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Abstract—The impact of cybersecurity attacks on the Smart
Grid may cause cyber as well as physical damages, as clearly
shown in the recent attacks on the power grid in Ukraine where
consumers were left without power. A set of recent successful
Distributed Denial-of-Service (DDoS) attacks on the Internet,
facilitated by the proliferation of the Internet-of-Things powered
botnets, shows that it is just a matter of time before the Smart
Grid, as one of the most attractive critical infrastructure systems,
becomes the target and likely victim of similar attacks, potentially
leaving catastrophic disruption of power service to millions of
people. It is in this context that we propose a scalable mitigation
approach, referred to as Minimally Invasive Attack Mitigation
via Detection Isolation and Localization (MIAMI-DIL), under a
hierarchical data collection infrastructure. We provide a proof-
of-concept by means of simulations which show the efficacy and
scalability of the proposed approach.

I. INTRODUCTION

With the enhanced automation, computing, communications
and control characteristics of the Smart Grid, a crucial need
becomes apparent to address the plethora of security and pri-
vacy related challenges. The essential nature of the Smart Grid
cybersecurity spans availability, integrity, and confidentiality
of computing, communications, and/or control devices from
intentional or accidental harm and damage. The severity of
cybersecurity consequences in the Smart Grid is generally
exasperated due to the complexity, sheer volume of the de-
vices and stakeholders, and highly time sensitive operational
constraints.

With the proliferation of Internet-of-Things (IoT) devices,
8.4B in 2017 and expected to hit 20B by 2020 [1], across
the industries in general and in the power grid in specific,
a new genre of attack vectors and malicious capabilities are
emerging. One prolific example is Mirai malware, facilitating
a huge botnet of IoT devices and significantly improving
attack capabilities of even unsophisticated malicious actors
by enabling compromised IoT devices, such as surveillance
cameras, DVRs, home routers, etc. Mirai botnet initiated
attacks peaked to almost 1 Tbps bandwidth from an army
of mice (IoT devices), showing the effectiveness and potential
devastating damage they can cause by means of small, resource
constrained, and hard-to-patch devices. What is even more
dreading is the fact that Mirai botnet is highly customizable
and optimized, and it is up for sale as a service in the dark
Web [2]. It is just a matter of time before these capabilities are
employed against critical infrastructures, like the Smart Grid.
Examples of vulnerable IoT devices in the Smart Grid include
smart meters, smart light bulbs, smart thermostats, connected
vehicles, electric vehicles, smart street lights, smart home

appliances, etc. Finally, in the hands of more sophisticated
parties, such as state actors, they may become even more
lethal.

Scourging effects of DoS attacks on the Smart Grid, in
our expanded definition, have been manifested recently in the
real-world attacks in Ukraine, both December 2015 and 2016,
where the city of Ivano-Frankivsk with 100K people were cut
from power for 6 hours as a result of a cyberattack and an
attack (attributed to Mirai) disrupting heating distribution to
two housing blocks in Lappeenranta, Finland in November
2016.

While there has been some cybersecurity related work on
Smart Grid related areas, to the best of our knowledge, there is
no other study in the literature to mitigate the aforementioned
new genre of IoT-initiated DoS/DDoS attacks against the
Smart Grid, which seems to be a prime target by many
categories of adversaries at the first opportunity they get,
such as nation states, curious/motivated eavesdropper, terror-
ists/cyberterrorists, organized crime, disgruntled employees,
etc.

In this paper, we present a set of vulnerabilities leading
to an expanded definition of DoS attacks in the Smart Grid,
especially those initiated via IoT devices. We then provide
a framework, called MIAMI-DIL (Minimally Invasive Attack
Mitigation via Detection Isolation and Localization). The
algorithmic underpinning of MIAMI-DIL’s anomaly detection
is based on a computationally efficient, online, and non-
parametric approach with a distributed statistical inference
methodology that scales well to high-dimensional data.

The rest of the paper is organized as follows: Related work
is presented in Section II. The system model is explained
in Section III. Our anomaly-based intrusion detection system
formulations with analytical details are provided in Section IV.
A proof-of-concept simulation results are summarized in Sec-
tion V followed by concluding remarks in Section VI.

II. RELATED WORK

Cyber attacks targeting the availability dimension, usually
referred by the umbrella term of Denial of Service (DoS)
attacks, are not new. They have been studied for the Internet
for a while with many proposed defense mechanisms, e.g., [3].
Yet, providing efficient and effective solutions and mitigation
techniques for the Internet DoS attacks are still challenging
and elusive.

When it comes to the Smart Grid, the potential damage
of such attacks are more profound and due to the peculiar
features of the infrastructure the DoS attacks pose an even
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Fig. 1. The Smart Grid Model hierarchy with HAN (Home Area Network,
IAN (Industrial Area Network), NAN/FAN (Neighborhood/Field AN, WAN
(Wide AN), and the utility control center.

harder challenge. A specification-based intrusion detection
system (IDS) is proposed in [4] tailored for the application
layer protocol of ANSI C12.22 to catch violations of the
specified security policy. However, there are other protocols
used in industry and even the same protocol might be deployed
with proprietary implementations to make such an approach
infeasible for all cases [5]. Another packet-level inspection
for intrusion detection is proposed in [6] on encrypted traffic,
albeit with the same application layer protocol. A fourth
order Markov Chain is used to model the event logs of data
aggregators in [7], which can only scale to a small number
of aggregators and cannot be deployed on the smart meters.
A hierarchical distributed IDS for the Smart Grid is proposed
in [8], designed for specific wireless mesh network technology
assumptions. An anomaly-based IDS is presented in [9] that
can only be deployed at headend and the data aggregators due
to its computational complexity. Timely detection of false data
injection attacks against voltage phase estimation in the Smart
Grid is considered in [10] from a parametric point of view.

With the above literature review and the pertinent features
of the Smart Grid infrastructure as discussed in Section III,
a centralized intrusion detection would not work due to the
heterogeneity of the constituent and independent networks [4],
[11]. A fully distributed and computationally efficient tech-
nique is needed to facilitate deployment at many system
devices. Finally, to make the deployment feasible to as many
systems as possible, it should not be tied to a specific protocol
or data type. We address all of these features in our approach
as explained in the following sections.

III. SYSTEM MODEL

We consider the Smart Grid as a hierarchical system where
a set of electrical devices1 is connected to the Smart Grid by

means of a smart meter in a Home Area Network (HAN)
or Industrial Area Network (IAN), as shown in Figure 1.
Neighborhood Area Network (NAN) or Field Area Network
(FAN) is used to refer to the logical association of these smart
meters. Data aggregators collect, summarize, and report the
data from HAN/IAN through the WAN to the utility’s headend
or the control center.

The smart meters may report a variety of different data
back to the utility, from pricing to consumption data to
power quality monitoring [12]. Although we consider the
consumption data in Section V, the framework proposed in
Section IV can be used for different data types. We do not
assume a specific protocol.

We believe that DoS attacks in the Smart Grid, as being one
of the most critical infrastructures, deserve a more fine-grained
and broader definition of DoS attacks targeting availability to
involve the following dimensions, as partially stated in [13],
[14]. Firstly, DoS may refer to several problems such as denial
of control, denial of electric service, and denial of pricing
service. Secondly, such problems may be caused by means of
compromising data integrity (e.g., misleading state estimation
and situational awareness through false data injection), as well
as classical DoS methods such as flooding and jamming.

IV. ANOMALY-BASED IDS AND ATTACK MITIGATION
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Fig. 2. Proposed hierarchical IDS. Data are shown in black, e.g., xijkt , and
statistics are shown in red, e.g., sijt .

Considering the hierarchical topology of the the Smart Grid
and security threats at each level of such hierarchy (see Sec.
III) we propose a hierarchical and distributed IDS that consists
of several subsystems. Specifically, each smart meter j in each
NAN i monitors the streaming data {xijkt : ∀k, t} from each
smart home appliance (i.e., IoT device) k in its HAN, and
computes a statistic sijt at each time t = 1, 2, . . ., as shown in
Fig. 2. Similarly, each data aggregator i monitors the streaming
data {yijt : ∀j, t} from each smart meter j in its NAN, and
computes a statistic uit. Furthermore, it gathers the statistics
{sijt : ∀j, t}, from its smart meters, and combines them in sit.
Finally, the control center monitors the data {zit : ∀i, t} from
each data aggregator i, using which it computes a statistic vt,

1Smart appliances (e.g., smart bulbs, smart thermostat, electrical vehicle,
and other relevant IoT devices) at home, connected machinery in an industrial
setting, business equipment in commercial environment, etc.



and also combines the statistics {sit} and {uit} in st and ut,
respectively (see Fig. 2).

For generality, we do not specify the types of the data
{xijkt }, {y

ij
t } and {zit}. To handle heterogeneity of data

types we only assume they are numerical data which can be
normalized, e.g., to lie in [0, 1] using upper and lower bounds,
xijt = [xij1t · · ·x

ijK
t ] ∈ [0, 1]K . Some example data types

communicated in the Smart Grid are energy consumption,
voltage phase, current, active and reactive power, and power
factor [12]. The statistics sijt , uit and vt are computed to detect
anomalies in the data {xijkt }, {y

ij
t } and {zit}, respectively.

Anomalies might be caused by various types of threats aiming
at a DDoS attack, such as false data injection, man-in-the-
middle, spoofing, and jamming [15]. We next show how to
compute the statistics sijt , uit and vt, as well as sit, st and ut.

A. Online Nonparametric Anomaly Detection

Anomaly detection in the considered Smart Grid setting is
quite challenging due to the following reasons:

(C1) The attack patterns are typically unknown since there is
a wide range of vulnerabilities for attackers, especially
considering the lack of security measures in the IoT
devices (such as smart appliances). Hence, parametric
anomaly detection-based IDSs that assume probabilistic
models for anomalies, as well as conventional signature-
based IDSs are not feasible in this emerging security
threat.

(C2) The problem is inherently high-dimensional given the
large number of IoT devices in a typical HAN (i.e., the
dimension of xijt ) and the number of smart meters in a
NAN (i.e., the dimension of yit = [yi1t · · · yiJt ]). Thus,
computationally efficient algorithms that can scale well
to high dimensionality are required.

(C3) Timely and accurate detection is critical given the broad
societal impacts of a successful attack to the Smart Grid,
and also the high demand-response time resolution in the
Smart Grid (e.g., real-time pricing).

Anomaly-based IDS has the capability of detecting un-
known attacks under certain conditions. It typically needs
to know a statistical description of the nominal (i.e., no
attack) behavior, denoted as the baseline, and classifies each
outlying instance that significantly deviates from the baseline
as an anomaly. This conventional interpretation of anomaly
detection is also called outlier detection. Ideally, with the
nominal probability distribution f0 completely known, an
instance x is deemed an outlier if its likelihood under the
nominal distribution is smaller than a predefined threshold,
i.e., f0(x) < α. Equivalently, x is declared an outlier if it is
outside the most compact set of data points under the nominal
distribution, called the minimum volume set Ωα given by

Ωα = arg min
A

∫
A

dy subject to
∫
A
f0(y)dy ≥ 1− α, (1)

where a data point is deemed nominal in the region A, and α is
the significance level, i.e., constraint on the false alarm prob-
ability. In high-dimensional problems like the one considered

in this paper, even if f0 is known, it is very computationally
expensive (if not impossible) to determine Ωα. Hence, in the
literature, there are various methods for learning minimum
volume sets [16]. One of them, called Geometric Entropy
Minimization (GEM), is shown to be very effective with high-
dimensional datasets [17] while asymptotically achieving the
performance of minimum volume set [18].

B. Online Discrepancy Test (ODIT)

Recently a GEM-based online and nonparametric anomaly
detector, called Online Discrepancy Test (ODIT), was pro-
posed in [19] to timely detect persistent anomalies. ODIT
combines the simplicity of the GEM approach with the timely
and accurate detection capabilities of the Cumulative Sum
(CUSUM) algorithm [20] to enable online anomaly detection
in high-dimensional problems. Hence, in this paper, we use
ODIT to develop an effective and efficient IDS that addresses
the challenges (C1)–(C3).

We next show the ODIT procedure for smart meter j under
data aggregator i, which observes the data vector xijt at each
time t. ODIT assumes a training dataset XN = {xij1 , . . . ,x

ij
N}

that is free of anomaly, and randomly separates it into two
subsets XN1 and XN2 for computational efficiency, as in the
bipartite GEM algorithm [17]. Then, for each point in XN1 it
finds the k nearest neighbors from XN2 , and forms an M -point
k-nearest-neighbor (M -kNN) Euclidean graph G = (XN1

M , E)
by selecting the M points XN1

M in XN1 with the smallest
total edge length and their k closest neighbors in XN2 , where
E = {em(n)} is the set of edges with em(n) denoting the edge
between point m in XN1 and its nth nearest neighbor in XN2 .
The total edge length of a point m in XN1 is given by

Lm =

k∑
n=k−s+1

|em(n)|γ , (2)

where |em(n)| is the Euclidean distance between point m and
its nth nearest neighbor in XN2 , 1 ≤ s ≤ k is a fixed number
introduced for convenience, and γ > 0 is the weight. It is
known [17] that XN1

M converges to the minimum volume set
Ωα as

lim
M,N1→∞

M/N1 → 1− α.

An example M -kNN graph is shown in Fig. 3, where
“Training set 1” and “Training set 2” denote XN1 and XN2 ,
respectively, and the edges are shown with solid lines. In this
M -kNN graph, 4 out of 5 points in XN1 are connected to their
2 nearest neighbors in XN2 with L(M) showing the longest
edge in the graph. Two test points and their longest edges (L1

and L2) are also shown.
In outlier detection by bipartite GEM [17], each test point

xijt is classified as an outlier if its total edge length Lt is
greater than that of the M th point, which has the largest total
edge length, in XN1

M , i.e., Lt > L(M). On the other hand, in
ODIT,

Dt = Lt − L(M) (3)
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Fig. 3. ODIT procedure with N1 = 5, N2 = 10, M = 4, k = 2, s = 1,
γ = 1. L1 − L(M) and L2 − L(M) are used as in (3) for online anomaly
detection (see also Fig. 4). Test points are from the same nominal distribution
as training points, which is a two-dimensional Gaussian with independent
components with 0.5 mean and 0.1 standard deviation.

is treated as some positive/negative evidence for anomaly,
which approximates the log-likelihood ratio `t = log

p(xij
t |H1)

p(xij
t |H0)

between the alternative hypothesis H1 claiming xijt is anoma-
lous and the null hypothesis H0 claiming xijt is nominal [19].
Assuming the data xijt is independent over time,

∑T
t=1Dt

gives the aggregate anomaly evidence until time T , simimlar
to the running log-likelihood

∑T
t=1 `t, which is the sufficient

statistic for optimum detection. Leveraging the analogy be-
tween the anomaly evidence Dt and the log-likelihood `t (see
[19] for a technical discussion) ODIT mimics the CUSUM
procedure for online and nonparametric anomaly detection.

In particular, when the aggregate anomaly evidence∑T
t=1Dt crosses a lower bound, say at time T1, ODIT decides

that there is no change and restarts the test by considering∑T
t=T1+1Dt. The test continues until

∑Td

t=Tn+1Dt crosses
an upper bound the first time, say after n restarts. In this
case, ODIT stops the test and decides for a change (e.g., an
anomaly). Actually, in the ODIT procedure, the lower bound
is set to zero not to waste time to decide for a no change
decision because it is known that initially there is no change.
Hence, it is possible to recursively update the ODIT statistic
as

sijt = max{sijt−1 +Dt, 0}, sij0 = 0. (4)

The stopping time of ODIT is given by

Td = min{t : sijt ≥ h}, (5)

where h > 0 is a predetermined threshold.
The detection threshold h manifests a trade-off between

minimizing the detection delay and minimizing the false alarm
rate, as can be seen in Fig. 4. Particularly, smaller threshold
facilitates early detection, but also increases the probability of
false alarm. In practice, h can be chosen to satisfy a given
false alarm rate.
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Fig. 4. ODIT statistic and decision procedure using the setup in Fig. 3 and
anomalous test points from uniform distribution over [0, 1]. Anomaly starts
at t = 6, and detected at t = 7 with the shown threshold.

C. Proposed IDS and Attack Mitigation

We presented the ODIT anomaly detector for a single smart
meter in Section IV-B. Leveraging the spatial diversity that
is inherent to the hierarchical structure shown in Fig. 2, we
propose a system-wide IDS in which each smart meter j
does not decide alone based on its data {xijt }, but instead
cooperates with other smart meters by passing its test statistic
sijt to its parent node, data aggregator i. Gathering {sijt } data
aggregator i fuses them into sit =

∑J
j=1 s

ij
t , and passes it to

the control center, together with the statistic uit of data {yijt } it
receives from its smart meters. It computes uit in the same way
as sijt , as shown in (5). Note that sijt denotes the evidence for
anomaly at HAN j, and summing the independent evidences
sit gives the total evidence among HANs. Finally, control
center, receiving the statistics {sit, uit} obtains st =

∑N
i=1 s

i
t

and ut =
∑N
i=1 u

i
t, and computes, through (5), the statistic

vt of data it receives from data aggregators. The statistics
st, ut, and vt measure the anomaly evidence at different
levels of hierarchy, namely smart appliances, smart meters, and
data aggregators, respectively; hence they potentially exhibit
heterogeneity. Using each of them control center runs three
separate ODIT procedures

Ts = min{t : st ≥ hs},
Tu = min{t : ut ≥ hu}, Tv = min{t : vt ≥ hv}, (6)

and decides for an anomaly the first time one of them stops,
i.e.,

Td = min{Ts, Tu, Tv}. (7)

After detecting an anomaly in the system, which potentially
corresponds to an attack, control center takes action to mitigate
its effects in a minimally invasive fashion (i.e., with minimal
service interruption). Specifically, it first isolates the informa-
tion flow from suspected nodes, and then localizes the actual
attack places via further investigation. We call this framework
MIAMI-DIL (Minimally Invasive Attack Mitigation via Detec-
tion Isolation and Localization), which is summarized below.
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Detection: Control center gathers data and statistics from
the network, and sequentially detects possible anomalies in
the system using the IDS given by (7).

Isolation: After detection, control center identifies the data
aggregators which positively contributed to st and ut. If
vt shows no signs of anomaly (i.e., no attack suspected at
the data aggregators), then only those data aggregators with
highly positive sit and uit are temporarily isolated until further
investigation, that is, data from them is disregarded, and
historical averages are used instead. If on the other hand vt is
highly positive, then the data flow from all data aggregators
are suspended until the identification of attacked ones through
further investigation.

Localization: After isolation, detailed investigation is per-
formed for the suspected nodes to localize the actual attack
places. This is done by comparing the local data from a
suspected node (i.e., smart appliance, smart meter, data ag-
gregator) with its training data that is known to be nominal.
After localizing actual attack places, regular service continues
with the cleared nodes; however, data from the identified attack
places is ignored until they are fixed.
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Fig. 6. ODIT and CUSUM statistics when 1% of the HANs are attacked.

V. PERFORMANCE EVALUATION

In this section we numerically evaluate the performance
of the proposed IDS. We consider a smart grid that consists
of a control center, N = 100 data aggregators, J = 1000
smart meters under each data aggregator, and K = 10 smart
appliances under each smart meter, yielding in total 1, 000, 000
smart appliances and 100, 000 smart meters systemwide. Thus,
the dimensionality of the system is on the order of one million.

Attack Model: Note that the security level typically de-
creases as we go down the hierarchy shown in Fig. 2, hence
we consider a practical scenario where smart appliances (i.e.,
IoT devices) and smart meters could be under attack, but
data aggregators are secure. To parameterize the attack size
we define a as the percentage of home-area networks under
attack, so a% of the 100, 000 (i.e., 1000a) HANs are attacked.
In each HAN, the smart meter is attacked with probability 0.1,
and each smart appliance is attacked with probability 0.5, so
on average 100a meters and 5000a appliances are attacked.
We consider a false data injection attack in which the attack
data is uniformly distributed in [0, 1]. In all simulations attack
starts after t = 20.

Data Model: In each HAN, we assume data from appliances
are independent and identically distributed (iid) with xijkt ∼



N (0.5, 0.1). We consider the future energy consumption data,
which IoT devices can predict from their scheduled usage
and historical data. Smart meter can use this data for energy
hedging to gain robustness to the volatility of real-time prices.
In case of a successful attack, falsified data not only misleads
pricing and hedging, but may also cause a demand-supply
unbalance in the system, which might destabilize the grid and
cause catastrophic outcomes such as a wide-area blackout. In
accordance with this example, each smart meter sends the total
energy consumption in the HAN, i.e., yijt =

∑K
k=1 x

ijk
t , and

similarly each data aggregator reports zit =
∑J
j=1 y

ij
t .

We analyze both a large-scale and a small-scale attack in
which 10% and 1% of the HANs are under attack, i.e., a = 10
and a = 1, respectively. As shown in Fig. 5 and Fig. 6, the
ODIT statistic at the attacked HANs steadily increase right
after the attack, whereas there is no evidence contributing to
alarm at the non-attacked HANs. The advantage of cooperation
among HANs is clearly observed in the second figures from
top in Fig. 5 and Fig. 6, more emphasized in the large-scale
attack as expected. Even with the 1% attack size, in every trial
we observed that both ODIT and CUSUM successfully detect
the attack (with no false alarm), albeit with different delays.
Compared to CUSUM, the ODIT statistics rise much more
quickly in both attack scenarios, which brings about much
smaller detection delay under the same false alarm constraint.
This result may look counterintuitive at first since CUSUM
is optimum in terms of minimizing the minimax expected
detection delay. However, due to its parametric nature, even a
small mismatch between the actual and assumed parameter
values degrade the performance, especially when it is not
easy to differentiate between the nominal and anomalous
distributions, as in our case. It is seen that the dominant
statistic is ut, which measures the smart meter data, since both
the attacks to appliances and meters are available to it. On the
other hand, the attacks do not appear much in vt (not at all in
Fig. 6) since data aggregators are not attacked, and the attacks
in the lower levels are suppressed in the data aggregator data
zit due to summing the 1000-dimensional meter data.

VI. CONCLUSION

With the proliferation of IoT devices to the Smart Grid, and
the ease of triggering DoS attacks even from unsophisticated
malicious parties, there is an increasing need for developing
solutions. In this context, we have presented a general threat
model for the data collection subsystems of the Smart Grid. We
have then developed a novel intrusion detection framework,
called Minimally Invasive Attack Mitigation via Detection
Isolation and Localization (MIAMI-DIL) that employs a scal-
able, online, and nonparametric intrusion detection system
(IDS). Another important distinguishing feature of MIAMI-
DIL is that it is protocol-agnostic and free from any data
type assumptions. We have numerically shown that in a
challenging high-dimensional scenario, the proposed IDS is
capable of timely and accurately detecting cyber-attacks, even
more quickly than the optimally designed CUSUM detector
thanks to its nonparametric nature and CUSUM’s performance

degradation even with small mismatches between the actual
and assumed parameter values.
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