreak, social networks, sensor networks, and military [1–6]. This paper aims to generalize the QCD framework
ia a novel data-driven solution approach, which is applicable to a variety of real-world settings.

In the remainder of this section, we first provide a background of the QCD framework. Subsequently, we discuss the motivations
ehind our work. We then outline our key contributions and present the organization of the paper. Fig. 1 illustrates a roadmap of
he Introduction section.

.1. Background

The QCD framework can be classified in terms of assumptions on the change-point model, density knowledge, observation model,
nd internal memory structure, as detailed next.

.1.1. Change-point model
Based on the change-point model, two common problem formulations exist. First, in the Bayesian formulation, the change-point

s random with a known prior distribution [7]. The change-point is usually assumed to be a geometric random variable, denoted
ith 𝜏 ∼ geo(𝜌), where

𝜋𝑡 ≜ P(𝜏 = 𝑡) = 𝜌 (1 − 𝜌)𝑡−1, 𝑡 = 1, 2, 3,… (2)

he design goal is to minimize the average detection delay (ADD) subject to an upper bound on the probability of false alarm (PFA).
Second, in the minimax formulation, location of the change-point is deterministic but unknown. The design goal is to minimize

he worst-case ADD subject to an upper bound on the average false alarm period (FAP). The Lorden’s problem [8] and Pollak’s
roblem [9] are two well-known problem formulations depending of the definition of the worst-case ADD.

.1.2. Density knowledge
In terms of density knowledge, three cases are common: (i) known pre- and post-change PDFs, (ii) known pre-change PDF,

nknown post-change PDF, and (iii) unknown pre- and post-change PDFs.
The first case has been extensively studied, especially for the independent and identically distributed (IID) observations, and the

ptimality properties of the well-known QCD algorithms have been shown [1,3]. In fact, many existing QCD algorithms such as
hiryaev [10] and cumulative sum (CUSUM) [11] require the computation of the likelihood ratio (LR), which is possible only if the
re- and post-change PDFs are known.

In the second case, if the post-change PDF belongs to a certain parametric family, either the unknown parameters can be estimated
nd incorporated into the change detection process, which is called the generalized likelihood ratio (GLR) approach [12,13] or a
obust detection approach can be employed where the worst-case parameters are determined for the post-change PDF [14]. However,
f the post-change PDF is completely unknown, observed data stream can be evaluated on whether it statistically fits or deviates
rom the pre-change PDF [15–18].

In the third case, if both the pre- and post-change PDFs belong to a parametric family, then either the unknown parameters
an be estimated or the worst-case parameters can be determined. Alternatively, a nonparametric approach can be used if the data
istributions are completely unknown [19,20]. Furthermore, neural network-based LR estimation was investigated in [21], enabling
two-step solution that leverages an existing QCD algorithm based on the LR estimates.
2 



M.N. Kurt et al.

s
f
t
o
f

p
n

1

l
s
a
c
e
m
b
u

1

a
r
o
m
i
m
m

b
i
r
Q
p
e
c

1

p
D
i

Journal of the Franklin Institute 361 (2024) 107199 
1.1.3. Observation model
There exist many time series models: IID [1], autoregressive (AR) [22], autoregressive moving average (ARMA) [23], state-

pace [24], hidden Markov model (HMM) [25,26], and so forth. Almost all prior work in the QCD framework studied the IID setting,
or both the pre- and post-change observations. This is mainly because it gets more complicated (i.e., with increasing space and
ime complexity) to compute the LR as the observations get more correlated over time. The assumption of temporally independent
bservations greatly simplifies the design of QCD algorithms and enables low-complexity recursive procedures that are well suitable
or real-time processing.

In general non-IID observation settings, asymptotically optimal model-based QCD algorithms are extended from their counter-
arts in the IID observation setting [3,12,27]. However, low-complexity recursive algorithm design is no longer possible in the
on-IID settings.

.1.4. Internal memory structure
In terms of utilizing the observation history in the decision making process, there exist two common approaches. First, window-

imited QCD procedures restrict the internal memory to a fixed number of recent observations while ignoring the further past,
ee [28] for example. There is an inherent detection delay caused by the window size, which is itself a design parameter. Specifically,
larger window size leads to a larger ADD whereas a smaller window size ignores more information from the past. In the extreme

ase, the past observations are completely ignored and only the most recent observation is utilized, see the Shewhart test [29] for
xample. Second, fully-sequential QCD procedures utilize the entire observation history via keeping a summary of the observations
ade so far. The fully-sequential procedures are ideally preferred over the window-limited procedures if the relevant information can

e well extracted from the observation history. However, to reduce memory requirements, existing fully-sequential QCD procedures
sually make simplified assumptions such as temporally independent observations.

.2. Motivations

Real-world data streams often have unknown properties. Hence, either the underlying probabilistic data model can be learned and
model-based QCD procedure is employed or the change detection rule can be directly learned from data. The former approach

equires fitting a parametric model to the observed data and the estimation of unknown model parameters. This can be costly
r even intractable for complex, temporally correlated, and high-dimensional data streams. Moreover, it is vulnerable to model
ismatch as the real-world data may not fit into existing parametric models and even the lack of parametric models is common

n high-dimensional settings [30]. Hence, in general, only an approximate model is learned, which may degrade the corresponding
odel-based QCD procedure. The latter approach is more direct, robust to model mismatch, and more widely applicable. Hence,
odel-free QCD algorithms are better suited for real-world data streams.

In [31], responding to changes in a potentially adversarial environment rapidly yet accurately is addressed as a problem faced
y animal brains at every level from neurons to behavior. It is argued that neurons are optimized for tracking abrupt changes in the
nput spike statistics and moreover, intracellular dynamics of the spiking neurons, specifically the leaky-integrate-and-fire neurons,
emarkably resemble the information accumulation and decision process of the Bayesian-optimal Shiryaev algorithm [10] in the
CD framework. It is also argued that neurons have a speed-accuracy tradeoff in their decision making process, just like the QCD
rocedures. These well motivate a new QCD algorithm based on the neural networks and the Shiryaev algorithm. Finally, end-to-
nd deep learning (DL) does not require explicit data modeling, feature engineering, or procedure design, and hence it enables a
ompletely model-free QCD algorithm.

.3. Contributions

We list our main contributions as follows:

• We propose a novel fully-sequential model-free QCD algorithm, called DeepQCD, which learns the change detection rule
directly from observed raw data via neural networks.

• To the best of our knowledge, DeepQCD incorporates the entire QCD procedure through end-to-end deep learning for the first
time in the literature.

• DeepQCD unifies the QCD framework. With sufficient training data, DeepQCD can be effective for various kinds of change-point
models, data distributions, and observation models.

• DeepQCD achieves comparable or superior performance compared to the existing model-based QCD procedures, which are
designed with complete statistical knowledge of the observed data stream.

• In challenging real-world applications, real-time video anomaly detection and cyber-attack detection over Internet of Things
(IoT) networks, DeepQCD outperforms the state-of-the-art.

1.4. Organization

The remainder of the paper is organized as follows. Section 2 reviews the related work. Section 3 presents the generic QCD
rocedure, which is the backbone of the proposed solution approach. Section 4 describes the DeepQCD algorithm. Section 5 justifies
eepQCD through comparisons with the existing model-based QCD algorithms. Section 6 evaluates the performance of DeepQCD

n real-world applications. Finally, Section 7 concludes the paper.
3 
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2. Related work

In the nonparametric detection, classical procedures are the goodness-of-fit tests such as the Kolmogrov–Smirnov test and
he Pearson’s chi-squared test [32], which are mainly designed for batch processing of univariate data, where their window-
imited versions can be employed for real-time detection as well [15,16]. Moreover, for multivariate data streams, support vector
achine (SVM)-based one-class classification algorithms [33,34], nearest neighbor graph-based algorithms [19,35,36], subspace-

ased algorithms [19,37], and information theoretic algorithms [38,39] have been proposed for real-time multivariate change and
nomaly detection. Furthermore, in [21], the LR was estimated using neural networks, and the CUSUM algorithm was applied based
n these estimates. Furthermore, in [21], the LR was estimated using neural networks, and the CUSUM algorithm was applied based
n these estimates. While the approach in [19] focuses solely on LR estimation, DeepQCD offers an end-to-end deep learning solution
or QCD.

A fundamental building block of DeepQCD is the recurrent memory cells. Hence, we next explain how the recurrent neural
etworks (RNNs) have been used in the relevant literature. The first approach is based on learning a pre-change prediction
odel [40–42], where the trained RNN predicts the future observations and an anomaly is declared if large prediction errors occur.
he second approach builds a classifier on the entire sequence [43]. After observing the entire data stream, the trained RNN makes
binary decision on whether the data stream is normal or anomalous. In the third approach, an RNN-based autoencoder is trained

o learn a pre-change reconstruction model [44,45], where an anomaly is declared if large reconstruction errors occur. In addition
o these approaches, [46] introduces a specialized RNN architecture, called the pyramid RNN, incorporating wavelet layers. This
esign aims to enhance the detection of gradual and multi-scale changes.

. Generic QCD procedure

In the QCD framework, the stopping time 𝛤 is decided based on the information derived from the observation history. Let 𝐬𝑡 be
the internal state (i.e., memory) of the decision maker at time 𝑡, based on the observations made so far, that is, {𝐱1, 𝐱2,… , 𝐱𝑡}. Ideally,
he internal state captures and summarizes all the relevant information from the observation history and as new observations are
ade, the internal state is updated accordingly. Let 𝜙(⋅, ⋅) be the state update function that processes the most recent observation
𝑡 and updates the internal state, as given by

𝐬𝑡 = 𝜙(𝐱𝑡, 𝐬𝑡−1). (3)

ased on the internal state, the decision maker either stops and declares a change, or continues to acquire a further observation in
he next time interval. More particularly, the internal state 𝐬𝑡 is mapped to a decision statistic 𝑑𝑡 via a function 𝜔(⋅) as follows:

𝑑𝑡 = 𝜔(𝐬𝑡). (4)

he decision is then made based on a threshold-crossing mechanism. In other words, the decision maker detects a change as soon
s the decision statistic exceeds a predetermined threshold ℎ. Hence, the stopping time is given by

𝛤 = inf{𝑡 ∶ 𝑑𝑡 ≥ ℎ}. (5)

This procedure (see Fig. 2) is common for all QCD algorithms. What makes algorithms different are the state update function 𝜙(⋅, ⋅)
nd the decision mapping 𝜔(⋅). In particular, the existing QCD algorithms characterize 𝜙(⋅, ⋅) and 𝜔(⋅) in special forms depending

on the assumptions on change-point model, pre- and post-change PDFs, observation model, and internal memory structure (see
Appendix for examples). In this paper, we consider the most general case where no assumptions are imposed on the observed data
stream. Instead, we aim to learn both 𝜙(⋅, ⋅) and 𝜔(⋅) from data and thereby to achieve a completely data-driven QCD procedure.

4. Data-driven QCD via end-to-end deep learning

Suppose that a dataset is available including both pre-change and post-change samples. To obtain an effective data-driven
QCD procedure, we propose to train a neural network composed of three components: feature transformation layers, recurrent
layers, and dense layers (see Fig. 3). The purpose of this network architecture is to learn both the state update and the decision
mapping functions without imposing statistical model assumptions on the observed data stream. As illustrated in Fig. 3, the feature
transformation and the recurrent layers together correspond to the state update function 𝜙(⋅, ⋅), whereas the dense (i.e., fully
connected) layers correspond to the decision mapping function 𝜔(⋅).

4.1. Feature transformation

The neural network may perform initial processing on each observation 𝐱𝑡 to extract useful features and filter out noise, which is
particularly necessary for complex and high-dimensional data streams. To ensure the most relevant and useful features are extracted,
the feature transformation layers should be tailored to the specific type of observed data.

For instance, in the case of video data streams, convolutional layers are employed to effectively capture spatial patterns (see
Section 6.1). For other types of data, the feature transformation may involve basic operations such as data scaling or normalization
to standardize the inputs (see Section 6.2).
4 
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Fig. 2. Generic QCD procedure.

In some scenarios, particularly with low-dimensional data streams, feature transformation may not be necessary, and observations
an be directly fed into the recurrent layers (see Section 5.1). This direct approach can be beneficial when the data is already clean
nd well-structured, allowing the model to learn the temporal dependencies without additional preprocessing.

Overall, feature transformation may involve a broad range of operations and it is a crucial component of the proposed neural
etwork, enhancing the ability of the network to learn from diverse data types.

.2. Building internal state

The recurrent layers function as the network memory, summarizing the data stream seen so far. At each time 𝑡, the internal
state is updated after a new observation 𝐱𝑡 is made. The recurrent layers are the most fundamental component of the proposed
neural network architecture. This is because how effectively they capture the observation history has a critical impact on the QCD
performance. In practice, advanced recurrent memory cells such as the long short-term memory (LSTM) [47] and gated recurrent
unit (GRU) [48] can be used in the recurrent layers. LSTMs are more powerful to capture long-term dependencies in data streams but
are computationally heavier due to higher number of parameters and gates. GRUs are simpler, faster, and often perform comparably,
making them a good choice when computational efficiency is a priority [49,50]. Therefore, GRUs may be favored for processing
high-dimensional data streams to maintain manageable computational complexity.

The RNNs encode the observation history into an internal state via sequential data processing, similar to how QCD algorithms
build an internal state from sequential observations. Although, in principle, the latest RNN state captures all the past observations,
remembering arbitrarily long history can be practically difficult [51]. Nevertheless, from the QCD perspective, recent observation
history is more important since observations made after the change-point (i.e., {𝐱𝑡}𝑡≥𝜏 ) are more informative about the change event.
Moreover, advanced RNN cells can make a selective use of the observation history [47,48]. Hence, recurrent layers can well learn
and build the internal state of a QCD procedure.

4.3. Decision mapping

The recurrent layers are followed by dense layers that map the internal state 𝐬𝑡 into a decision statistic 𝑑𝑡. Motivated by the
Bayesian-optimal Shiryaev algorithm [10], decision statistic is defined as the posterior probability that a change has happened
given all the observations made so far:

𝑑 = P
(

𝑡 ≥ 𝜏 | 𝐱 , 𝐱 ,… , 𝐱
)

. (6)
𝑡 1 2 𝑡

5 
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Fig. 3. Proposed generic neural network architecture for DeepQCD. At each time 𝑡, new observation 𝐱𝑡 is processed and the internal state 𝐬𝑡 is updated. The
nternal state is then mapped to the decision statistic 𝑑𝑡.

In the offline training phase, it is convenient to set the ground truth labels for the decision statistic. In the pre-change period,
he ground truth label 𝑑𝑡 is given by, see Eq. (6),

𝑑𝑡 = 0, 𝑡 < 𝜏, (7)

hereas in the post-change period, the ground truth label is given by, see Eq. (6),

𝑑𝑡 = 1, 𝑡 ≥ 𝜏. (8)

.4. DeepQCD algorithm

The DeepQCD algorithm comprises two phases: offline training and real-time detection. Let 𝜙 denote the parameters of the
eepQCD network. In the offline training phase (see Alg. 1), the network is trained end-to-end with the objective of minimizing the
inary cross entropy loss, given by

𝐿(𝜙) ≜ −E
[

𝑑𝑡 log(𝑑𝑡) + (1 − 𝑑𝑡) log(1 − 𝑑𝑡)
]

,

here 𝑑𝑡 is a function of 𝜙 and  denotes the training dataset. At each training iteration, the network parameters 𝜙 are adjusted
owards minimizing the loss function 𝐿(𝜙):

𝜙 ← 𝜙 − 𝛼∇𝜙𝐿(𝜙),

here 𝛼 denotes the learning rate. The training process incorporates early stopping regularization, whereby training is halted when
here is no further reduction observed in the binary cross-entropy loss on an independent validation dataset, denoted by val.

After the training phase is over, the network is used for the QCD task. Specifically, in the real-time detection phase (see Alg.
), at each time 𝑡, a new observation 𝐱𝑡 is input to the network and the network outputs the decision statistic 𝑑𝑡 (see Fig. 3). The
lgorithm declares a change at the first time instant the decision statistic exceeds a predetermined threshold ℎ ∈ (0, 1):

𝛤 = inf
{

𝑡 ∶ 𝑑𝑡 ≥ ℎ
}

.

The test threshold ℎ controls the speed-accuracy tradeoff in the decision-making process. A larger threshold value leads to
reduction in the false alarm rate (FAR). However, this comes at the cost of a higher average detection delay (ADD), as the

lgorithm requires stronger evidence on change before making a decision. Conversely, a smaller threshold value results in a lower
DD, enabling quicker detection of changes. However, this also leads to a higher FAR, as the algorithm becomes more prone to
aking false detections in noisy or uncertain conditions. Thus, the test threshold ℎ is chosen based on the specific constraints of

he application, balancing the need for prompt detection with the desire to minimize false alarms.

. Numerical justification of DeepQCD

In this section, we consider several cases within the QCD framework and evaluate the existing (optimal) model-based QCD
lgorithms and the proposed data-driven DeepQCD algorithm through experiments. Our purpose is to justify the power of DeepQCD
ompared to the model-based algorithms.
6 
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Algorithm 1 DeepQCD: Offline Training

Inputs:
- Training data:  = {(𝐱𝑖𝑡 , 𝑑

𝑖
𝑡 ), 𝑡 = 1, 2,… ,T, 𝑖 = 1, 2,… , I}

- Validation data: val = {(𝐱𝑖𝑡 , 𝑑
𝑖
𝑡 ), 𝑡 = 1, 2,… ,T, 𝑖 = 1, 2,… , Ival}

- Learning rate: 𝛼
- Early stopping threshold: 𝐶

Outputs:
- Trained neural network parameters 𝜙

Initialization:

1: Randomly initialize 𝜙
2: Initialize the best validation loss: 𝐿∗

val ← ∞
3: Initialize the training epoch number: 𝑒 ← 1
4: Initialize the early stop counter: 𝑐 ← 0

Training:

1: for each training epoch 𝑒 do
2: Update the network parameters: 𝜙 ← 𝜙 − 𝛼∇𝜙𝐿(𝜙)
3: Validation loss: 𝐿𝑒

val = −Eval
[

𝑑𝑡 log(𝑑𝑡) + (1 − 𝑑𝑡) log(1 − 𝑑𝑡)
]

4: if 𝐿𝑒
val < 𝐿∗

val then
5: Update the best validation loss: 𝐿∗

val ← 𝐿𝑒
val

6: Reset the early stop counter: 𝑐 ← 0
7: else
8: Increment the early stop counter: 𝑐 ← 𝑐 + 1
9: if 𝑐 ≥ 𝐶 then

10: Terminate the training procedure
11: end if
12: end if
13: Proceed to the next epoch: 𝑒 ← 𝑒 + 1
14: end for

Algorithm 2 DeepQCD: Real-Time Detection

Input:
- Observed time series data: {𝐱𝑡, 𝑡 = 1, 2, 3,…}
- Trained neural network parameters 𝜙

Output:
- Stopping time: 𝛤

Initialization:

1: Initialize time: 𝑡 ← 0
2: Initialize the decision statistic: 𝑑0 ← 0

Real-Time Detection:

1: while 𝑑𝑡 < ℎ do
2: 𝑡 ← 𝑡 + 1
3: 𝐱𝑡 is input to the neural network
4: The neural networks outputs 𝑑𝑡
5: end while
6: Declare a change and stop the QCD procedure: 𝛤 ← 𝑡

5.1. IID observation process

Consider a data stream described through Eq. (1) and let the observations be IID over time in both the pre- and post-change
eriods.
7 
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Fig. 4. DeepQCD network architecture for the experiments in Section 5.

5.1.1. IID Bayesian setting
In the IID Bayesian setting where 𝜏 ∼ geo(𝜌), see Eq. (2), we compare DeepQCD with the optimal Shiryaev algorithm [10]. As an

example, suppose 𝜌 = 0.001, the data dimension is 𝑝 = 7, and the pre- and post-change PDFs are 𝑓0 ∼  (𝟎𝑝, 𝐈𝑝) and 𝑓1 ∼  (𝟏𝑝, 𝐈𝑝),
espectively, where 𝟎𝑝 denotes a 𝑝-dimensional vector of all zeros, 𝟏𝑝 denotes a 𝑝-dimensional vector of all ones, and 𝐈𝑝 denotes a
× 𝑝 identity matrix.

In this setup, we generate a training dataset consisting of 3200 data streams where the length of each is 2000. That is,

 = {(𝐱𝑖𝑡 , 𝑑
𝑖
𝑡 ), 𝑡 = 1, 2,… , 2000, 𝑖 = 1, 2,… , 3200},

uch that for the 𝑖th data stream (i.e., {𝐱𝑖1, 𝐱
𝑖
2,… , 𝐱𝑖2000}), we have

𝐱𝑖𝑡 ∼
{

𝑓0, if 𝑡 < 𝜏,
𝑓1, if 𝑡 ≥ 𝜏,

here 𝜏 ∼ geo(0.001).
For DeepQCD, we choose a neural network architecture as shown in Fig. 4, which is composed of recurrent and dense layers. In

his case, for the observed 7-dimensional multivariate Gaussian data stream, we find that feature transformation is not necessary.
he recurrent layers contain an LSTM cell with 16 units (i.e., 𝐬𝑡 ∈ R16) and there are two dense layers with 10 neurons and 1 neuron,
espectively. We use the rectified linear unit (ReLU) and the sigmoid activation functions in the first and the second dense layers,
espectively. Moreover, we use the adaptive moment (Adam) optimizer [52] with a learning rate of 0.001 during the offline training
hase.

After the training phase is over, we evaluate DeepQCD and the Shiryaev algorithms in the same Bayesian setting. Fig. 5 presents
he ADD-PFA tradeoff curves of both algorithms, demonstrating that DeepQCD converges to a near-optimal solution. Note that while
eepQCD is data-driven, the Shiryaev algorithm is designed with the complete statistical knowledge of the observed time-series data,

ncluding the IID observation model, the pre- and post-change PDFs 𝑓0 and 𝑓1, the geometric change-point model with a known
parameter 𝜌.

5.1.2. IID minimax setting
In the IID minimax setting, the CUSUM algorithm is the optimal solution to the Lorden’s problem [53] and an asymptotically

optimal solution to the Pollak’s problem [3]. Furthermore, the Shiryaev-Roberts (SR) algorithm is an asymptotically optimal solution
to the Pollak’s problem [3]. Note that since both CUSUM and SR algorithms have their optimality properties based on some
pessimistic worst-case ADD measures [3,53], it is, in principle, possible to design better QCD algorithms in the minimax setting.

We evaluate DeepQCD, CUSUM, and SR algorithms using the same experimental setup as in the Bayesian setting, except for
the change-point model. Firstly, assuming 𝜏 = ∞ (i.e., no change at all), we compute the FAP of all three algorithms for various
thresholds. Next, assuming 𝜏 = 1, we compute the ADD of all algorithms for the same set of thresholds. Fig. 6 illustrates that
DeepQCD achieves smaller ADD at the same FAP levels, and hence outperforms the CUSUM and SR algorithms. This implies that
DeepQCD converges to a better solution than the existing minimax-optimal solutions.

In this experiment, we use the same DeepQCD network trained in the Bayesian setting. Hence, DeepQCD performs well even if
there is a mismatch between the training data and the observed data regarding the change-point model.
8 
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Fig. 5. ADD vs. PFA curves of DeepQCD and the Shiryaev algorithms in an IID Bayesian setting.

Fig. 6. ADD vs. FAP curves of DeepQCD, CUSUM, and SR algorithms in an IID minimax setting.

.2. AR observation process

Consider a first-order AR observation process driven by a temporally independent Gaussian noise:

𝑥𝑡 =

{

𝜇0 + 𝜆0𝑥𝑡−1 + 𝜖𝑡, if 𝑡 < 𝜏,
𝜇1 + 𝜆1𝑥𝑡−1 + 𝜖𝑡, if 𝑡 ≥ 𝜏,

(9)

where 𝜖𝑡 ∼  (0, 1) and |𝜆0|, |𝜆1| ≤ 1. Our goal is to timely detect a change in the drift of the AR(1) observation process (i.e., from
𝜇0 to 𝜇1) and its correlation coefficient (i.e., from 𝜆0 to 𝜆1). Notice that the observations are correlated over time except for the
special case where 𝜆0 = 𝜆1 = 0.

In [22], the CUSUM and SR algorithms are adapted to the AR(1) observation process. Specifically, the LR is derived as
ollows [22]:

𝓁𝑡 = 𝑒[𝑥𝑡−0.5(𝑥𝑡−1(𝜆0+𝜆1)+𝜇0+𝜇1)] [𝑥𝑡−1(𝜆1−𝜆0)+𝜇1−𝜇0], (10)

nd the CUSUM and SR algorithms are accordingly extended from the IID setting to the AR(1) setting using the LR formula in
q. (10). It is then shown that the modified CUSUM and SR algorithms are asymptotically minimax-optimal [22].
9 



M.N. Kurt et al.

F
c

t
p

Journal of the Franklin Institute 361 (2024) 107199 
Fig. 7. ADD vs. PFA curves of DeepQCD and the modified Shiryaev algorithms in an AR(1) Bayesian setting.

Fig. 8. ADD vs. FAP curves of DeepQCD, modified CUSUM, and modified SR algorithms in an AR(1) minimax setting.

In this experiment, we compare DeepQCD with the modified CUSUM and modified SR procedures in the AR(1) minimax setting.
urthermore, we extend the Shiryaev algorithm to the AR(1) observation setting using the LR formula given in Eq. (10), and then
ompare it with DeepQCD in the AR(1) Bayesian setting.

As an example, let 𝜇0 = 0, 𝜆0 = −0.3, 𝜇1 = 1, and 𝜆1 = 0.2. Then, for the AR(1) observation process in Eq. (9), we generate a
raining dataset consisting of 3200 independent data streams where each stream length is 2000. As before, to obtain various change-
oints in the training data, we use a random change-point 𝜏 ∼ geo(0.001). Finally, we use the same DeepQCD network architecture

in Fig. 4 and the same hyperparameters described in Section 5.1.
After the training phase is over, firstly in the Bayesian setting where 𝜏 ∼ geo(0.001), we compare DeepQCD and the modified

Shiryaev algorithms. Next, in the minimax setting, we compare DeepQCD, modified CUSUM, and modified SR algorithms, where
we set 𝜏 = ∞ for the FAP and 𝜏 = 1 for the ADD calculations. Figs. 7 and 8 demonstrate that DeepQCD performs comparably to
the modified Shiryaev algorithm in the Bayesian setting and outperforms the modified CUSUM and SR algorithms in the minimax
setting, respectively.

5.3. Transient QCD

In the QCD framework, it is typically assumed that change is persistent, meaning that the post-change period is infinitely long
after the change happens, see Eq. (1). However, in some applications such as radar, sonar, intrusion detection, and industrial
10 
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monitoring [28], the change might be transient. That is,

𝐱𝑡 ∼
⎧

⎪

⎨

⎪

⎩

𝑓0, if 𝑡 < 𝜏1,
𝑓1 ≠ 𝑓0, if 𝜏1 ≤ 𝑡 < 𝜏2,
𝑓0, if 𝑡 ≥ 𝜏2,

here the change lasts for a finite time interval [𝜏1, 𝜏2).
In the transient QCD, a common objective is to detect the change before it disappears. Let 𝛤 be the stopping time for detecting

change from 𝑓0 to 𝑓1. Then, {𝜏1 ≤ 𝛤 < 𝜏2}, {𝛤 ≥ 𝜏2}, and {𝛤 < 𝜏1} are defined as the detection, missed detection, and the false
larm events, respectively. Moreover, let P𝜏1 ,𝜏2 be the probability measure when a change happens at time 𝜏1 and disappears at time
2. Then, P𝜏1 ,𝜏2 ({𝜏1 ≤ 𝛤 < 𝜏2}), P𝜏1 ,𝜏2 ({𝛤 ≥ 𝜏2}), and P𝜏1 ,𝜏2 ({𝛤 < 𝜏1}) denote the probability of detection (PD), probability of missed
etection (PMD), and the PFA, respectively. Note that these events are disjoint and mutually exclusive, and hence

PD + PMD + PFA = 1.

The goal is to maximize the PD or equivalently minimize the PMD subject to an upper bound on the PFA. The transient QCD
roblem can then be written as follows:

max
𝛤

PD subject to PFA ≤ 𝛼, (11)

here 𝛼 ∈ (0, 1) is a desired upper bound on the PFA.
Suppose that the observations are IID over time given 𝜏1 and 𝜏2. For the transient QCD problem given in Eq. (11), no optimal

olutions exist except for a special case where only a single observation is made from 𝑓1, that is, 𝜏2 = 𝜏1+1, for which the Shewhart
lgorithm is optimal in maximizing the worst-case PD [29]. Moreover, the well-known QCD algorithms such as the CUSUM and SR
oose their optimality properties in the transient QCD as they are designed for the detection of persistent changes.

In [28], a suboptimal window-limited CUSUM algorithm is designed to minimize the worst-case PMD, assuming a certain
ransient change period 𝐾 ≥ 1 (i.e., 𝜏2 = 𝜏1 + 𝐾). In this algorithm, the most recent 𝐾 observations are utilized. In terms of
he generic QCD procedure (see Fig. 2), the algorithm can be written as follows:

𝐬𝑡 = [𝐱𝑡−𝐾+1, 𝐱𝑡−𝐾+2,… , 𝐱𝑡],

𝑑𝑡 = max
𝑡−𝐾+1≤ 𝑘≤𝑡

𝑡
∑

𝑖=𝑘
log

(

𝑓1(𝐱𝑖)
𝑓0(𝐱𝑖)

)

,

𝛤 = inf
{

𝑡 ∶ 𝑑𝑡 ≥ ℎ
}

.

For a transient change, two consecutive distribution changes occur: the first from 𝑓0 to 𝑓1 at time 𝜏1 and the second from 𝑓1
back to 𝑓0 at time 𝜏2. For example, we assume both change-points are geometric random variables such that 𝜏1 ∼ geo(0.001) and
𝜏2 − 𝜏1 ∼ geo(0.002), and generate the training data as follows:

 = {(𝐱𝑖𝑡 , 𝑑
𝑖
𝑡 ), 𝑡 = 1, 2,… , 3000, 𝑖 = 1, 2,… , 3200},

and for the 𝑖th data stream,

𝐱𝑖𝑡 ∼
⎧

⎪

⎨

⎪

⎩

𝑓0, if 𝑡 < 𝜏1,
𝑓1, if 𝜏1 ≤ 𝑡 < 𝜏2,
𝑓0, if 𝑡 ≥ 𝜏2,

where 𝑓0 =  (0, 1) and 𝑓1 =  (1, 1). In this case, the ground truth labels are given by

𝑑𝑖𝑡 =

⎧

⎪

⎨

⎪

⎩

0, if 𝑡 < 𝜏1,
1, if 𝜏1 ≤ 𝑡 < 𝜏2,
0, if 𝑡 ≥ 𝜏2.

e use the same DeepQCD network architecture and the same hyperparameters described in Section 5.1.
After the training phase is over, assuming that 𝜏1 = 1000, 𝐾 = 25, and 𝜏2 = 𝜏1 + 𝐾, we evaluate the performance of DeepQCD

and the window-limited CUSUM algorithms. Fig. 9 presents the PD versus the PFA curves of both algorithms. Although the window-
limited CUSUM algorithm is designed with the full statistical knowledge of the observed data stream including the pre- and
post-change PDFs, IID observation model, and the transient change period 𝐾, it is still slightly outperformed by DeepQCD.

6. Experiments with real-world data

In this section, we experiment with two real-world QCD tasks: video anomaly detection and cyber-attack detection in IoT
networks. The experiments are executed on an Ubuntu 18 LTS server with one Intel Xeon Gold 5118 CPU @2.30 GHz, 288 GB
memory, and one NVIDIA RTX 2080Ti GPU.
11 
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Fig. 9. PD vs. PFA curves of DeepQCD and the window-limited CUSUM algorithms for transient QCD.

Fig. 10. An example car accident. A bus drives on the sidewalk.

Fig. 11. Another example car accident. The white car hits the black car.

6.1. Real-time anomaly detection over surveillance videos

In [54,55], a large-scale video surveillance dataset is provided, including normal activities and 13 anomalies such as road
accidents, burglary, and fighting, where each video frame can be resized to 240 × 320 pixels (i.e., 𝐱𝑡 ∈ R76800). In this dataset,
ground truth labels are available at the video-level, that is, the videos are labeled as either normal or anomalous. For anomalous
videos, the exact timing of the anomaly occurrence is not specified. However, DeepQCD training requires the frame-level ground
truth, see Alg. 1. Moreover, performance evaluation, specifically ADD calculation, requires the knowledge of the change-point. For
these reasons, we manually label the frames for a subset of the anomalous videos, specifically for the road accident videos. This is
primarily due to the prevalence of road accident videos among the available dataset, which often exhibit clear change-points. Please
refer to Figs. 10 and 11 for examples. Additionally, as the normal videos, we use vehicle traffic footage without anomalies.
12 
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Fig. 12. DeepQCD network architecture for the real-time anomaly detection over surveillance videos.

Fig. 13. CADD vs. FAP curves of DeepQCD and the benchmark algorithm from Liu et al. [60] for the real-time anomaly detection over surveillance videos.

For DeepQCD, we use the neural network architecture shown in Fig. 12. The feature transformation layers contain the Two-
tream Inflated 3D ConvNet (I3D) [56] pretrained over the ImageNet [57] dataset1 (i.e., we use transfer learning). The I3D extracts
024 features from the video frames. The extracted features are normalized and fed into the recurrent layers of the network,
ontaining three GRUs with a single layer each. For the GRU layers, we apply the dropout [59] at the rate of 0.5. Finally, three
ense layers are used to output the decision statistic. Before each dense layer, there is a batch normalization and before the last
ense layer, we apply the dropout at the rate of 0.5. The first two dense layers use the ReLU activation, whereas the last dense layer
ses the sigmoid activation function. Note that we did not extensively optimize the hyperparameters; therefore, further performance
mprovements are possible with hyperparameter tuning.

We use 320 normal and 141 anomalous videos in total. Among 320 normal videos, the shortest video has 203 frames, the longest
ideo has 976,503 frames, and the average number of frames per video is 10, 021.6. Furthermore, among 141 anomalous videos,
he shortest video has 137 frames, the longest video has 141,900 frames, and the average number of frames per video is 4, 153.2.

e split this dataset into training, validation, and test sets with the training:validation:test ratios as 0.4:0.2:0.4. For training, we

1 We obtain the pretrained I3D weights from [58] and choose ‘‘rgb_imagenet.pt’’.
13 
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Fig. 14. DeepQCD network architecture for the real-time detection of IoT botnet attacks.

titch the available videos to obtain longer data streams. Specifically, in each training data stream, we include both normal and
nomalous videos such that the normal:anomalous ratio is approximately 0.75:0.25. We use the Adam optimizer with a learning
ate of 0.0001 and a batch size of 32.

The offline training phase of DeepQCD lasts about 5.6 h in our experimental setup. After training, DeepQCD processes each frame
n approximately 18.9 ms, equivalent to 53 frames per second (fps). This processing speed can be further increased with a more
owerful GPU. Given that the frame rates of the videos used in our experiments range from 20 to 60 fps, the proposed DeepQCD
lgorithm is capable of processing streaming videos in real-time.

As the benchmark, we use the algorithm from Liu et al. [60], which predicts future frames and evaluates prediction errors for
nomaly detection. We use the sequential version of this algorithm, where an anomaly is detected as soon as the prediction error
xceeds a certain threshold. Let the conditional ADD (CADD) be defined as the ADD given that the anomaly is detected before
he video ends. Fig. 13 presents the CADD vs. FAP curves of DeepQCD and Liu et al. [60] algorithms. DeepQCD outperforms Liu
t al. [60] by achieving smaller CADD at the same FAP levels. In fact, future frame prediction is susceptible to errors, as not every
ovel event qualifies as an anomaly. Consequently, the benchmark algorithm [60] is prone to frequent false alarms. For instance, a
lashing turn signal can be misinterpreted as an anomaly, triggering a false alarm.

.2. Real-time detection of IoT botnet attacks

The network-based detection of IoT botnet attacks (N-BaIoT) dataset [61], sourced from the UCI Machine Learning Reposi-
ory [62], offers network traffic statistics for an IoT network during both normal system operation and IoT botnet attacks. The
etwork traffic statistics include time intervals between packet arrivals, packet sizes and counts, and so forth. Each data point
s represented as a 115-dimensional vector (i.e., 𝐱𝑡 ∈ R115). In instances of botnet attacks, attackers inject malware into the IoT

devices and control them to orchestrate larger scale attacks across network. For example, we examine a spam attack launched by
the BASHLITE botnet [61] and observe the thermostat data for real-time attack detection.

For DeepQCD, we use the neural network architecture shown in Fig. 14. The feature transformation involves data normalization.
The recurrent layers involve two GRUs with a single layer each, where we apply the dropout at the rate of 0.25. Finally, we include
two dense layers: the first with 64 neurons, and the second with 1 neuron. We employ ReLU and sigmoid activation functions for the
first and second dense layers, respectively. We apply batch normalization before the dense layers. Note that additional performance
improvements can be achieved through hyperparameter tuning.

We split the available dataset such that training:validation:test ratios are 0.4:0.2:0.4. In the training phase, we uniformly sample
from the normal samples before the change-point and the spam attack samples after the change-point. Each data stream has a
length of 2048 and the change-point is uniform between 128 and 1920. During the training phase, we utilize the Adam optimizer

ith a learning rate of 0.0001 and a batch size of 256. The DeepQCD training lasts about 1.7 h. After training, DeepQCD processes
ach data point in approximately 6.9 ms, corresponding to a processing rate of 145 samples per second. While the data sampling

requency in the N-BaIoT dataset was not specified, DeepQCD processing time appears sufficiently low to handle streaming data

14 
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Fig. 15. ADD vs. FAP curves of DeepQCD and the benchmark algorithms for the real-time detection of an IoT botnet attack.

n real-time. Moreover, with a more powerful GPU, further reductions in processing time can be achieved for more stringent time
equirements.

Despite the limited number of samples in the test dataset, to generate ADD vs. PFA performance curves, we simulate an infinite
ata stream by uniformly sampling from the normal dataset for the pre-change case and the spam attack dataset for the post-change
ase. For the ADD and the FAP calculations, we set 𝜏 = 1 and 𝜏 = ∞, respectively. As benchmark algorithms, we implement

the principal component analysis (PCA)-based nonparametric CUSUM-like algorithm [19], QuantTree algorithm [63], Information
Theoretic Multivariate Change Detection (ITMCD) algorithm [38], nearest neighbor graph-based algorithm [35], and RNN-based
algorithm utilizing an observation prediction model (referred to as ‘‘RNN-pred’’) similar to [40–42]. While each benchmark algorithm
is based on manually designed procedures, DeepQCD represents an end-to-end trained data-driven approach. Fig. 15 illustrates that
DeepQCD achieves significantly smaller ADD for the same FAP levels compared to all benchmark algorithms. Note that the decision
threshold of DeepQCD can be calibrated using the ADD-FAP tradeoff curve, considering application constraints such as the minimum
tolerable FAP or maximum tolerable ADD.

7. Concluding remarks

We have proposed a novel data-driven QCD algorithm, called DeepQCD, based on an end-to-end trained generic neural network
architecture. The neural network discovers the change detection rule directly from the raw observations without requiring any
prior knowledge on the statistical model of the observed time-series data or manual design of the QCD procedure. Specifically,
the feature transformation layers perform a broad range of operations including feature extraction, scaling, and normalization.
The recurrent layers sequentially build an internal state representation, summarizing the observation history for the QCD task.
Finally, the dense layers map the internal state into the decision statistic, defined as the posterior probability that change has
taken place given the observations made so far at a given time. We have demonstrated that DeepQCD performs comparably to, or
even outperforms, existing optimal model-based QCD algorithms. Furthermore, experiments with real-world data have illustrated
that DeepQCD outperforms the state-of-the-art in real-time video anomaly detection as well as real-time attack detection in IoT
networks.
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ppendix. Existing QCD algorithms as a special case of the generic QCD procedure

We briefly explain below how a few existing QCD algorithms fit into the generic QCD procedure (see Fig. 2).

.1. CUSUM algorithm

In the CUSUM algorithm, the log-likelihood ratio (LLR) is considered as the statistical evidence for change at a time and the
ccumulation of LLRs over time correspond to the internal state of the algorithm. In particular, let 𝓁𝑡 be the LR at time 𝑡, given by

𝓁𝑡 ≜
𝑓1(𝐱𝑡)
𝑓0(𝐱𝑡)

. (A.1)

Assuming that observations are independent over time, the state is updated recursively as follows:

𝑠𝑡 = max
{

0, 𝑠𝑡−1 + log(𝓁𝑡)
}

, (A.2)

where 𝑠0 = 0. The decision statistic is identical to the state, that is,

𝑑𝑡 = 𝑠𝑡, (A.3)

and hence the decision mapping 𝜔(⋅) is an identity function. The change is declared at the first time the accumulated statistical
evidence is reliably high:

𝛤 = inf{𝑡 ∶ 𝑑𝑡 ≥ ℎ}. (A.4)

Notice that the CUSUM update given in Eq. (A.2) is a special form of the generic state update in Eq. (3), and the CUSUM decision
mapping given in Eq. (A.3) is a special form of the generic mapping in Eq. (4). Moreover, the CUSUM stopping time given in
Eq. (A.4) is identical to Eq. (5).

A.2. Shiryaev algorithm

In the Shiryaev algorithm, the state corresponds to the probability that change has taken place given the observations made so
far, that is,

𝑠𝑡 = P
(

𝑡 ≥ 𝜏 | 𝐱1, 𝐱2,… , 𝐱𝑡
)

. (A.5)

The Bayesian formulation assumes 𝜏 ∼ geo(𝜌), see Eq. (2). Moreover, assuming that the observations are independent over time, the
following recursive state update rule is employed:

𝑠𝑡 =
𝑠̃𝑡−1𝓁𝑡

𝑠̃𝑡−1𝓁𝑡 + (1 − 𝑠̃𝑡−1)
, (A.6)

where

𝑠̃𝑡 ≜ 𝑠𝑡 + 𝜌(1 − 𝑠𝑡),

and 𝑠0 = 0. The decision statistic is identical to the state,

𝑑𝑡 = 𝑠𝑡, (A.7)

and the change is declared as soon as the posterior probability of having change exceeds the test threshold:

𝛤 = inf{𝑡 ∶ 𝑑𝑡 ≥ ℎ}, (A.8)

where ℎ ∈ (0, 1). Notice that the Shiryaev state update given in Eq. (A.6) is a special form of Eq. (3). Similarly, the decision mapping

given in Eq. (A.7) and the stopping time given in Eq. (A.8) both fit into the generic QCD procedure.

16 



M.N. Kurt et al.

t

Journal of the Franklin Institute 361 (2024) 107199 
A.3. Shiryaev-Roberts (SR) algorithm

The SR procedure is obtained from the Shiryaev algorithm in a special regime where 𝜌 → 0, that is, the change is a rare event
and the change-point 𝜏 is uniform over time. The internal state of the SR procedure is updated recursively as follows:

𝑠𝑡 = (1 + 𝑠𝑡−1)𝓁𝑡, (A.9)

where 𝑠0 = 0. As before, the decision statistic is the same with the internal state,

𝑑𝑡 = 𝑠𝑡, (A.10)

and the stopping time is given by

𝛤 = inf{𝑡 ∶ 𝑑𝑡 ≥ ℎ}. (A.11)

The SR procedure summarized through Eqs. (A.9)–(A.11) also fits into the generic QCD procedure.

A.4. Window-limited goodness-of-fit tests

In the CUSUM, Shiryaev, and SR algorithms, the state is well aligned with the QCD task, memory requirement is low, and the
state is recursively updated with low complexity. However, these procedures require that both the pre- and post-change PDFs are
known so that the LR can be computed, and the observations are independent over time. In some cases, such assumptions may
not hold and alternative solutions are needed. For example, if the pre-change PDF is known but the post-change PDF is completely
unknown, window-limited goodness-of-fit tests [15,16] can be used to determine if the observed data stream fits or deviates from
the pre-change PDF. In this case, let a sliding-window state be formed with the most recent 𝐾 ≥ 1 observations, given by

𝐬𝑡 = [𝐱𝑡−𝐾+1, 𝐱𝑡−𝐾+2,… , 𝐱𝑡]. (A.12)

At each time 𝑡, the goodness-of-fit test analyzes the sliding-window state to make a decision.
For example, the sliding-window chi-squared test [15] considers an IID univariate data stream 𝑥1, 𝑥2, 𝑥3,… with a known pre-

change PDF 𝑓0. It divides the domain of 𝑓0 into 𝐿 disjoint and mutually exclusive intervals 𝐼1, 𝐼2,… , 𝐼𝐿 such that 𝑝1 = P(𝑥𝑡 ∈ 𝐼1),
𝑝2 = P(𝑥𝑡 ∈ 𝐼2), . . . , 𝑝𝐿 = P(𝑥𝑡 ∈ 𝐼𝐿) correspond to the probabilities that observations belong to each interval in the pre-change
period, where ∑𝐿

𝑖=1 𝑝𝑖 = 1. Then, for any given state, expected number of observations in the predetermined intervals are computed
by 𝐾𝑝1, 𝐾𝑝2, . . . , 𝐾𝑝𝐿. Moreover, at a given time 𝑡, let the number of observations falling into each interval be counted as 𝑁1,𝑡,
𝑁2,𝑡, . . . , 𝑁𝐿,𝑡, where ∑𝐿

𝑖=1 𝑁𝑖,𝑡 = 𝐾. The decision statistic is then computed by

𝑑𝑡 =
𝐿
∑

𝑖=1

(𝑁𝑖,𝑡 −𝐾𝑝𝑖)2

𝐾𝑝𝑖
. (A.13)

The stopping time of this procedure is given by

𝛤 = inf
{

𝑡 ∶ 𝑑𝑡 ≥ ℎ
}

.

The window-limited goodness-of-fit tests can also be expressed within the generic QCD procedure through a sliding-window
internal state as given in Eq. (A.12) and computation of the decision statistic as given in Eq. (A.13) for the chi-squared test, for
example. For the sliding-window state, the state update is performed at time 𝑡 by simply removing the oldest observation 𝐱𝑡−𝐾 and
adding the most recent observation 𝐱𝑡.

A.5. Shewhart test

In the context of memory usage, an extreme scenario involves conducting QCD solely based on the most recent observation,
while ignoring all past observations. In this setting, the classical QCD procedure is the Shewhart test [29]. Assuming the pre- and
post-change PDFs are known, the Shewhart test computes the LLR and compares it with a certain threshold. Here, the internal state
corresponds to the most recent observation, see Eq. (A.12) when 𝐾 = 1, that is,

𝐬𝑡 = 𝐱𝑡, (A.14)

he decision statistic is the LLR, given by

𝑑𝑡 = log
(

𝑓1(𝐬𝑡)
𝑓0(𝐬𝑡)

)

. (A.15)

A change is declared whenever the LLR exceeds a certain threshold:

𝛤 = inf
{

𝑡 ∶ 𝑑𝑡 ≥ ℎ
}

. (A.16)

The Shewhart test described through Eqs. (A.14)–(A.16) also fits into the generic QCD procedure.
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