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Abstract—Vehicular network (VANET), a special type of ad-
hoc network, provides communication infrastructure for vehicles
and related parties, such as road side units (RSU). Secure
communication concerns are becoming more prevalent with the
increasing technology usage in transportation systems. One of the
major objectives in VANET is maintaining the availability of the
system. Distributed Denial of Service (DDoS) attack is one of the
most popular attack types aiming at the availability of system.
We consider the timely detection and mitigation of DDoS attacks
to RSU in Intelligent Transportation Systems (ITS). A novel
framework for detecting and mitigating low-rate DDoS attacks
in ITS based on nonparametric statistical anomaly detection is
proposed. Dealing with low-rate DDoS attacks is challenging
since they can bypass traditional data filtering techniques while
threatening the RSU availability due to their highly distributed
nature. Extensive simulation results are presented for a real
road scenario with the help of the SUMO traffic simulation
software. The results show that our proposed method significantly
outperforms two parametric methods for timely detection based
on the Cumulative Sum (CUSUM) test, as well as the traditional
data filtering approach in terms of average detection delay and
false alarm rate.

I. INTRODUCTION

Thanks to the recent improvements in vehicular technol-
ogy, today’s vehicles tend to have more and more elec-
tronic components rather than being purely mechanic devices.
This improvement leads to the birth of a new area called
intelligent transportation systems (ITS) [1]. Vehicular Ad-
hoc Network (VANET), which evolved from Mobile Ad-
Hoc Network (MANET), is one of the major type of ITS
applications. In VANET, communication among vehicles in
traffic has significant impacts on public in terms of mobility
and safety [2]. The applications of VANET can be divided
into two categories, safety applications and service-oriented
applications. Road Side Unit (RSU) based traffic management
applications are good examples for safety applications, and
internet based media sharing programs are good examples for
service-oriented applications.

VANET collects and distributes many types of data packets
such as information of emergency situation and vehicle condi-
tions (e.g., position, average speed and behaviors on the road).
The technological and societal aspects of VANET in real world
makes it vulnerable to cyberattacks. Attacks on vehicular
systems can be classified as inter-vehicle attacks and intra-
vehicle attacks [3]. While inter-vehicle attacks aim to damage
communication between vehicles and infrastructure, intra-
vehicle attacks focus on inter-connection of devices within a
vehicle. This study considers detecting inter-vehicle attacks,
which can cause more severe damages to the entire network
than intra-vehicle attacks.

There are various security approaches to ensure different
objectives in ITS, such as availability, authenticity, integrity
and non-repudiation [4]. Due to the highly dynamic charac-
teristics, availability of network is one of the most important
and challenging objectives in VANET, especially in safety
related applications. There are various types and solution
methods for Denial of Service (DoS) attacks, which target
availability. DoS attack is basically performed by sending high
volume of data packets (i.e., flooding the server) in order to
interrupt network operations. Launching a high-rate (i.e., large
amount of increase in data packets) DoS attack can cause
significant damages to the system, but on the other hand, it
is quite easy to detect such attacks, manifesting a trade-off
for attackers. After detection, mitigation of attack would be
also easy if attack originates from a single source. To prevent
easy mitigation, attackers typically perform Distributed DoS
(DDoS) attacks from a large number of compromised nodes
in the network. In this research, we focus on low-rate DDoS
attacks which is a way to perform stealth DoS attacks, e.g.,
[5], [6]. With a low-rate DDoS attack, attackers can make
detection and mitigation quite challenging for the network
operator by slightly increasing the data traffic from many
nodes synchronously with respect to the nominal baselines,
while achieving a sufficiently high data rate at the server that
can interrupt the regular network operations at least in the



long-run. Such an attack is still a detrimental DDoS attack,
but considering each node separately it may seem like no
malicious activity takes place.

In this paper, we consider real time statistical detection
and mitigation of flooding-based low-rate, as well as high-
rate, DDoS attacks in ITS, specifically RSU-based VANETs.
The proposed Intrusion Detection System (IDS) runs at RSU,
which serves as the network center in a VANET, and monitors
it for possible threats. Our contributions are listed below.
(1) To the best of the our knowledge, this work is the first one

dealing with the timely detection and mitigation of low-
rate DDoS attacks in a general-purpose VANET without
specifying data-type and routing protocol. The proposed
approach can be easily tailored for a specific-purpose
VANET.

(2) Novel nonparametric, as well as traditional parametric,
methods are presented for timely detecting DDoS (even
low-rate) attacks in VANET while ensuring small false
alarm probabilities (i.e., false positive rates).

(3) An effective statistical mitigation technique that success-
fully identifies attack locations is developed to overcome
the effects of DDoS attack after detecting it.

The organization of the paper in remainder is as follows.
Related works are discussed in Section 2. The traffic and attack
models are given in Section 3. The proposed detection and mit-
igation methods are presented in Section 4. Numerical results
are provided in Section 5. Finally, the paper is concluded in
Section 6.

II. RELATED WORK

There is a number of works done for VANET safety. In [7],
authors present a statistical detection based solution for DoS
attacks in the IEEE 802.11 DCP protocol. This model, for each
node, compares the received Clear-to-Send (CTS) packet rates
to an adaptive threshold which is defined by a Markov chain.
In [8], a DoS attack detector based on packet monitoring at a
centralized node, similar to RSU, is proposed. By comparing
SYN and ACK/SYN packets with predefined threshold values,
DoS attack is detected. Another DoS detection mechanism for
VANET is presented in [9], in which jamming attacks are
detected through packet delivery ratio without needing central-
ized nodes. In [10], authors proposed a two-level method based
on the Cumulative Sum (CUSUM) algorithm for statistical
detection of DoS attacks in MANET. After calculating the
first detection feature, they used CUSUM with the calculated
value as the second detection feature.

There are several works on other attack types in VANET,
such as false data injection attack, e.g., [11], [12], sybil attack,
e.g., [13], and black hole attack, e.g., [14]. Machine learn-
ing based anomaly detection algorithms for VANET recently
became popular. For instance, in [15], clustering together
with Support Vector Machine (SVM) are used to detect mali-
cious vehicles; and in [16], misbehavior classification through
several features such as speed deviation and received signal
strength (RSS) is studied.
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Fig. 1: Normal traffic model.
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Fig. 2: Attack model where red cars are attackers and thick
red lines denote the increased data rates.

III. SYSTEM MODEL

A. Traffic Model

In the considered traffic model (Fig. 1), system consists of
vehicles with onboard units (OBU) for wireless communica-
tion and a road side unit (RSU). Vehicle to vehicle (V2V)
and vehicle to RSU (V2I) communication are achieved by
broadcasting. We focus on the V2I communication, in partic-
ular the communication from vehicles to RSU. Our proposed
method does not specify any protocol, hence, it can be applied
to all protocols. There is a variety of data packets which are
transmitted in vehicular networks, such as position, average
speed, condition of the road. For the sake of generality, we do
not specify the type of data for our detection and mitigation
model since vehicles may not have the same features and they
may send different packets throughout the network.

For our detection model, RSUs collect packets within a
range depending on the protocol that vehicles are using.
Communication between vehicles and RSU is represented
with lines in Fig. 1. The range is partitioned into D equal
road segments and each data packet is labeled according to
the received segment. If there are more than one car in the
same segment of the road, regardless of the direction, their
packets are binned together. We consider a periodic data
communication, thus the packet rate depends on several factors
such as the speed of the vehicle. For instance, if a vehicle is
moving fast, the number of packets received on one segment of



the road will be less than that from a slow vehicle. Increasing
number of cars will also increase the received packet rate at
the RSU. If there is a traffic light on the road, the packet rate
will also depend on the color of the traffic light and flow of
traffic.

B. Attack Model

We consider DDoS attacks in VANET where attackers send
high volume of data in order to make RSU unavailable at
some point of time either through a highly-distributed low-
rate DDoS attack or a high-rate DDoS attack (Fig. 2). As
an example scenario, consider there is an accident within the
monitored road segments. Normally, the accident information
is received by RSU and conveyed to other RSUs in order to
inform other vehicles who are far away from the accident.
If attacker launches a DDoS attack from several vehicles to
the closest RSU in the accident area, RSU cannot perform its
regular operations, and thus cannot disseminate the accident
information.

Data rate (packet/sec.) is a natural characteristic feature
to consider in this type of DDoS attack in which some of
the attackers increase their usual data rates. Since we do not
specify the data type, discussion in this paper holds for any
type of data including sum of all packet types. Attacker may
target different types of packets, which will also increase the
total number of packets.

In DDoS attacks, transmitted packets are legitimate, so no
attack information can be derived from the packet contents. In
a high-rate DDoS attack, the number of transmitted packets
is highly anomalous (e.g., tens or even hundreds of times the
nominal baseline), whereas in a low-rate DDoS attack, the
number of packets transmitted from each vehicle may look
nominal. The cumulative effect during the same time interval is
what makes a low-rate DDoS attack coordinated among many
vehicles detrimental to RSU. In addition to high-rate DDoS
attacks, we specifically consider detecting and mitigating low-
rate DDoS attacks from vehicles to RSU, that may stay
undetected (i.e., stealth) to traditional IDS (e.g., firewalls)
by slightly increasing (e.g., double the nominal baseline) the
number of packets from a number of vehicles synchronously
1. On the other hand, such an attack can cripple RSU in the
long-run or even earlier.

The proposed detection model does not consider any further
specification for attacker, such as details of data (i.e., attacker
can send different types of information) and the duration of
attack. This work also does not assume any specific traffic
conditions so that the proposed approach is applicable to
different conditions, such as one-way, two-way, high-velocity,
low-velocity.

IV. DETECTION AND MITIGATION MODEL

A. Online Discrepancy Test

Anomaly detection algorithms work by first learning base-
line (no attack) behavior, and then detecting anomalies based

1No strict synchronization is needed to perform a low-rate DDoS attack.

on changes with respect to the baseline behavior. There are
several challenges in anomaly detection for DDoS attacks in
VANET. First, timely detection is highly important because
secure traffic flow highly depends on healthy operation of
RSU. Second, unknown attack patterns are a main challenge
for detection algorithms. Specifically, unknown parameters
such as the number of attacked nodes (i.e., road segments
in the considered system model), the set of attacked nodes,
and the magnitudes of attack vectors render the traditional
signature-based detection approaches impractical. Third, for
network-wide effective detection of low-rate DDoS attacks,
joint monitoring of nodes is required, which brings about a
curse-of-dimensionality challenge.

Parametric approaches to anomaly detection try to fit a
suitable parametric probability distribution to the observed
data. Due to the second and third challenges given above,
as well as the difficulty of fitting a standard distribution to
real data, parametric approaches are not favored for DDoS
attack detection in VANET. Nonparametric methods are more
preferred since they are typically free from assumptions such
as probability distribution, number and identity of attacked
nodes.

A recent successful nonparametric method is the Online
Discrepancy Test (ODIT) [17], which is capable of quickly
detecting even small anomalies in high-dimensional networks.
ODIT is based on two algorithms, Cumulative Sum (CUSUM)
test and Geometric Entropy Minimization (GEM). It combines
the nonparametric nature of GEM with the timely detection
capability of CUSUM.

CUSUM is a popular sequential change detection algo-
rithm [18], which assumes probability distributions for both
before-change and after-change observations. When the true
probability distributions are exactly known with all parame-
ters, CUSUM is minimax optimum in terms of minimizing
expected detection delay subject to a false alarm constraint
[19]. The practical version of CUSUM, called Generalized
CUSUM (G-CUSUM), estimates the parameters from data.
However, as we show in simulation results in Section V, it is
not easy to design a probabilistic model even for the no-attack
case in VANET, and especially for the attack case considering
the high uncertainty in attack scenarios. On the other hand,
GEM [20] is a nonparametric geometric method that decides
whether each data sample is an outlier or not. GEM is
optimal when the anomalous distribution is a mixture of the
nominal and uniform distributions [20]. The lack of temporal
aspect prevents GEM’s effective use in timely detection of
DDoS attacks in VANET. As we will discuss next ODIT
adapts GEM to sequential detection through a CUSUM-type
testing procedure while maintaining the nonparametric and
computationally efficient characteristics.

In the training phase, for computational efficiency, ODIT
randomly splits the training dataset XN = {x1, . . . ,xN}
into two subsets XN1 and XN2 , where N1 + N2 = N ,
similar to the Bipartite GEM algorithm [21]. The data vector
xt = [x1t . . . x

D
t ] received by RSU at each time t contains the

total number of packets xdt transmitted from each road segment



Fig. 3: Proposed detection procedure based on ODIT with
N1 = 6, N2 = 9, M = 5, k = 2, s = 1, γ = 2. L1 − L(M)

and L2 − L(M) are used to update the test statistic st and
raise an alarm at time T as shown in (2)-(4). Training and test
points are generated from a bivariate normal distribution with
independent components, 0.5 mean and 0.1 standard deviation.

d. To deal with heterogeneity, in preprocessing, each xdt is
normalized to [0, 1] using minimum and maximum values. In
the training phase, an Euclidean graph is formed between M
points in the first set XN1 and their k nearest neighbors in
the second set XN2 , as shown in Fig. 3, where XN1 and
XN2 correspons to “Training set 1” and “Training set 2”
connecting 5 points of XN1 to its 2 nearest neighbors in
XN2 . Choosing k value strikes a balance between robustness
to outliers and sensitivity to anomalies. Small k would result in
more sensitivity but it would also be more prone to outliers.
On the other hand, large k gives more robustness but less
sensitivity. The M points are chosen according to minimizing
the total edge length which is given for point m as follows

Lm =

k∑
n=k−s+1

|em(n)|γ , (1)

where |em(n)| is the Euclidean distance between point m
and its nth nearest neighbor in XN2 , s is a fixed number
between 1 and k defined for convenience, and γ > 0 is a
weight typically chosen as 2. M is determined according to the
outlier definition selected by the user. For instance, considering
outliers at 0.05 significance level M is selected as the 95th
percentile of data points in XN1 , i.e., M = round(0.95N1).
The total edge length L(M) of the M th point will be used as
a baseline statistic in the test phase.

Until this point, we explained the training procedure for
the ODIT-based proposed detection method, in which nominal
traffic conditions are observed in terms of the number of
transmitted packets from road segments. In the test phase,
considering the data vector xt, which consists of the number

of packets received from each road segment by RSU, its total
edge length Lt with respect to the points in XN2 is computed,
as shown in (1). Then, comparing Lt with the baseline distance
statistic L(M), we obtain an anomaly evidence at time t as

Dt = Lt − L(M). (2)

Drawing upon the CUSUM test statistic, the ODIT statistic
is recursively updated at each time t as

st = max{st−1 +Dt, 0}, s0 = 0. (3)

This CUSUM-type test statistic for ODIT is justified by the
theoretical connection between Dt and the log-likelihood ratio
between the boundary point x(M) in the training set XN1 and
the test point xt [17]. Finally, an attack alarm is raised at the
first time st crosses a predetermined threshold, i.e.,

T = min{t : st ≥ h}. (4)

The selection of threshold h manifests a trade-off between
two conflicting objectives, minimizing detection delay and
minimizing false alarm rate. For example, smaller threshold
decreases detection delay (i.e., enables earlier detection) at
the expense of a higher false alarm rate. In practice, h can be
set such that a desired false alarm probability is satisfied.

B. Attack Mitigation

For a complete defense mechanism, we also propose a
mitigation method in conjunction with the detection method
described above. After an attack is detected, the role of the
mitigation module is to identify the attacked segments and
block the data traffic coming from those segments for a period
of time. Meanwhile, RSU will be able to continue its regular
operations considering the data from non-attacked users.

To determine from which segments attack originates, we
perform an in-depth analysis by examining every dimension
of the distance Lt, which corresponds to a road segment. For
γ = 2, Lt is the squared Euclidean norm of a D-dimensional
distance vector whose dth entry ldt is the sum of distances
of data from segment d at time t to its nearest neighbors in
XN2 . If ldt is large, that means segment d contributes to a
large value of Lt towards the alarm. This provides an evidence
that segment d is under attack. Specifically, we compute the
following statistic for each segment d when an attack is
detected:

l̄d = (T − q)−1
T∑
t=q

ldt (5)

where q is the time instance when the detection statistic st
started to increase from zero before the alarm. Each road
segment d is identified as attacked if l̄d ≥ λ. The threshold λ
is selected to strike a balance between true positive rate and
false positive rate (see the ROC curve in Fig. 9).



TABLE I: SIMULATION PARAMETERS

Simulation Area 9000 x 5000 m2

Simulation Time (Each Trial) 200s
Number of Trials 600
Average Number of Vehicle 250
Traffic Generation Random
Route Generation Random
Network Protocol IEEE 802.11p
Beacon Rate 1s
Network Interface OMNET++
Network Mobility Framework Veins
Traffic Generator SUMO
Map Fowler Av. Tampa, FL

V. SIMULATION RESULTS

A. Simulation Setup

We tested our model using a compound of three softwares,
OMNET++ [22], SUMO [23] and Veins [24]. OMNET++ is a
network simulator providing interface to test network systems.
Simulation of Urban Mobility (SUMO) is an open source
traffic generator which creates mobility scenerios on real road
maps based on the specified parameters. Veins is a special
framework that connects SUMO with OMNET++. By the help
of Veins, each vehicle is represented as a mobile node in the
network. In this simulation, we consider the IEEE 802.11p
vehicular communication protocol [25].

In order to a have realistic testbed, we simulate the traffic
on a portion of the Fowler Ave. which lies on the south-
ern edge of the University of South Florida (USF) campus
in Tampa, as shown in Fig. 4. The considered portion is
partitioned into 20 segments. Vehicle movements are not
restricted. That is, vehicles may enter and exit the main road
from all possible connecting side roads. Number of vehicles
and route of vehicles are randomly generated. On average
there are approximately 250 vehicles in each trial. Simulation
parameters are summarized in Table I.

In our simulation, while vehicles are moving on the roads in
SUMO, they are identified as a node in OMNET++ by the help
of Veins. Each node (vehicle and RSU) broadcasts packets to
all nodes that are in their range. For training, 4 hours of traffic
is observed which was sufficient to learn a baseline for the
nominal traffic conditions. For the test part, we observed 33.3

Fig. 4: Simulation map showing Fowler Ave.

Fig. 5: Histogram of number of packets for a road segment.
First histogram represents the distribution of nominal data,
whereas second and third represent attack cases with an aver-
age increase that is 0.3 and 1.5 times the baseline, respectively.
Nominal and attack distributions are close to negative binomial
distribution with extended tails under attacks.

hours of traffic and all the log files are saved. We have a single
baseline in this case but we can generate different baselines for
different time intervals such as in the early morning rush hour
traffic, and in the afternoon free flow traffic. From collected
log files, we computed data rates in MATLAB and obtained
600 trials with 200 seconds each. Attack data is generated in
MATLAB for two different cases from uniform distribution.
For the first case, lower and upper bounds are selected as 0.1
and 0.5 times the average number of packets in the nominal
case and for the second case, these bounds are selected as 1
and 2 times the average number of packets in the nominal
case. In each trial, attack data is added on top of the nominal
data in 2 of the 20 road segments from 181st second to 200th
second.



Fig. 6: Histogram of number of packets for a road segment.
First histogram represents the distribution of nominal data,
whereas second and third represent attack cases an average
increase that is 0.3 and 1.5 times the baseline, respectively.
Nominal and attack distributions are close to normal distribu-
tion with extended tails under attacks.

B. Results

We compared our nonparametric model with Generalized
CUSUM (G-CUSUM) assuming two different distributions
since we insert the anomaly to two different road segments
where both has different distributions. In one of the road
segment, distribution of nominal data seems to be close to
the negative binomial, which is indeed a Poisson distribution
with conjugate prior (i.e., Gamma distribution) on the rate
parameter, hence we firstly consider G-CUSUM with negative
binomial assumption (Fig. 5). Along with negative binomial
we also consider G-CUSUM with the normal (i.e., Gaussian)
distribution, because the data in the other road segment is
similar to normal distribution (Fig. 6). We also compared
our statistical model with the classical data filtering approach
which only considers the increase in the data rate without any
statistical analysis.

Fig. 7: Average detection delay vs. False alarm probability
for the proposed method, G-CUSUM and basic data filtering
approach for an average increase that is 0.3 times the nominal
mean data rate.

Different attack scenarios are considered for the test pur-
poses. First, in order to test against low rate DDoS attacks,
we increased the mean by only 30% on average using uniform
distribution. Second, we considered 150% increase on average
again from uniform distribution. For both scenarios, although
the exact knowledge of the mean increase is assumed known
by G-CUSUM, the proposed method significantly outperforms
both G-CUSUM variants and basic data filtering model in
terms of average detection delay vs. false alarm probability, as
shown in Fig. 7 and Fig. 8. These results clearly demonstrate
the advantage of the proposed nonparametric method over the
parametric CUSUM-based methods, e.g., [10], and classical
data filtering method, e.g., [8], for detecting low-rate DDoS
attacks, which are typically much harder to detect than the
high-rate attacks.

In the low rate DDoS attack scenario (Fig. 7), the identi-
fication performance of the proposed mitigation approach is
shown by the ROC curve in Fig. 9. The attacked segments are
successfully identified by the approach given in Section IV-B.

VI. CONCLUSION

Security of Intelligent Transportation Systems (ITS) is be-
coming more important as vehicles and smart infrastructure
elements, such as Road Side Units (RSU) are getting more
connected. We addressed the challenging low-rate DDoS at-
tacks to RSU in VANET by presenting a novel detection
and mitigation framework based on nonparametric anomaly
detection. Our proposed method quickly detects low-rate
DDoS attacks, successfully identifies the attack locations, and
mitigates the attack by blocking the data traffic from attack
locations. Extensive simulation results showed that standard
parametric methods cannot model the data traffic in a real
road scenario, thus they are significantly outperformed by
the proposed nonparametric method which does not depend
on probability distribution assumptions. Simulation data is
generated using three softwares together, namely SUMO traf-
fic simulator, OMNET network simulator, and Veins, which



Fig. 8: Average detection delay vs. False alarm probability
for the proposed method, G-CUSUM and basic data filtering
approach for an average increase that is 1.5 times the nominal
mean data rate.

Fig. 9: Receiver Operating Characteristic (ROC) curve of the
proposed method for attack mitigation.

connects SUMO and OMNET. The proposed method does not
assume specific data type and protocol, hence it is applicable
to a broad range of attack scenarios. Although we applied the
proposed method to a single scenario, in practice it can be
trained on different time intervals to learn different baselines
for several traffic conditions, such as rush hour, weekend,
accident, etc. In that case, depending on the time of the
day the algorithm will use test the incoming data against the
corresponding baseline.
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