
Resource Allocation in Fog RAN for
Heterogeneous IoT Environments based on

Reinforcement Learning
Almuthanna Nassar, and Yasin Yilmaz,

Electrical Engineering Department, University of South Florida, Tampa, FL 33620, USA
E-mails: {atnassar@mail.usf.edu; yasiny@usf.edu}

Abstract—Fog radio access network (F-RAN) has been
recently proposed to satisfy the low-latency communication
requirements of Internet of Things (IoT) applications. We
consider the problem of sequentially allocating the limited
resources of a fog node to a heterogeneous population of IoT
applications with varying latency requirements. Specifically,
for each service request, the fog node needs to decide whether
to serve that user locally to provide it with low-latency
communication service or to refer it to the cloud control
center to keep the limited fog resources available for future
users. We formulate the problem as a Markov Decision Process
(MDP), for which we present the optimal decision policy
through Reinforcement Learning (RL). The proposed resource
allocation method learns from the IoT environment how to
strike the right balance between two conflicting objectives,
maximizing the total served utility and minimizing the idle
time of the fog node. Extensive simulation results for various
IoT environments corroborate the theoretical underpinnings of
the proposed RL-based resource allocation method.

Index Terms—Resource Allocation, Fog RAN, 5G, IoT,
Markov Decision Process, Reinforcement Learning, Low-
Latency Communication.

I. INTRODUCTION

To tackle the challenge of massive Internet of Things
(IoT) and the increasing amount of mobile traffic for bet-
ter user satisfaction, cloud radio access network (C-RAN)
architecture was proposed for 5G, in which a powerful
cloud controller with pool of baseband units and storage
pool supports large number of distributed remote radio
units through high capacity fronthaul links [1]. The C-
RAN is characterized by being clean as it reduces energy
consumption and improves the spectral efficiency due to the
centralized processing and collaborative radio. However, in
light of the massive IoT applications and the corresponding
generated traffic, C-RAN structure places a huge burden
on the centralized cloud controller and its fronthaul, which
causes more delay due to limited fronthaul capacity and busy
cloud servers in addition to the large transmission delays [2].
The latency limitation in C-RAN becomes a critical issue
for IoT applications which are sensitive to large delays.
To this end, an evolved architecture, Fog RAN (F-RAN)
was introduced for 5G to extend the inherent operations
and services of the cloud. In F-RAN, the fog nodes (FNs)
are not only limited to perform RF functionalities but also
empowered with caching, signal processing and computing

resources. This makes FNs capable of independently deliv-
ering network functionalities to end users at the edge of the
network, without referring the users to the cloud, to fulfill
the low-latency demand [3]. IoT applications have various
latency requirements. Some applications are satisfied by the
traditional mobile broadband services of high throughput
and capacity while some other IoT applications seek ultra-
reliable low-latency communication [4]. Hence, especially
in a heterogeneous IoT environment with various latency
needs and limited F-RAN capacity, FN must allocate its
limited and valuable resources in a smart way. In this work,
we present a novel framework for resource allocation in F-
RAN for 5G to guarantee the efficient utilization of limited
FN resources while satisfying the low-latency requirements
of IoT applications in various environments.

Recently, a large number of works in the literature focused
on achieving low latency for IoT applications in 5G F-
RAN. For instance, resource allocation based on cooperative
computing at the edge to achieve low latency in F-RAN
has been studied by [5], [6], [7], [8]. Instead of utilizing
the cloud server, edge mesh as a computing paradigm is
proposed in [5]. To achieve ultra low latency, cooperative
task computing across multiple F-RAN nodes, which utilize
the current infrastructure of small cells and macro base
stations, was considered in [6], [9]. The number of F-RAN
nodes and their locations have been investigated by [10].
The work in [8] proposed local small-cell clusters to balance
the computing load for improved quality of experience.
Content fetching is suggested in [1], [7] to maximize the
delivery rate when the requested content is available in the
cache of fog nodes. The congestion problem, when resource
allocation is done based on the best signal quality received
by the end user, is studied by [11], [12]. To maximize
the quality of experience, the work in [13] proposed soft
resource reservation mechanism for the uplink scheduling.
The model-free reinforcement learning approach is used
in [14] to learn the optimal policy for user scheduling in
heterogeneous networks to maximize the network energy
efficiency. With regard to learning for IoT, [15] provided
a comprehensive study about the advantages, limitations,
applications, and key results relating to machine learning,
sequential learning, and reinforcement learning. Multi-agent
reinforcement learning was exploited in [16] to maximize

network resource utilization in heterogeneous network by se-
lecting the radio access technology and allocating resources
for individual users.

With the motivation of satisfying the low-latency re-
quirements of heterogeneous IoT applications through F-
RAN, we provide a novel framework for allocating limited
resources to low-latency users, that guarantees efficient
utilization of limited FN resources. In this work, we de-
velop a Markov Decision Process (MDP) formulation for
the considered resource allocation problem and provide a
Reinforcement Learning (RL) algorithm for learning the
optimum decision-making policy adaptive to the IoT envi-
ronment.

The remainder of the paper is organized as follows.
Section II introduces the system model. The proposed MDP
formulation for the resource allocation problem is given in
Section III. Optimal policy and the related RL algorithm are
discussed in Section IV. Simulation results are presented in
Section V. Finally, we conclude the paper in Section VI.

II. SYSTEM MODEL

We consider the F-RAN structure shown in Fig. 1, in
which fog-nodes (FNs) are connected through the fronthaul
to the cloud controller, where a massive computing capa-
bility, centralized baseband units and cloud storage pooling
are available. FNs are equipped with caching, computing
and signal processing capabilities to deliver network func-
tionalities at the edge. However, these resources are limited
and therefore, need to be utilized efficiently. An end user
attempts to access the network by sending a request to
the nearest FN. The FN takes a decision whether to serve
the user locally at the edge using its own computing and
processing resources or refer it to the cloud. We consider
the FN’s computing and processing capacity is limited to
N slots. User requests arrive sequentially and decisions are
taken quickly, so no queuing occurs. We assume that the
time taken to fill the slots is much shorter than the average
user serving time, i.e., no in-use slot becomes available
while making decisions to fill the slots.

The quality of service (QoS) requirements of a wireless
user are typically given by the latency requirement and
throughput requirement. IoT applications have various levels
of latency requirement, hence it is sensible for the FN to give
higher priority to the low-latency applications. To differen-
tiate between similar latency requirements we also consider
the risk of failing to satisfy the throughput requirement.
This risk is related to the ratio of the achievable throughput
to the throughput requirement. The achievable throughput
is characterized by the signal-to-noise ratio (SNR) through
Shannon channel capacity. Shannon’s fundamental limit on
the capacity of a communications channel gives an upper
bound for the achievable throughput, as a function of avail-
able bandwidth (B) and SNR, C = B + log2(1 + SNR).
Hence, we define the utility of an IoT user request to
be a function of latency requirement, l (in milliseconds),
throughput requirement, τ (in bits per second), and channel
capacity, C (in bits per second), i.e., u = f(l, τ, C). Since

Fig. 1. Fog-RAN system model. The FN serves heterogeneous latency
needs in IoT environment, and is connected to the cloud through the
fronthaul links. Solid lines represent local service by FN to satisfy low-
latency requirements, and dashed lines represent referral to the cloud to
save limited resources.

the utility should be inversely proportional to the latency
requirement, and directly proportional to the achievable
throughput ratio, µ = C/τ , we define utility as

u = κ(µα/lβ), (1)

where κ, α, β > 0 are mapping parameters. This provides a
flexible model for utility. By selecting the parameters κ, α, β
a desired range of u and importance levels for latency and
throughput requirements can be obtained. Since F-RAN is
intended for satisfying low-latency requirements, typically,
more weight should be given to latency by choosing larger
β values.

FNs should be smart to learn how to decide (serve/refer to
the cloud) for each request (i.e., how to allocate its limited
resources), so as to achieve the conflicting objectives of
maximizing the average total utility of served users over
time and minimizing its idle (no-service) time. One approach
to deal with this resource allocation problem is to apply
a fixed threshold on the user utility. For instance, we can
define a threshold rule, such as “serve if u > 5”, if we
classify all applications in an IoT environment into ten
different utilities u ∈ {1, 2, ..., 10}, 10 being the highest
utility. However, such a policy is sub-optimum since the
FN will be waiting for a user to satisfy the threshold, which
will increase the idle time. The main drawback of this policy
is that it cannot adapt to the dynamic IoT environment to
achieve the objective. For instance, when the user utilities
are almost uniformly distributed, a very selective policy with
a high threshold will stay idle most of the time, whereas an
impatient policy with a low threshold will in general obtain
a low average served utility. A mild policy with threshold 5
may in general perform better than the extreme policies, yet
it will not be able adapt to different IoT environments. A
better solution for the F-RAN resource allocation problem

TABLE I
STATE TRANSITIONS OF 2-SLOT FN

S a r S′

S0 Wait −η S0

S0 Serve u S1

S1 Wait −η S1

S1 Serve u S2

Fig. 2. State transition graph for MDP with N = 2. States are labeled by
Sn where n is the number of filled slots.

is to use RL techniques which can continuously learn the
environment and adapt the decision rule accordingly.

III. MDP PROBLEM FORMULATION

We formulate the Fog-RAN resource allocation problem
in the form of infinite-horizon Markov decision process
(MDP). The state S of the FN at any time is defined as the
number of available slots at that time. The future state is
independent of past states given the current state, hence we
have Markov states. For an FN that has N slots of resources,
there are N + 1 states, S ∈ {S0, ..., Sn, ..., SN}, where n
denotes the number of occupied slots. Hence, the initial
state of FN is S0, while SN represents the terminal state
with all slots are occupied. At every time step t, the FN
receives a request from a user with utility ut, and FN takes
an action at ∈ {serve, wait}. For tractability, we consider
quantized utility values, such as ut ∈ {1, 2, ..., 10}. Based
on its decision, the FN receives an immediate reward rt and
moves to a successor state: either moves to a new state or
remains at the current state. When the FN takes the action
at = serve, then it will gain the user’s utility value as a
reward rt = ut and one slot of the FNs resources will be
occupied. Otherwise, for the action at = wait (i.e., refer
the user to the cloud), the FN will maintain its available
resources and it will get a reward of rt = −η, where η is
the penalty for waiting, whose role is to encourage less idle
time. The MDP terminates at time T when the terminal state
SN is reached. State transitions for the 2-slot case (N = 2)
are shown in Table I. Being at state S, and taking the action
a will result in getting an immediate reward r and moving
to the successor state S′. All possible combinations of states
and actions are shown in Table I.

We can also draw the dynamics of the MDP using a state
transition graph as shown in Fig. 2, in which non-terminal
states and terminal states are represented by circle and
square, respectively; small filled circles represent actions,
and arrows show the transitions with corresponding rewards.

We define the return Gt as the total discounted rewards
received from time t till termination, Gt =

∑∞
j=0 γ

jrt+j ,
where γ ∈ [0, 1] is the discount factor which represents
the weight (i.e., importance) of future rewards with respect

to the immediate reward, and after termination r = 0.
Specifically, γ = 0 ignores the future rewards, whereas
γ = 1 means that the future rewards are of the same
importance as the immediate reward. Starting at the initial
state S = S0, the objective is to find the optimal decision
policy which maximizes the expected initial return E[G0].

The state-value function V (S0), where V (S) is shown in
(2), is equal to the objective function E[G0]. V (S) represents
the long-term value of being in state S in terms of the
expected return which can be collected starting from this
state onward till termination. Hence, the terminal state has
zero value. The state value can be viewed also in two
parts: the immediate reward from the action taken and the
discounted value of the successor state where we move to.

Similarly, we define the action-value function Q(S, a)
as the expected return that can be achieved after taking
the action a at state S, as shown in (3). The action-value
function tells how good it is to take a particular action at
a given state. The expressions in (2) and (3) are known as
the Bellman expectation equations for state value and action
value, respectively [17],

V (S) = E[Gt|S] = E[rt + γV (S′)|S], (2)
Q(S, a) = E[Gt|S, a] = E[rt + γmax

a′
Q(S′, a′)|S, a], (3)

where a′ denotes the successor action at the successor state
S′.

The objective of the FN in the presented MDP is to
utilize the N resource slots for high utility IoT applications
in a timely manner. This can be achieved by maximizing
the value of initial state V (S0) = E[G0]. To this end, an
optimal decision policy is required, which is discussed in
the following section.

IV. OPTIMAL POLICY

A policy can be defined as the set of probabilities
of taking a particular action given the state, i.e., π =
{P (a|S)}a,S for all possible state-action pairs. The policy
π is said to be optimal if it maximizes the value of all
states, i.e., π∗ = argmax

π
Vπ(S),∀S. Hence, to find the

optimal policy we need to find the optimal state-value
function V ∗(S) = max

π
Vπ(S), which selects the best action

at each state. Defining the optimal action-value function
Q∗(S, a) = max

π
Qπ(S, a), from (2) and (3), we can write

the optimal state-value function as,

V ∗(S) = max
a

Q∗(S, a) = max
a

E[rt + γV ∗(S′)|S, a]. (4)

The notion of optimal state-value function V ∗(S) greatly
simplifies the search for optimal policy. Since the goal of
maximizing the expected future rewards is already taken care
of the optimal value of the successor state, V ∗(S′) can be
taken out of the expectation in (4). Hence, the optimal policy
is given by the best local actions at each state,

a∗ = argmax
a

E[rt|S, a] + γV ∗(S′|S, a). (5)

In our problem, firstly the user arrives, then we make a
decision to serve or wait (refer to the cloud), meaning that
the reward u for serving and the reward −η for waiting are
known at the time of decision making. Thus, from (5), the
optimal action at state Sn is given by

a∗n =

{
serve if u+ γV ∗(Sn+1) > −η + γV ∗(Sn),

wait otherwise,
(6)

for n = 1, ..., N−1, where V ∗(SN) = 0. Hence, the optimal
decision rule is a thresholding on u, given by

a∗n =

{
serve if u > hn,

wait otherwise,
(7)

where hn = −η + γ[V ∗(Sn) − V ∗(Sn+1)] denotes the
optimal threshold at state Sn. The optimal state values,
required by the optimal policy, as shown in (7), can be
computed through the value iteration technique. The proce-
dure to learn the optimal policy from the IoT environment
using the Monte Carlo algorithm is given in Algorithm 1.
Since our focus in this paper is to promote the RL-based
approach against the conventional fixed-threshold approach,
we do not elaborate on the choice of the RL method. The
choice of the Monte Carlo method in this work is due its
simplicity and straightforward convergence according to the
law of large numbers. Other RL methods, such as Q-learning
and SARSA, can be used as well to learn the optimal policy,
but the comparison results with respect to the fixed-threshold
approach (see Section V) would not change. Note that since
the dimensionality of the state space is tractable in the
considered problem, the tabular RL methods works well,
thus there is no need for function-approximation methods,
such as gradient-descent and deep RL methods [17].

Algorithm 1 Learning Optimum Policy for MDP
1: Select: γ ∈ [0, 1], η ∈ R;
2: Input: Returns(S): is an array to save states’ returns in

all iterations;
3: Initialize: V (S)← 0, ∀S;
4: for iteration = 0, 1, 2, ... do
5: Initialize: S ← S0;
6: Generate an episode: Take actions using (7) until

termination;
7: G(S) ← sum of discounted rewards from S till

terminal state for all states appearing in the episode;
8: Append G(S) to Returns(S);
9: V (S)← average(Returns(S));

10: if V (S) converges for all S then
11: break
12: V ∗(S)← V (S), ∀S;
13: end if
14: end for
15: Use the estimated V ∗(S) to find optimal actions using

(7).

TABLE II
UTILITY DISTRIBUTION IN VARIOUS IOT ENVIRONMENTS

ϕ1 ϕ4 ϕ7 ϕ10 ϕ15 ϕ19

P (u = 1) 0.015 0.012 0.01 0.008 0.004 0.001
P (u = 2) 0.073 0.062 0.05 0.038 0.019 0.004
P (u = 3) 0.365 0.308 0.25 0.192 0.096 0.019
P (u = 4) 0.292 0.246 0.2 0.154 0.077 0.015
P (u = 5) 0.205 0.172 0.14 0.108 0.054 0.011
P (u = 6) 0.014 0.057 0.1 0.142 0.214 0.271
P (u = 7) 0.013 0.051 0.09 0.129 0.193 0.244
P (u = 8) 0.011 0.046 0.08 0.114 0.171 0.217
P (u = 9) 0.009 0.034 0.06 0.086 0.129 0.163
P (u = 10) 0.003 0.012 0.02 0.029 0.043 0.055

ρ = P (u > 5) 5% 20% 35% 50% 75% 95%
E[u] 3.82 4.4 4.97 5.55 6.5 7.27

V. SIMULATIONS

We next provide simulation results to compare the perfor-
mance of the FN when implementing the proposed RL-based
resource allocation algorithm, given in Algorithm 1, with
the FN performance when a fixed thresholding algorithm
is employed. We consider that the FN is equipped with
computing and storage resources of five slots, i.e., N = 5.
We evaluate the performances in various IoT environments
with different compositions of latency requirements. For
brevity, we do not consider the effect of ratio of the achiev-
able throughput to the throughput requirement in assessing
the utility of a service request. Specifically, we consider
10 utility classes with different latency requirements to
exemplify the variety of IoT applications in an F-RAN
setting. That is, we consider α = 0, β = 1, κ = 1 in equation
(1), and discretize the latency-based utility to 10 classes.
The utility values 1, 2, ..., 10 may represent the following
IoT applications, respectively: smart farming, smart retail,
smart home, wearables, entertainment, smart grid, smart
city, industrial Internet, autonomous vehicles, and connected
health. By changing the composition of utility classes, we
generate 19 scenarios, 6 of which are summarized in Table
II. Higher percentages of high-utility users make the IoT
environment richer.

Denoting an IoT environment of particular statistics with
ϕ, in Table II we show the statistics of ϕ1, ϕ4, ϕ7, ϕ10, ϕ15,
and ϕ19. The last two rows in Table II show the probability
ρ of utility being greater than 5, and the expected value
of u, respectively. The first 10 rows in the table provide
detailed information given by the probability of each utility
value in an IoT environment. In the considered 19 scenarios,
ρ increases by 0.05 from 5% to 95% for ϕ1, ϕ2, ..., ϕ19

respectively. The remaining 13 scenarios have statistics
proportional to their ρ values. We started with a general
scenario given by ϕ7, and changed ρ to obtain the other
scenarios. Considering the MDP formulation for the IoT
environment given by scenario ϕ7 and an FN with 5 slots
of resources Fig. 3 shows how the FN learns the optimal
policy using Algorithm 1 with η = 1 and γ = 1. By
interaction with the environment, the FN updates the state-
value function which converges to the optimum policy. It is
seen in Fig. 3 that the optimal policy is learned quickly as
the state values converge after around 50 episodes.

Fig. 3. Learning optimum policy of MDP, with N = 5, η = 1 and γ = 1,
by applying RL algorithm given by Algorithm 1 to obtain the optimal state
values.

As shown in Figs. 4 and 5, we next test the effect of
changing η and γ on the FN performance when applying
Algorithm 1 in the IoT environment ϕ7. We consider
γ ∈ {0, 0.1, 0.2, ..., 1} and η ∈ {0, 1, 2, ..., 10}. Starting
from the initial state S0, the average total served utility for
various combinations of η and γ is shown in Fig. 4. Putting
less weight for future rewards, represented by smaller γ, the
FN is encouraged to serve regardless of the waiting penalty.
It maintains an average total served utility of about 24.85,
which is about five times the expected utility of ϕ7 given
in Table II due to the available 5 slots of resources. The
corresponding average termination time T is 5, as shown in
Fig. 5, which means the FN serves all the time irrespective
of the received utility. Similar results of average total served
utility and expected termination time are experienced for
large waiting penalty η regardless of γ since serving is
encouraged also in this case. The average total served utility
increases by more than 35% to about 33.8 for γ = 1 and
η = 1, with a corresponding average termination time of
about 10.27. A maximum average total served utility of 50
is achieved when η = 0 and γ = 1 as there is no penalty for
waiting with maximum weight for future rewards. However,
in this case, the FN waits too long to serve the maximum
utility (u = 10) users, hence average T exceeds 200 as
shown in Fig. 5.

Recall that the FN’s objective is to maximize the expected
total served utility and minimize the expected termination
time. Hence, to compare the performance of Algorithm 1
with the fixed threshold algorithm, which does not learn
from the interactions with the environment, we define an
objective performance metric R as

R = E

[
M∑
m=1

um − θ(T −M)

]
, (8)

where a served utility is denoted with um, the cost of waiting
is denoted with θ, and the number of served requests in
an episode is denoted with M . In the proposed resource

Fig. 4. The average total served utility by the FN with N = 5 when
applying Algorithm 1 for different combinations of η and γ in MDP.

Fig. 5. The average termination time starting from the initial state for FN
with N = 5 when applying Algorithm 1 for different combinations of η
and γ in MDP.

allocation algorithm with η = θ and γ = 1, R corresponds
to the average return starting from the initial state S0, i.e.,
E[G|S = S0]. For θ = 1, we compare the performance
of the proposed algorithm, in terms of R, with the fixed-
threshold algorithm, which uses the same threshold regard-
less of the environment, in the 19 IoT environments. For
the proposed algorithm, we set the parameters as η = 1 and
γ = 1, and for the fixed threshold algorithm we consider all
possible thresholds 1, 2, ..., 10.

As shown in Figs. 6 and 7, the proposed RL-based
algorithm exhibits the best performance as it adaptively
learns how to balance early termination with higher utilities.
It never terminates too early or too late (T ≈ 9 for all
environments as seen in Fig. 7), as opposed to the fixed-
threshold algorithm which is not adaptive to the environ-
ment. As seen Fig. 6, the performance of the fixed-threshold
algorithm with thresholds 1, 2, 3, 8, 9 are steadily below
that of the RL algorithm. Threshold 4 has a comparable
performance to RL for the environments with ρ ≤ 25%, after

Fig. 6. The performance of FN with N = 5 in various IoT environments
when applying Algorithm 1 with η = 1, γ = 1, and the fixed-threshold
algorithm with different thresholds.

Fig. 7. The average termination time for FN with N = 5 in various IoT
environments when applying Algorithm 1 with η = 1, γ = 1, and the
fixed-threshold algorithm with different thresholds.

which its performance starts to decline. Although thresholds
5, 6, 7 have good performances close to RL for environments
with medium to high ρ, they perform far from RL for IoT
environments with small ρ. The R values for threshold 10
are negative for all environments due to the long termination
time which exceeds 90, thus it does not appear in Figs. 6
and 7.

VI. CONCLUSION

We formulated the resource allocation problem for F-
RAN in a heterogeneous IoT environment as an infinite-
horizon Markov Decision Process (MDP) problem. Then,
we provided the optimum solution (decision policy) for
the MDP problem through a Reinforcement Learning (RL)
algorithm. Various IoT environments were considered in the
simulations to test the performance of the proposed RL-
based resource allocation algorithm. The numerical results
corroborated the fact that the RL method adapts to the

environment by learning the optimum policy from experi-
ence. We showed that the proposed RL-based method always
outperforms the fixed-threshold method, which does not
learn from the environment, irrespective of the IoT environ-
ment. Moreover, the fixed-threshold algorithm cannot auto-
matically select the best threshold for the environment. As
future work we consider expanding the presented resource
allocation framework to more challenging scenarios such
as dynamic resource allocation with heterogeneous service
times and resource slot needs, and collaborative resource
allocation with multiple fog nodes.

REFERENCES

[1] S.-H. Park, O. Simeone, and S. Shamai, “Joint optimization of cloud
and edge processing for fog radio access networks,” in Information
Theory (ISIT), 2016 IEEE International Symposium on. IEEE, 2016,
pp. 315–319.

[2] W. Wang, V. K. Lau, and M. Peng, “Delay-aware uplink fronthaul
allocation in cloud radio access networks,” IEEE Transactions on
Wireless Communications, vol. 16, no. 7, pp. 4275–4287, 2017.

[3] Y.-Y. Shih, W.-H. Chung, A.-C. Pang, T.-C. Chiu, and H.-Y. Wei,
“Enabling low-latency applications in fog-radio access networks,”
IEEE network, vol. 31, no. 1, pp. 52–58, 2017.

[4] P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari,
S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel et al., “Latency critical
iot applications in 5g: Perspective on the design of radio interface
and network architecture,” IEEE Communications Magazine, vol. 55,
no. 2, pp. 70–78, 2017.

[5] Y. Sahni, J. Cao, S. Zhang, and L. Yang, “Edge mesh: A new paradigm
to enable distributed intelligence in internet of things,” IEEE access,
vol. 5, pp. 16 441–16 458, 2017.

[6] A.-C. Pang, W.-H. Chung, T.-C. Chiu, and J. Zhang, “Latency-
driven cooperative task computing in multi-user fog-radio access
networks,” in Distributed Computing Systems (ICDCS), 2017 IEEE
37th International Conference on. IEEE, 2017, pp. 615–624.

[7] G. S. Rahman, M. Peng, K. Zhang, and S. Chen, “Radio resource al-
location for achieving ultra-low latency in fog radio access networks,”
IEEE Access, vol. 6, pp. 17 442–17 454, 2018.

[8] J. Oueis, E. C. Strinati, and S. Barbarossa, “The fog balancing: Load
distribution for small cell cloud computing,” in Vehicular Technology
Conference (VTC Spring), 2015 IEEE 81st. IEEE, 2015, pp. 1–6.

[9] T.-C. Chiu, W.-H. Chung, A.-C. Pang, Y.-J. Yu, and P.-H. Yen, “Ultra-
low latency service provision in 5g fog-radio access networks,” in
Personal, Indoor, and Mobile Radio Communications (PIMRC), 2016
IEEE 27th Annual International Symposium on. IEEE, 2016, pp. 1–6.

[10] E. Balevi and R. D. Gitlin, “Optimizing the number of fog nodes for
cloud-fog-thing networks,” IEEE Access, vol. 6, pp. 11 173–11 183,
2018.

[11] D.-N. Vu, N.-N. Dao, and S. Cho, “Downlink sum-rate optimization
leveraging hungarian method in fog radio access networks,” in In-
formation Networking (ICOIN), 2018 International Conference on.
IEEE, 2018, pp. 56–60.

[12] Y.-J. Liu, S.-M. Cheng, and Y.-L. Hsueh, “enb selection for machine
type communications using reinforcement learning based markov de-
cision process,” IEEE Transactions on Vehicular Technology, vol. 66,
no. 12, pp. 11 330–11 338, 2017.

[13] M. Condoluci, T. Mahmoodi, E. Steinbach, and M. Dohler, “Soft
resource reservation for low-delayed teleoperation over mobile net-
works,” IEEE Access, vol. 5, pp. 10 445–10 455, 2017.

[14] Y. Wei, F. R. Yu, M. Song, and Z. Han, “User scheduling and resource
allocation in hetnets with hybrid energy supply: An actor-critic
reinforcement learning approach,” IEEE Transactions on Wireless
Communications, vol. 17, no. 1, pp. 680–692, 2018.

[15] T. Park, N. Abuzainab, and W. Saad, “Learning how to communicate
in the internet of things: Finite resources and heterogeneity,” IEEE
Access, vol. 4, pp. 7063–7073, 2016.

[16] M. Yan, G. Feng, and S. Qin, “Multi-rat access based on multi-agent
reinforcement learning,” in GLOBECOM 2017-2017 IEEE Global
Communications Conference. IEEE, 2017, pp. 1–6.

[17] R. Sutton, and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

