
Feature Selection in Gait Classification of Leg Length and Distal Mass

Abstract

Technologies such as motion capture systems and force plates can aid in gait diagnosis and help identify the underlying
differences between gait patterns. To support the most effective integration of these technologies in health professions,
it is helpful to understand which features are most important in classification. Twenty individuals walked with
combinations of an asymmetric leg length using a shoe with a small or large height and/or an asymmetric distal
mass using a small or large ankle weight. These conditions changed the resultant gait of participants to impose
asymmetric gait impairments. Different classifiers such as Support Vector Machines with Gaussian kernel functions
were trained to classify leg length into 3 classes and distal mass into 5 classes using spatial-temporal, kinematic, and
kinetic features, and evaluated for every combination of three features. Push-off force asymmetry was found to be an
important feature in the classification of both leg length and distal mass. Asymmetry with regards to minimum knee
angle, maximum hip extension, and the first vertical peak resulted in the best model for classifying leg length with
an accuracy of 64.8%. Asymmetry with regards to braking force, push-off force, and vertical work resulted in the
best model for classifying distal mass with an accuracy of 69.9%. The results suggest that the optimal features vary
according to the specific impairment.
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1. Introduction

An individual’s gait can be described quantitatively
using various spatial-temporal, kinematic, and kinetic
characteristics. For one gait impairment, some studies
have compared the accuracy of models created using
subsets of spatial-temporal, kinematic, or kinetic
features [1, 2, 3, 4, 5, 6], and a few have further reduced
the number of features necessary for classification
[1, 2, 5]. The goal of this study is to compare the
role of feature selection in gait classification among
multiple, possibly overlapping, gait impairments. If
there exists a representative subset of quantitative
features that can be used to classify gait, the collection
of these features can be implemented in the diagnosis of
gait patterns and the subsequent rehabilitation efforts.
The distinguishing features can reveal underlying
similarities and differences between gait patterns.

Twenty individuals walked with combinations of an
asymmetric leg length using a shoe with a small or large
height and/or an asymmetric distal mass using a small
or large ankle weight [7]. These conditions changed the
resultant gait of participants to impose asymmetric gait
impairments. The classification of leg length and distal
mass is representative of the classification of different
gait impairments. Clinically, the effects of leg length

discrepancy have been studied [8, 9, 10], different
masses on each leg occur in individuals with prosthetics,
and both height and weight occur in therapies such as
the Gait Enhancing Mobile Shoe [11, 12].

The features chosen for this project given in Table 1
are similar to the studies [13, 2, 5, 3, 1, 6, 4, 10].
However, instead of using the raw values of each metric,
each feature reflects the asymmetry between the right
and left side, similar to the asymmetry metric used
by Khamis et al. [10]. Asymmetry is a means of
classifying abnormal gaits that can transcend specific
impairments. The same feature values are used to
classify both leg length and distal mass to determine if
there is consistency among the features important in gait
classification.

2. Background

Gait is typically classified using either Support
Vector Machines (SVM) or Artificial Neural Networks
(ANN). The SVM algorithm determines a boundary
between classes by minimizing the error function and
maximizing the margin between the boundary and data
points. The original features are implicitly mapped
onto a hyperplane using a kernel function such as
linear, Gaussian (radial basis function), or polynomial.
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Figure 1: Experimental Procedure. Each experiment began and ended with normal walking without any perturbation. The order of leg length and
distal mass perturbations shown in (B) and (C) were randomized. A small or large distal mass was added to the right leg for subjects 1-10 and the
left leg for subjects 11-20. A small or large leg length was always added to the left leg with a shoe.

SVM has been successfully used to distinguish the gait
pattern of the young vs. elderly [13, 2, 14, 15], cerebral
palsy [16], Parkinson’s disease [3, 5, 6, 17], autism [4],
and patellofemoral pain syndrome [1]. The ANN
algorithm passes the original features through layers of
neurons, obtaining an associated weight for each neuron
during training. Two studies that classify young and
elderly individuals with both SVM and ANN algorithms
found that the SVM model had higher accuracy [14, 13].
Ilias et al. found that the better model varied with the
subset of features used and SVM with a Gaussian kernel
function resulted in the best accuracy [4].

Gait classification of young vs. elderly individuals
using SVM showed that just knee range of motion,
horizontal peak push-off force, and normalized double
support time provided better accuracy than all 24
features combined [2]. A subset of six features, braking
and push-off vertical ground reaction peaks and four
measures of time during the gait cycle, provided the best
classification for individuals with Patellofemoral pain

syndrome [1]. Step length, walking speed, knee angle,
and vertical parameter of ground reaction force are
significant features in ANN classification of Parkinson’s
disease [5].

3. Methods

The dataset used in this experiment was collected as
part of a study conducted by Muratagic et al. (2017)
which focused on the combined effects of leg length
asymmetry and distal mass asymmetry. 20 subjects
walked with each of the 10 perturbations shown in
Figure 1. For each perturbation, participants either
walked normally, or had some combination of an added
distal mass (2.3kg or 4.6kg) and added leg length
(2.7cm or 5.2cm). The twenty subjects (13 male, 7
female) had no physical impairments or difference in leg
length greater than 2cm. The average height, weight,
and comfortable walking speed was 1.785m, 82.8kg,
and 1.22m/s respectively. Subject age ranged between
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Table 1: Twenty-one spatial-temporal, kinematic, and kinetic features used in classification. The ankle angles are the angle between the toe, virtual
ankle, and knee markers; the knee angles are between the ankle, knee, and hip markers; and the hip angles are between the knee, hip, and the
horizontal axis.

Spatial-temporal Features Step time – mode time per step during trial
Step length – distance between heel markers at heel strike

Kinematic Features

Max ankle angle at maximum plantar flexion
Min ankle angle at maximum dorsiflexion
Ankle angle at heel strike
Ankle angle at toe off

Max knee angle (extension)
Min knee angle (flexion)
Knee angle at heel strike
Knee angle at toe off

Max hip angle (extension)
Min hip angle (flexion)
Hip angle at heel strike
Hip angle at toe off

Kinetic Features

Vertical force first peak occurring at braking
Vertical force second peak occurring at push-off

Vertical force at dip occurring in the middle of stance phase
Anterior–posterior braking force
Anterior–posterior push-off force
Vertical Work – area underneath vertical force graph
Anterior–posterior Work – area underneath anterior–posterior force graph

18 and 30 years old and walking speed was determined
by a 10m walk test. Nineteen of the twenty subjects
were right leg dominant. The experimental procedures
were approved by (university removed for blind review)
Institutional Review Board. All subjects gave informed
consent prior to participation in the experiment.

Figure 2: Computer Assisted Rehabilitation ENvironment (CAREN).

Data was collected using the Computer Assisted
Rehabilitation ENvironment (CAREN) system, which
is equipped with 10 motion capture cameras, a split
belt treadmill, force plates, and a six degree of freedom

motion platform. The forces exerted on the plates and
the positions of eight markers placed at the base of
the second toe, the heel, the center of rotation at the
knees, and the internal/external center of rotation at
the hips were recorded at a rate of 120Hz. In order
to calculate ankle angles, a virtual ankle marker was
placed one third of the distance from the heel to the
toe. For each trial, up to 20 steps within 1ms in step
time were chosen from the right and left sides. Twenty
one characteristic features were extracted from each of
the steps representing spatial-temporal, kinematic, and
kinetic characteristics of gait shown in Table 1.

For each characteristic, the asymmetry between the
median value on the right and left sides was computed.
The difference between the values (right-left) was
divided by the average of the two values. Once
the features were extracted, 4 subjects were randomly
selected to be the test dataset. The remaining subjects
comprised the training dataset. The training dataset
was standardized and principal component analysis
performed such that more than 95% of the variance was
retained. Principal component analysis was performed
to reduce dimensionality. The same transformation
coefficients found by standardizing and applying PCA
to the training dataset were used to transform the test
dataset.
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Figure 3: Schematic of Classification Methods.

Table 2: Percent accuracy and standard deviation results for many different classification algorithms for leg length and distal mass using all 21
features.

Model Leg Length Distal Mass
Logistic 70.2 (7.9) 64.3 (7.3)
SVM–linear 70.9 (8.9) 64.8 (7.1)
SVM–Gaussian 72.9 (8.8) 65.4 (7.0)
SVM–polynomial 70.9 (8.9) 66.3 (6.9)
Linear discriminant analysis 68.7 (8.0) 65.7 (6.9)
K-nearest neighbor–K=1 68.4 (8.9) 58.2 (5.6)
K-nearest neighbor–K=3 69.3 (9.4) 59.9 (6.0)
K-nearest neighbor–K=5 70.4 (8.5) 58.8 (6.4)
K-nearest neighbor–K=7 69.9 (8.3) 56.1 (6.3)
Naive bayes 64.0 (8.2) 51.6 (8.5)
Boosted Trees 62.7 (7.7) 49.8 (7.2)
ANN 1 neuron 63.2 (10.1) 61.6 (9.3)
ANN 2 neurons 62.9 (9.4) 60.7 (10.1)
ANN 3 neurons 60.6 (10.3) 56.2 (10.4)
ANN 4 neurons 61.0 (9.2) 56.6 (8.5)
ANN 5 neurons 60.7 (9.2) 55.0 (10.2)
ANN 6 neurons 61.2 (9.3) 55.7 (8.9)
ANN 7 neurons 58.9 (8.5) 54.2 (8.5)
ANN 8 neurons 58.8 (9.1) 53.8 (10.8)
ANN 9 neurons 59.1 (10.1) 51.1 (11.1)
ANN 10 neurons 59.5 (9.7) 51.2 (10.1)

Then, several classification models were trained in
MATLAB using the Statistics and Machine Learning
Toolbox, and the Neural Network Toolbox. Default
settings of built-in functions are used unless otherwise
noted. For the feedforwardnet function, we tried
different combinations of number of hidden layers and
number of neurons in each layer, however the results
did not improve with the increasing number of hidden
layers and number of neurons. Hence, we only present
here the results for the two-layer neural network (i.e.,
one hidden layer) with 1-10 neurons in the hidden layer.
Hyperbolic tangent is used as the activation function
in neurons. The Levenberg-Marquardt backpropagation

algorithm is used for training the neural networks. The
entire process, which begins by randomly selecting
4 test subjects with 10 trials for each subject and
includes standardization, PCA, and training and testing
the classifier, was performed for 100 iterations and the
accuracy computed. A schematic of the classification
methods is shown in Figure 3.

To determine which features resulted in a model with
higher accuracy, every combination of three features
was tested with SVM with a Gaussian kernel function
using the same method shown in Figure 3. Three
features were chosen so that every combination could
be tested in a reasonable time frame and to allow for
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Table 3: Confusion tables for classification of leg length using SVM with a Gaussian kernel function using all 21 features. The table includes
results from 4000 instances (100 iterations of 4 random test subjects with 10 trials for each iteration). The standard deviation in overall accuracy
among the 100 iterations is given in parentheses. R-Right side L-Left side.

True Leg Length Class
Classification None Small Large Precision

None 1363 229 8 85.2%
Small 319 634 247 52.8%
Large 120 160 920 76.7%

Overall Accuracy: 72.9 (8.8)%

Table 4: Confusion tables for classification of distal mass using SVM with a polynomial kernel function using all 21 features. The table includes
results from 4000 instances (100 iterations of 4 random test subjects with 10 trials for each iteration). The standard deviation in overall accuracy
among the 100 iterations is given in parentheses. R-Right side L-Left side.

True Distal Mass Class
Classification R-Large R-Small None L-Small L-Large Precision

R-Large 347 193 59 7 0 57.3%
R-Small 105 260 241 0 0 42.9%

None 11 140 1362 83 4 85.1%
L-Small 0 0 227 298 69 50.2%
L-Large 0 0 1 208 385 64.8%

Overall Accuracy: 66.3 (6.9)%

some interaction between features.

4. Results and Discussion

The accuracy results for the many different
classification algorithms for leg length and distal
mass are shown in Table 2. SVM with a Gaussian
kernel function had the highest accuracy for leg length
and SVM with a polynomial kernel function had the
highest accuracy for distal mass. Table 3 and Table 4
show the confusion tables for the SVM models with
Gaussian and polynomial kernel functions respectively.
The overall accuracy for three leg length classes was
72.9% and for five distal mass classes was 66.3%. For
comparison, a study that classified healthy controls and
four classes for functional impairments associated with
the “hip,” “knee,” “ankle,” and “calcaneus” using force
plates found that SVM with a linear kernel function
had an accuracy of 54.3% and SVM with a Gaussian
kernel function had an accuracy of 51.2% [18].
Classification between three classes of gait (normal,
distal mass, and leg length) using ANN and fast Fourier
transformations resulted in an accuracy of 83.3% [19].
Using random forest to classify clinical patients with
a longer left leg versus a longer right leg, accuracies
of 64% and 80% were obtained for patients with
and without additional musculoskeletal abnormalities
respectively [10]. Studies classifying gait between two

classes reported accuracies for Parkinson’s disease of
87.5% [3], 95.63% [5], 98.2% [6], and 93.6% [17]; for
cerebral palsy of 96.8% [16], for autism of 95.8% [4];
for patellofemoral pain syndrome of 88.89% [1]; for
young vs. elderly of 90% [13], 100% [2], 90% [14],
and 100% [15]; and for a healthy vs. impaired gait of
90.8% [18].

The intersectionality of the leg length and distal
mass perturbations contribute both to the difficulty
of classification and significance of the results,
representing overlapping impairments. Differences
between the gait produced by a 2.3kg ankle weight is
more subtle than more extreme gait impairments such
as Parkinson’s disease. As such, because the differences
in asymmetric gait patterns may not be immediately
obvious to the untrained eye [20], its classification has
more practical relevance in assisting in diagnosis.

Out of the 4000 instances tested, there were only
7 instances where the distal mass side (left vs. right)
was misclassified. The accuracy of classification for
no added asymmetries was the highest across both leg
length and distal mass.

Figure 4 shows that the features that result in the
most accurate three-feature SVM models with Gaussian
kernel functions vary according to the impairment. For
leg length, minimum knee angle, maximum hip angle
at extension, and the first vertical peak formed the
best combination of three features with an accuracy
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Figure 4: Frequency of each feature in the 100 most accurate three-feature SVM models with Gaussian kernel functions. All combinations of three
features were tried for 100 iterations. Spatial-temporal features are shown in a vertical striped pattern, kinematic features in a checkerboard pattern,
and kinetic features in a horizontal striped pattern. AP stands for anterior-posterior.

of 64.8%. For distal mass, braking force, push-off

force, and vertical work formed the best combination
of three features with an accuracy of 69.9%, higher
than all 21 features combined. Those three features
that resulted in the best model for distal mass, braking
force, push-off force, and vertical work, resulted in
only 40.3% accuracy for leg length. These features
also differed from the previous studies using SVM
to compare the gait of the young and elderly [2]
and individuals with patellofemoral pain syndrome [1].
However some representation of the magnitude of the
push-off force, either vertically (2nd peak) or in the
anterior–posterior plane, was present in the best subsets
of the two previous studies and found to be relevant in
classification of both leg length and distal mass. For
leg length, asymmetry between the vertical force second
peak corresponding to push-off was present in 46 of
the most accurate models. For distal mass, asymmetry
between the anterior–posterior plane push-off forces
were present in 29 of the most accurate models.

Models trained using only spatial-temporal features,
kinematic features from motion capture data, and
kinetic features from force plate data yielded accuracies
of 32.9%, 55.9%, and 61.1% respectively for leg
length and 43.7%, 43.0%, and 68% respectively for
distal mass. A number of other studies have made

a similar comparisons between all spatial-temporal
features, kinematic features, and kinetic features [1, 2,
3, 4, 5, 6] with mixed results about relative importance.
Direct comparison may be obscured by the possibility
of models improving with smaller subsets of the three
types of features (spatial-temporal, kinematic, and
kinetic) and different impairments.

5. Conclusion

This study finds that reasonable accuracy may be
achieved by only considering a few aspects of gait,
and the same asymmetry features can be used to
classify multiple gait patterns created by modulating
leg length and distal mass. The second finding
suggests that asymmetry could be used to classify
and diagnose the many other gait patterns that involve
significant asymmetry. While only kinetic features
gathered from force plates classify distal mass better
than all spatial-temporal, kinematic, and kinetic features
combined, the same is not true for leg length.
In leg length classification, the use of kinematic
features in combination with kinetic features greatly
improved accuracy. These findings intuitively match
the kinematic nature of added leg length and the
kinetic nature of added distal mass. Regardless, some
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representation of push-off force asymmetry was found
to be an important feature in the classification of both
leg length and distal mass. As these technologies
become increasingly available to health professionals, it
is important to consider the specific impairment during
feature selection.
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