
Dynamic Network Slicing for Fog Radio Access
Networks

Almuthanna Nassar, and Yasin Yilmaz, Member, IEEE
Electrical Engineering Department, University of South Florida, Tampa, FL 33620, USA

E-mails: {atnassar@mail.usf.edu; yasiny@usf.edu}

Abstract—Fog radio access network (F-RAN) has been recently

proposed to satisfy the quality-of-service (QoS) requirements

of the ultra-reliable-low-latency-communication (URLLC) IoT

applications, hence fog nodes are empowered with computing and

storage resources to independently deliver network functionalities

at the edge of network without referring the users to the cloud.

However, due to their limited resources, fog nodes should utilize

their resources intelligently for low latency IoT applications to

leverage the complementarity with cloud computing. We consider

the problem of sequentially allocating fog node’s limited resources

to various IoT applications with heterogeneous latency needs.

We formulate the problem as a finite-horizon Markov Decision

Process (MDP), and present the optimal solution, known as

the optimal policy, through dynamic programming. The fog

node learns the optimal policy through interaction with the

IoT environment, which enables adaptive resource allocation in

different IoT environments. Comprehensive simulation results for

various IoT environments corroborate the theoretical basis of the

proposed MDP method.

Index Terms—IoT communications, 5G cellular networks,

Low-latency communications, Resource allocation, Markov de-

cision process.

I. INTRODUCTION

There is an ever-growing demand for wireless communi-
cation technologies to cope with the growing number of IoT
devices and the increasing amount of traffic. For better user
satisfaction, cloud radio access network (C-RAN) architecture
is suggested for 5G, in which a powerful cloud controller
with a pool of baseband units (BBU) and a storage pool
supports a large number of distributed remote radio units
(RRU) through high capacity fronthaul links [1]. However,
C-RAN structure places a huge burden on the centralized
cloud controller and its fronthaul, which causes more delay
due to the limited fronthaul capacity and busy cloud servers
in addition to the large transmission delays [2]. The latency
issue in C-RAN becomes critical for IoT applications that
cannot tolerate such delays. And this is why fog radio access
network (F-RAN) is introduced for 5G, where fog nodes (FNs)
are empowered with caching, signal processing and computing
resources to independently deliver network functionalities to
end users at the edge [3]. IoT applications have various
latency requirements. Hence, especially in a heterogeneous
IoT environment, FN must allocate its limited and valuable
resources in a smart way. In this work, we present a novel
framework for resource allocation in F-RAN to guarantee the
efficient utilization of limited FN resources while satisfying
the low-latency requirements of IoT applications [4].

Recently, a good number of works in the literature consid-
ered network slicing to achieve low latency for IoT applica-
tions in F-RAN. A comprehensive study of network slicing in
5G systems is considered in [5], [6]. Radio resource allocation
for different network slices is exploited in [7]–[9] to support
various quality-of-service (QoS) requirements and minimize
the queuing delay for low latency requests, in which network
is logically partitioned into a high-transmission-rate slice for
mobile broadband (MBB) applications, and a low-latency
slice which supports ultra-reliable low-latency communication
(URLLC) applications. However, the network slicing literature
deals with one-shot, i.e., static, resource allocation among
various network slices and layers. In this work, we focus on
the natural next step of static network slicing: dynamically
optimizing the allocated limited resources to FNs to guarantee
their efficient utilization. We compare the performance and
adaptivity of the proposed dynamic network slicing method to
the static network slicing approach from the recent literature.
With the motivation of satisfying the low-latency requirements
of heterogeneous IoT applications through F-RAN, we propose
a novel framework based on finite-horizon Markov Decision
Process (MDP). We also provide extensive simulation re-
sults in various IoT environments of heterogeneous latency
requirements to evaluate the performance and adaptivity of
the proposed dynamic network slicing method and compare
it to the static network slicing approach with various slicing
thresholds.

The remainder of the paper is organized as follows. Section
II introduces the system model. The proposed MDP formula-
tion for the considered resource allocation problem is given
in Section III. Optimal policy and the related algorithm are
discussed in Section IV. Simulation results are presented in
Section V. Finally, we conclude the paper in Section VI.

II. SYSTEM MODEL

We consider the F-RAN structure shown in Fig. 1, in
which FNs are connected through the fronthaul to the cloud
controller, where a massive computing capability, centralized
baseband units (BBUs) and cloud storage pooling are avail-
able. To overcome the challenge of increasing number of IoT
devices and low-latency applications, and to ease the burden
on the fronthaul and the cloud, FNs are empowered to deliver
network functionalities at the edge. Hence, they are equipped
with caching capacity, computing and signal processing ca-
pabilities. These resources are limited, and therefore need to

Fig. 1. Fog-RAN System Model. The FN serves heterogeneous latency needs
in IoT environment, and is connected to the cloud through the fronthaul links.
Solid red arrows represent local service by FN in the fog slice to satisfy low-
latency requirements, and dashed arrows represent referral to the cloud slice
to save FNs limited resources

be utilized efficiently. IoT applications have various levels of
latency requirement; while some users are more delay-tolerant
such as a smart phone used for video streaming, others can be
classified as low-latency users, e.g., an autonomous car. So,
it is sensible for the FN to give higher priority to the request
from an autonomous car since it has higher utility to the fog
network. Hence, we define utility to be equal to the priority
level of a user, which is directly proportional to its level of
latency requirement.

An end user attempts to access the network by sending a
request to the nearest FN. The FN checks the priority level
and then takes a decision whether to serve the user locally at
the edge using its own computing and processing resources
or refer it to the cloud. We consider the FN’s computing and
processing capacity is limited to N slots. We assume that the
time required to fill the slots is much shorter than the average
user serving time, and thus consider a single filling period
of slots with no slot becoming available in the meantime.
FNs should be smart to learn how to decide (serve/refer to
the cloud) for each user (i.e., how to allocate its limited
resources), in a way to achieve the conflicting objectives of
maximizing the average total utility of served users over time
and minimizing its idle (i.e., no-service) time.

One approach to deal with this resource allocation problem
is to apply static network slicing [5], [6] based on the user
utility, in which the network is logically partitioned into two
slices [7]–[9], a fog slice handling high-utility IoT requests
of low-latency demand, and cloud slice handling low-utility
users. Hence a network slicing threshold on the user’s priority
level is required. For instance, if we consider ten different pri-
orities {1, 2, 3, ..., 10} of IoT applications where 10 represents
the highest priority user and 1 is for the lowest priority, then we
can define a slicing threshold rule “serve if priority greater than
5”. However, such a slicing policy is sub-optimum since the
FN will always be waiting for a user to satisfy the threshold,

which will increase the idle time. The main drawback of this
policy is that it cannot adapt to the dynamic IoT environment
to achieve the objective. For instance, when the user priorities
are almost uniformly distributed, a very selective policy with
a high threshold will stay idle most of the time, whereas an
impatient slicing policy with a low slicing threshold will in
general obtain a low average served utility. A mild slicing
policy with threshold 5 may in general perform better than the
extreme policies, yet it will not be able adapt to a dynamic IoT
environment in which the density of high priority users, i.e.,
low-latency users, changes over time. A better solution for the
F-RAN resource allocation problem is to use MDP techniques
which can continuously learn the environment and adapt the
network slicing rule accordingly.

III. FINITE-HORIZON MDP FORMULATION

We formulate the F-RAN resource allocation problem in
the form of finite-horizon Markov decision process (MDP).
In finite-horizon MDP, there is a hard constraint on the FN
in terms of the value of time as it must terminate within a
limited time Tf regardless whether the N slots are filled or
not. This means that the MDP will terminate either at the
termination time Tf or before if all slots are filled earlier.
The utility of a user, denoted with u, has the same value as
user’s priority level, e.g., u 2 {1, 2, 3, ..., 10}. We consider that
the FN has N slots of serving resources. The state of FN is
denoted by S 2 {St,n}, where t and n represent the time and
the number of occupied slots, respectively. We start at t = 0
with all slots available, thus the initial state is S0,0. The finite-
horizon MDP has multiple terminal states. All the FN states
{STf ,n : n = 0, 1, ..., N} and {St,N : t = N,N + 1, ..., Tf}
are terminal states. For instance, consider the example of an
FN with N = 2 and a strict constraint to terminate within
Tf = 3. The state transition graph for this finite-horizon MDP
problem is shown in Fig. 2. There are four terminal states, S3,0,
S3,1, S3,2, and S2,2. For a request from a user with utility ut,
at time t, if the FN decides to take the action at = serve,
which means to serve the user at the edge, then it will gain
its utility value as a reward rt+1 = ut, and one slot of the
FN’s resources will be occupied. Otherwise, for the action
at = wait, which means to refer the current user to the cloud
and wait for a better future utility, the FN will maintain its
resources but it will get a reward rt+1 = �⌘, where ⌘ is
the penalty of waiting, whose role is to encourage less idle
time. We define the state S of the FN at any time as the
number of available slots at that time, where future state is
independent of past states given the current state, i.e., Markov
state. At every time step t, the FN receives a request from a
user of utility ut, and FN takes an action at 2 {serve, wait}.
Based on its decision, the FN receives an immediate reward
rt+1 2 {ut,�⌘}, and moves to a successor state S0.

We define the return Gt as the total discounted reward
received from time t till the termination time which is limited
by Tf , Gt =

PT�1
j=0 �jrt+j+1, where � 2 [0, 1] is the

discount factor which represents the weight or importance
of future rewards with respect to the immediate reward, and

Fig. 2. State transition graph for FH MDP with N = 2 and T = 3, states
are labeled by St,n where t is the time and n is the number of filled slots.

after termination r = 0. � = 0 ignores future rewards,
whereas � = 1 means that future rewards are of the same
importance as the immediate rewards. For instance, if the
FN terminates at S3,2, then the return from initial state is
given by G0 = r1 + �r2 + �2r3. The FN may have two
different episodes from S0,0 to S3,2 depending on its actions.
One episode is S0,0 ! S1,1 ! S2,1 ! S3,2, with a
corresponding return G0 = u1 + �(�u3 � ⌘). And the other
episode is S0,0 ! S1,0 ! S2,1 ! S3,2 with a return
G0 = �(u2+�u3)�⌘. Note that u2 is referred to the cloud in
the first episode, and u1 is referred to the cloud in the second
episode.

Starting at the initial state S = S0,0, the objective is to
find the optimal decision policy which maximizes the expected
initial return E[G0]. The state-value function V (S0,0), where
V (S) is shown in (1), is equal to the objective function E[G0].
V (S) represents the long-term value of being in the state
S in terms of the expected return which can be collected
starting from this state onward till termination. Based on the
definition a terminal state has a zero value since no reward
can be collected from that state. The state value can be
viewed also in two parts: the immediate reward from the
action taken and the discounted value of the successor state
where we end in. Similarly, we define the action-value function
Q(S, a) as the expected return that can be achieved after taking
the action a at state S, as shown in (2). The action value
function tells how good it is to take a particular action at a
given state. The expressions in (1) and (2) are known as the
Bellman expectation equations for state value and action value,
respectively [10],

V (S) = E[Gt|S] = E[rt+1 + �V (S0)|S], (1)
Q(S, a) = E[Gt|S, a] = E[rt+1 + �Q(S0, a0)|S, a], (2)

where a0 denotes the successor action at the successor state
S0. Note that, it is not straightforward to judge whether early
or late termination necessarily maximizes the return.

The value of state S0,0 is the expected return considering all
dynamics and episodes, i.e., V (S0,0 = E[G0]. The objective
of the FN is to utilize the N resource slots for high priority
IoT applications in a timely manner. This can be done through
maximizing the value of initial state V (S0.0). To achieve this
objective an optimal decision policy is required, which is
discussed in the following section.

IV. OPTIMAL POLICY

A decision-making policy ⇡ is a way of selecting actions. It
can be defined as the set of probabilities of taking a particular
action given the state, i.e., ⇡ = {P (a|S)} for all possible state-
action pairs. The policy ⇡ is said to be optimal if it maximizes
the value of all states, i.e., ⇡⇤ = argmax

⇡
V⇡(S), 8S. Hence, to

solve the considered MDP problem, the FN needs to find the
optimal policy through finding the optimal state-value function
V ⇤(S) = max

⇡
V⇡(S), which is similar to finding the optimal

action-value function Q⇤(S, a) = max
⇡

Q⇡(S, a) for all state-
action pairs. From (1) and (2), we can write the optimal state-
value function as,

V ⇤(S) = max
a

Q⇤(S, a) = max
a

E[rt+1 + �V ⇤(S0)|S, a]. (3)

The notion of optimal state-value function V ⇤(S) greatly
simplifies the search for optimal policy. Since the goal of
maximizing the expected future rewards is already taken care
of by the optimal value of the successor state, V ⇤(S0) can be
taken out of the expectation in (3). Hence, the optimal policy
is given by the best local action at each state,

a⇤ = argmax
a

E[rt+1|S, a] + �V ⇤(S0|S, a). (4)

This solution approach is known as Dynamic Programming.
In our problem, first the user arrives, then we make a

decision to serve or wait (refer to the cloud), meaning that
the reward u for serving and the reward �⌘ for waiting are
known at the time of decision making. Thus, from (4), the
optimal action at state St,n is given by

a⇤t,n =

(
Serve if u > ht,n,

Wait otherwise,
(5)

where ht,n = �[V ⇤(St+1,n) � V ⇤(St+1,n+1)] � ⌘. Since
the number of states is finite in the finite-horizon case, we
can use the backward induction technique to compute the
optimal thresholds {ht,n} assuming some training data {ut} is
available to learn some key statistics of the IoT environment.
Starting with the terminal states, which have zero value,
we can compute the optimal state values and consequently
the optimal thresholds for all states by moving backwards.
Actually, we only need to compute the optimal thresholds for
a subset of all states. Firstly, note that not all states {St,n} are
accessible for all t and n. Even if one slot is filled at each t,
the states with n > t are not accessible, as shown in Fig. 3.

Secondly, note that there are Tf + 1 terminal states with
zero value (Tf � N from early stopping with T < Tf and
N + 1 from T = Tf , n = 0, 1, ..., N), which do not require
threshold, as shown with dark gray in Fig. 3. Next, note that
for all the non-terminal states at time Tf � 1, both serve and
wait actions result in a terminal state with zero value, thus the
decision is made based on only the immediate rewards (u vs.
�⌘). That is, at those states the optimal action is always serve,
hence the threshold on u is zero and the state value is E[u], as
shown in Fig. 3. Similarly, for t = Tf�N, ..., Tf�2, there is a
number of non-terminal states for which both actions yield the

Fig. 3. FH state values and thresholds that need to be computed via backward
induction (green diagonal band). Start with the farthest state STf�2,N�1
(checked green box) and traverse backwards the diagonal band until the initial
state S0,0 (see Algorithm 1). The terminal states (dark gray), the trivial states
whose optimal action is always serve (light gray), and the not accessible states
(red dotted) are also shown.

same future value, hence have zero threshold and value E[u].
Specifically, the states {St,n : t = Tf � l, n = 0, ..., N � l, l =
1, ..., N} have state value E[u] and threshold 0, as shown with
light gray in Fig. 3.

Finally, for the (Tf �N)N remaining states in a diagonal
band, shown with green in Fig. 3, the state values and the
corresponding thresholds need to be computed backwards
starting with the farthest state STf�2,N�1 from the initial state
S0,0. The total reward is u if served, whereas it is �E[u]�⌘ if
waited, giving the threshold hTf�2,N�1 = �E[u]�⌘, as shown
by the checked green box in Fig. 3. Then, its state value is
written as

V (STf�2,N�1) = P (u > hTf�2,N�1)E[u|u > hTf�2,N�1]

+{1� P (u > hTf�2,N�1)}{�E[u]� ⌘},
(6)

where the first and second terms correspond to the serve and
wait actions, respectively. Note that the probability P (u >
hTf�2,N�1) and the expectation E[u|u > hTf�2,N�1] can
be computed through some observations {u} from the IoT
environment. With V (STf�2,N�1) computed, we can now
find the threshold for the two undiscovered neighboring states
above it, namely STf�3,N�2 and STf�3,N�1 using

ht,n = �⌘ + �[V ⇤(St+1,n)� V ⇤(St+1,n+1)], (7)

from (5). Then, using the thresholds the state values are
computed similarly to (6) as follows

V (St,n) = P (u > ht,n){E[u|u > ht,n] + �V (St+1,n+1)}
+{1� P (u > ht,n)}{�V (St+1,n)� ⌘}.

(8)
In the same way, by computing first the threshold and then the
state value via (7) and (8), respectively, the remaining states
in the diagonal band are traversed backwards until the initial
state S0,0. The key statistics P (u > ht,n) and E[u|u > ht,n]
are to be found from the IoT environment. The procedure
for finding the optimal policy is summarized in Algorithm
1, where by default the terminal states have zero value and
x : �1 : y denotes the decrement by 1 from x to y. For
notational simplicity, the trivial states are also included in the

Algorithm 1 Learning Optimum Policy for FH MDP
1: Select: � 2 [0, 1], ⌘ 2 R;
2: for i = N � 1 : �1 : 0 do

3: for j = Tf � 1 : �1 : i do

4: hj,i = �[V (Sj+1,i)� V (Sj+1,i+1)]� ⌘;
5: Compute a E[u|u > hj,i] and p P (u > hj,i);
6: V (Sj,i) = p{a+ �V (Sj+1,i+1)}

+ (1� p){�V (Sj+1,i)� ⌘};
7: end for

8: end for

9: Return {hj,i}.

loops at lines 2 and 3. The range for the loops can be modified
to exclude the trivial states.

Recall that the FN objective is to maximize the expected
total served utility and minimize the expected termination
time. Hence, to compare the performance of dynamic network
slicing provided in Algorithm 1 with the performance of a
threshold-based static network slicing, which does not learn
from the interactions with environment, we define an objective
performance metric R as

R = E
"

MX

m=1

um � ✓(T �M)

#
, (9)

where a served utility is denoted with um, the number of
served IoT requests in an episode is denoted with M , (T�M)
represents the total idle time for RBs, and ✓ is a penalty for
being idle.

V. SIMULATIONS

We next provide simulation results to compare the perfor-
mance of the FN when implementing the MDP-based method,
given in Algorithm 1, with the FN performance when a
threshold-based slicing is employed. We consider that the
FN is empowered with computing and storage resources of
five slots, i.e., N = 5. We evaluate the performances in
various IoT environments with different compositions of la-
tency requirements. Specifically, we consider 10 utility classes
with different latency requirements to exemplify the variety
of IoT applications in an F-RAN setting. By changing the
composition of utility classes, we generate 19 scenarios, 6
of which are summarized in Table I. Higher percentages of
high-utility users make the IoT environment richer. Denoting
an IoT environment of particular statistics with ', in Table
I we show the statistics of '1, '4, '7, '10, '15, and '19.
The last two rows in Table I show the probability ⇢ of
utility being greater than 5, and the expected value of u,
respectively. The first 10 rows in the table provide detailed
information given by the probability of each utility value in an
IoT environment. In the considered 19 scenarios, ⇢ increases
by 0.05 from 5% to 95% for '1,'2, ...,'19 respectively. The
remaining 13 scenarios have statistics proportional to their ⇢
values. We started with a general scenario given by '7 for
the following IoT applications: smart farming, smart retail,

TABLE I
UTILITY DISTRIBUTIONS CORRESPONDING TO A VARIETY OF LATENCY

REQUIREMENTS OF IOT APPLICATIONS IN VARIOUS ENVIRONMENTS

'1 '4 '7 '10 '15 '19

P (u = 1) 0.015 0.012 0.01 0.008 0.004 0.001
P (u = 2) 0.073 0.062 0.05 0.038 0.019 0.004
P (u = 3) 0.365 0.308 0.25 0.192 0.096 0.019
P (u = 4) 0.292 0.246 0.2 0.154 0.077 0.015
P (u = 5) 0.205 0.172 0.14 0.108 0.054 0.011
P (u = 6) 0.014 0.057 0.1 0.142 0.214 0.271
P (u = 7) 0.013 0.051 0.09 0.129 0.193 0.244
P (u = 8) 0.011 0.046 0.08 0.114 0.171 0.217
P (u = 9) 0.009 0.034 0.06 0.086 0.129 0.163
P (u = 10) 0.003 0.012 0.02 0.029 0.043 0.055

⇢ = P (u > 5) 5% 20% 35% 50% 75% 95%
E[u] 3.82 4.4 4.97 5.55 6.5 7.27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
IoT Environment

0

5

10

15

20

25

30

35

40

45

Pe
rf

or
m

an
ce

 (R
)

Dynamic Slicing
Slicing Thld=1
Slicing Thld=2
Slicing Thld=3
Slicing Thld=4
Slicing Thld=5
Slicing Thld=6
Slicing Thld=7
Slicing Thld=8
Slicing Thld=9
Slicing Thld=10

Fig. 4. Performance of FN with N = 5 and Tf = 10 in various IoT
environments when applying Algorithm 1 with ⌘ = 0, � = 1, and the
threshold-based network slicing algorithm with different slicing thresholds.

smart home, wearables, entertainment, smart grid, smart city,
industrial Internet, autonomous vehicles, and connected health,
which correspond to the utility values 1, 2, ..., 10, respectively.
Then, we changed ⇢ to obtain the other scenarios.

We consider the objective performance metric given in
(9) to compare the performance of the FN with N = 5
when applying the proposed dynamic programming algorithm
(Algorithm 1) with the threshold-based slicing algorithm. We
consider a finite horizon of Tf = 10, which serves as a strict
termination time. Since we already have a time constraint
on the FN which represents the value of time, we consider
⌘ = ✓ = 0. As shown in Figs. 4 and 5, the dynamic
network slicing algorithm exhibits the best performance as it
adaptively learns how to balance early termination with higher
utilities. It never terminates too early or too late (T ⇡ 7.6
for all environments as seen in Fig. 5), as opposed to the
threshold-based slicing algorithm which is not adaptive to the
environment. Dynamic slicing algorithm adaptively learns how
to achieve the objective for all IoT environments under a strict
termination time constraint.

VI. CONCLUSIONS

We proposed a finite-horizon Markov Decision Process
(MDP) formulation for the resource allocation problem in Fog
RAN for IoT services with heterogeneous latency require-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
IoT Environment

4

5

6

7

8

9

10

11

A
ve

ra
ge

 T
er

m
in

at
io

n
Ti

m
e

(T
)

Dynamic Slicing
Slicing Thld=1
Slicing Thld=2
Slicing Thld=3
Slicing Thld=4
Slicing Thld=5
Slicing Thld=6
Slicing Thld=7
Slicing Thld=8
Slicing Thld=9
Slicing Thld=10

Fig. 5. The average termination time for FN with N = 5 and Tf = 10 in
various IoT environments when applying Algorithm 1 with ⌘ = 0, � = 1, and
the threshold-based network slicing algorithm with different slicing thresholds.

ments. We provided the optimum solution (decision policy)
for the MDP problem using dynamic programming. Various
IoT environments with different latency compositions were
considered in the simulations to evaluate the performance of
the proposed dynamic network slicing approach. The numer-
ical results corroborated the fact that MDP methods adapt
to the environment by learning the optimum policy from
experience. We showed that the dynamic MDP-based slicing
method always dominates the static threshold-based slicing
method, which does not learn from the environment.

REFERENCES

[1] S.-H. Park, O. Simeone, and S. Shamai, “Joint optimization of cloud and
edge processing for fog radio access networks,” in Information Theory
(ISIT), 2016 IEEE International Symposium on. IEEE, 2016, pp. 315–
319.

[2] W. Wang, V. K. Lau, and M. Peng, “Delay-aware uplink fronthaul
allocation in cloud radio access networks,” IEEE Transactions on
Wireless Communications, vol. 16, no. 7, pp. 4275–4287, 2017.

[3] Y.-Y. Shih, W.-H. Chung, A.-C. Pang, T.-C. Chiu, and H.-Y. Wei,
“Enabling low-latency applications in fog-radio access networks,” IEEE
network, vol. 31, no. 1, pp. 52–58, 2017.

[4] G. P. Fettweis, “The tactile internet: Applications and challenges,” IEEE
Vehicular Technology Magazine, vol. 9, no. 1, pp. 64–70, 2014.

[5] H. Xiang, W. Zhou, M. Daneshmand, and M. Peng, “Network slicing
in fog radio access networks: Issues and challenges,” IEEE Communi-
cations Magazine, vol. 55, no. 12, pp. 110–116, 2017.

[6] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing and softwarization: A survey on principles, enabling technolo-
gies, and solutions,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 3, pp. 2429–2453, 2018.

[7] T. Dang and M. Peng, “Delay-aware radio resource allocation opti-
mization for network slicing in fog radio access networks,” in 2018
IEEE International Conference on Communications Workshops (ICC
Workshops). IEEE, 2018, pp. 1–6.

[8] L. Tang, X. Zhang, H. Xiang, Y. Sun, and M. Peng, “Joint resource
allocation and caching placement for network slicing in fog radio
access networks,” in 2017 IEEE 18th International Workshop on Signal
Processing Advances in Wireless Communications (SPAWC). IEEE,
2017, pp. 1–6.

[9] Y. Sun, M. Peng, S. Mao, and S. Yan, “Hierarchical radio resource
allocation for network slicing in fog radio access networks,” IEEE
Transactions on Vehicular Technology, 2019.

[10] R. Sutton, and A. BartoMack, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

