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Abstract—Climate change and sea level rise impacts will affect
coastal communities with multiple threats, including increased
frequency of compound events, such as storm surge combined
with heavy precipitation. Accurately modeling how the stakehold-
ers, such as governments and residents, may respond to sea level
rise scenarios (i.e., scenario planning) can assist in the creation
of policies tailored to local impacts and resilience strategies. In
this paper, our contributions are twofold. Firstly, considering a
single-agent model for government, we numerically show that
the government’s policy on infrastructure improvement should
be based on the observed sea levels rather than the observed
cost from nature. The latter refers to the straightforward policy
that any responsive (but not proactive) government would follow.
Through a reinforcement learning algorithm based on a Markov
decision process model we show that the precautionary measures,
(i.e., infrastructure improvements triggered by the sea levels)
are more effective in decreasing the expected cost than the
aftermath measures triggered by the cost from nature. Secondly,
to generate different scenarios we consider several sea level
rise projections by NOAA, and model different government
and resident prototypes using cooperation indices in terms of
being responsive to the sea level rise problem. We present a
reinforcement learning algorithm to generate simulations for a
set of scenarios defined by the NOAA projections and cooperation
indices.

I. INTRODUCTION

Global climate change and its impacts, in terms of sea
level rise, have been extensively documented, analyzed and
projected [1]–[3]. Climate change and sea level rise impacts
will affect coastal communities with multiple threats, including
increased frequency of compound events - such as storm
surge combined with heavy precipitation [4]. This exacerbates
social vulnerability, particularly in underserved communities
[5], [6]; stresses coastal ecosystems [7], [8]; and impacts local
economies by affecting property values, the tax base, and the
cost of insurance, among other factors [9]. Because of sea
level rise, coastal communities are vulnerable to many of these
impacts, and must build the adaptive capacity and resilience
frameworks to respond to these stressors through effective
decision support and planning [10].

Overall, better information is needed for governments, plan-
ners, coastal managers, and personnel in a variety of agencies
for effective communication, decision making and adaptation
planning [10], [11]. This requires the participation of key
actors to communicate the science, the variability, and the risk
of various scenarios to stakeholders [12]. Accurately modeling
how these agents may respond to sea level rise scenarios
can assist in the creation of policies tailored to local impacts
and resilience strategies, and requires a variety of community
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engagement and planning tools, including scenario planning
[13]–[15].

Reinforcement learning (RL) provides a suitable theoretical
framework for generating agent-based scenarios [16]. The RL
agent interacts with the environment by taking an action at
each time and receiving a cost/reward from the environment
in return. The objective of the agent is to minimize/maximize
an expected sum of costs/rewards over time by choosing
optimal actions from an action set. At each time, as a result of
agent’s action, the system moves to a new state according to
a probability distribution. The optimal policy for deciding on
actions maps system states to actions, i.e., determines which
action to take in which state [17].

In this paper, we consider a city setup with government as
the decision maker (i.e., RL agent), and nature and residents as
the environment which the agent interacts with. Our contribu-
tions are twofold. Firstly, considering a single-agent model for
government, we numerically show that a rational government’s
policy on infrastructure improvement should be based on the
observed sea levels rather than the observed cost from nature.
The latter is the straightforward policy that any responsive (but
not proactive) government would follow. Through simulations
we show that the precautionary measures, (i.e., infrastructure
improvements triggered by the sea levels) are more effective
in decreasing the total cost than the aftermath measures, (i.e.,
infrastructure improvements triggered by the cost from nature).
Secondly, to generate different scenarios we consider several
sea level projections by National Oceanic and Atmospheric
Administration (NOAA), and model different government and
resident prototypes using cooperation indices in terms of being
responsive to the sea level rise problem. The optimum policy
depends on these cooperation indices, and can be found using
reinforcement learning techniques. We present a reinforcement
learning algorithm to generate simulations for a set of scenar-
ios defined by the NOAA projections and cooperation indices.

The remainder of the paper is organized as follows. In Sec-
tion II, the proposed RL model is explained. A reinforcement
learning algorithm for finding the optimal policy is presented
in Section III. Scenario simulations are given in Section IV,
and the paper is concluded in V.

II. RL PROBLEM FORMULATION

We investigate the problem of when to invest in infras-
tructure improvement against sea level rise, e.g., storm water
drainage system, sea wall, levee, etc. Hence, at every time
step, e.g., a year, government makes a decision xn ∈ {0, 1}
for infrastructure improvement. Accordingly, the current state
of the city infrastructure against sea level rise is given by
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Fig. 1. Proposed MDP model.

sn =
∑n

m=1 xm = sn−1 + xn. Denoting the sea level rise
in time interval n with rn ≥ 0 the sea level is similarly
given by `n =

∑n
m=1 rm = `n−1 + rn. We define the

system state S = (sn, `n) as the pair of infrastructure state
and sea level, which clearly satisfies the Markov property:
P(Sn|Sn−1, . . . ,S0) = P(Sn|Sn−1).

Let us denote the cost from nature at each time step with
zn, e.g., the cost of flooding, storm surge, hurricane, etc.
Also denote with yn the response of residents at each time
step. In this work, we use a binary response yn ∈ {0, 1}
for the residents considering the residents’ decision to support
the government’s investment for handling the sea level rise
problem, e.g., by paying an extra tax. In this work, we in-
vestigate government’s decision under sea level rise scenarios
using a single-agent RL model. In this context, agent refers
to the government, and environment refers to the nature and
residents together. The responses xn, yn, zn of government,
residents, and nature, respectively, together define the agent’s
cost cn = (2 − yn)xn + zn at each time n. This cost is
normalized by taking the investment cost (2 − yn)xn a unit
cost with the resident support (two units without the resident
support). The second component zn is the normalized cost
from nature with respect to the investment cost. Finally, the
cumulative cost function for the agent is given by

CN =

N∑
n=0

ang [(2− yn)xn + zn], (1)

which represents the total discounted cost in N time steps from
now. The discount factor ag ∈ (0, 1) determines the weight
(i.e., importance) of future costs in agent’s decisions. Aside
from being a standard parameter in RL cost function, ag has
an important contextual meaning in this work. It represents
how much the government values the future costs due to the
sea level rise problem in its decision making process. Hence,
we call ag government’s cooperation index.

The agent’s objective is to minimize E[CN ] by choosing
its actions {xn} over time. This defines a Markov Decision
Process (MDP), as summarized in Fig. 1. Every time agent
takes an action xn, environment reacts to that by incurring
a cost cn. Considering discretized sea level rise values r̃n ∈
{0, 1, 2, . . .} the state transition diagram is given by Fig. 2.
In our problem, environment consists of nature and residents.
We next discuss suitable models for them to complete the
proposed MDP model.

Fig. 2. MDP state transition diagram.

Fig. 3. NOAA projections (solid lines) for St. Petersburg, FL [18], and our
curve fitting (dashed lines) for the expectation of Gamma distribution.

To model nature’s cost we start with four different NOAA
projections for sea level rise in St. Petersburg, FL [18], given
by Fig. 3. Since these are some expected levels, in our simu-
lations we account for uncertainty by modeling the sea level
rise variable using a Gamma distribution, rn ∼ Gamma(α, β).
We set β = 0.5 and α to match E[`n] with the NOAA
projection curves. The successful curve fitting shown Fig. 3 is
obtained by setting α = 5.2 fixed for the low projection; by
increasing α from 6.3 to 16.596 with 0.104 increments for the
intermediate-low projection; by increasing α from 9.5 to 42.17
with 0.33 increments for the intermediate-high projection; and
by increasing α from 14 to 69.44 with 0.56 increments for
the high projection. Then, we model nature’s cost zn using
the Generalized Pareto distribution, which is commonly used
to model catastrophic losses [19]. The parameter settings for
zn are given as

zn ∼ GeneralizedPareto(k, σn, θ)

k = −0.001, θ = 0, σn =
η(`n−1)

a

(sn−1)b
. (2)

Through the parameters η, a, b we control the impact of most
recent sea level `n−1 over nature’s cost zn relative to the most
recent infrastructure state sn−1.

Residents’ decision yn is modeled using Bernoulli distri-
bution with probability parameter designed through logistic
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sigmoid function:

yn ∼ Bernoulli(pn), pn = σ(qn) =
1

1 + e−qn

qn =

n−1∑
m=1

an−m
r xmzm, (3)

where the score qn reflects the willingness of residents to
share government’s investment costs based on the cooperation
index ar ∈ (0, 1). It takes a high value, and yields a high
probability of support if the residents’ cooperation index
is high (ar ≈ 1), nature’s cost has been serious and the
government has been responsive especially recently. If at least
one of these conditions do not exist, then qn tends to get
smaller values, decreasing the probability of support.

III. FINDING THE OPTIMAL POLICY

RL provides a data-driven solution to MDP problems. It typ-
ically updates a value function V (sn, `n) = minxn

E[CN |xn]
in an iterative way based on the Bellman equation

V (sn−1, `n−1) = min
xn

E[cn + V (sn, `n)|xn, yn]

= min{zn + agV (sn−1, `n),

2− yn + zn + agV (sn−1 + 1, `n)}. (4)

The value function V (sn, `n) defines the optimal policy:{
xn = 1 if 2− yn + agV (sn−1 + 1, `n) < agV (sn−1, `n),
xn = 0 otherwise.

(5)
Although there are several RL algorithms, in general the RL
approach learns the value function by experiencing actions
and the corresponding costs. In Algorithm 1, we provide
an RL algorithm based on Monte-Carlo simulations to learn
the optimal government policy on infrastructure investment
actions.

Algorithm 1 RL algorithm for learning optimum policy
1: Input: ag, ar,Returns(s, `): an array to save states’ returns

in all iterations;
2: Initialize: V (s, `)← 0, ∀s, `;
3: for iteration = 0, 1, 2, ... do
4: Generate an episode: Take actions using (5) for N steps
5: G(s, `) ← sum of discounted rewards from (s, `) till

termination for all states appearing in the episode;
6: Append G(s, `) to Returns(s, `);
7: V (s, `)← average(Returns(s, `));
8: if V (s, `) converges for all s, ` then
9: break

10: end if
11: end for

Algorithm 1 runs several episodes to iteratively compute the
value function V (s, `) for all feasible states. Each episode is
a Monte-Carlo simulation in which several states are visited
according to the current policy defined by the current value
function. At the end of each episode the values of visited states
are updated using the return, i.e., total discounted cost from a
state until termination, from these states. After the state values

Fig. 4. Convergence of value function V (s, `) in Algorithm 1 for the NOAA’s
intermediate-low projection.

converge, the final state values are used for generating scenario
simulations, as described in the next section. The convergence
of Algorithm 1 is illustrated in Fig. 4.

IV. SCENARIO SIMULATIONS

In this section, we present simulation results for several sea
level rise scenarios. Throughout the section we use the param-
eters η = 2, a = 0.4, b = 0.5 in (2) for the nature model. We
obtain different scenarios by varying the cooperation indices
ag and ar for the government and residents, respectively, and
by considering different NOAA projections for sea level rise.

Fig. 4 shows the convergence of the state values V (s, `)
in Algorithm 1 considering the NOAA int-low projection. For
each scenario, once the converged state values are found, the
resultant optimal policy is used to assess the cost of the RL-
based government . Note that the RL-based government is
proactive in dealing with the sea level rise problem as it mon-
itors the sea level state together with the infrastructure state,
and takes precautionary measures by improving the infras-
tructure whenever the expected future cost of not improving
exceeds the improvement cost. Consider a reactive/responsive
real-world government that follows a straightforward policy by
improving infrastructure after experiencing a significant cost
from the nature.

In Fig. 5, we compare the optimal RL policy with this
straightforward policy in terms of average total cost in 100
years for the low and high NOAA sea level projections. It is
seen that with the same number of investments on average
the proactive policy that acts according to the sea level and
infrastructure state instead of the ultimate cost from nature
greatly reduces the total cost for the government.

Finally, in Fig. 6, we analyze the effect of cooperation
indices. As expected, the average total cost decreases with
growing cooperation index for both the government (ag) and
residents (ar). The cost is more than tripled if both the
government and residents are not cooperative (ag = ar = 0.1)
compared to the full cooperative case (ag = ar = 1).
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Fig. 5. Optimum policy vs. straightforward policy in terms of average total cost in 100 years for the low (left) and high (right) NOAA sea level rise projections.

Fig. 6. Average total cost as a function of government cooperation index ag
for different resident cooperation indices ar .

V. CONCLUSIONS

In this paper, we presented a proactive government model
for the sea level rise problem in a city environment considering
the impacts from nature and residents. The proactive govern-
ment, which learns the optimal infrastructure investment policy
(yes or no at each time step) through reinforcement learning
to minimize the expected economic cost over time, monitors
the sea level state together with the infrastructure state, and
makes an infrastructure investment to alleviate the effects
of sea level rise problem whenever the expected future cost
of no investment exceeds the immediate cost of investment.
This proactive strategy was shown to greatly outperform the
straightforward investment policy which improves the infras-
tructure in the aftermath of a serious economic cost from the
nature. We also demonstrated that the average total cost can be
significantly reduced as the government and residents become
more cooperative in addressing the sea level rise problem.
For the sea level rise amounts over time, different NOAA

projections are considered.
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