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Abstract
Deep learning methods provide enormous promise in automating manually intense tasks such as medical image segmentation 
and provide workflow assistance to clinical experts. Deep neural networks (DNN) require a significant amount of training 
examples and a variety of expert opinions to capture the nuances and the context, a challenging proposition in oncological 
studies (H. Wang et al., Nature, vol. 620, no. 7972, pp. 47-60, Aug 2023). Inter-reader variability among clinical experts 
is a real-world problem that severely impacts the generalization of DNN reproducibility. This study proposes quantifying 
the variability in DNN performance using expert opinions and exploring strategies to train the network and adapt between 
expert opinions. We address the inter-reader variability problem in the context of prostate gland segmentation using a well-
studied DNN, the 3D U-Net model. Reference data includes magnetic resonance imaging (MRI, T2-weighted) with prostate 
glandular anatomy annotations from two expert readers (R#1, n = 342 and R#2, n = 204). 3D U-Net was trained and tested 
with individual expert examples (R#1 and R#2) and had an average Dice coefficient of 0.825 (CI, [0.81 0.84]) and 0.85 (CI, 
[0.82 0.88]), respectively. Combined training with a representative cohort proportion (R#1, n = 100 and R#2, n = 150) yielded 
enhanced model reproducibility across readers, achieving an average test Dice coefficient of 0.863 (CI, [0.85 0.87]) for R#1 
and 0.869 (CI, [0.87 0.88]) for R#2. We re-evaluated the model performance across the gland volumes (large, small) and 
found improved performance for large gland size with an average Dice coefficient to be at 0.846 [CI, 0.82 0.87] and 0.872 
[CI, 0.86 0.89] for R#1 and R#2, respectively, estimated using fivefold cross-validation. Performance for small gland sizes 
diminished with average Dice of 0.8 [0.79, 0.82] and 0.8 [0.79, 0.83] for R#1 and R#2, respectively.
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Introduction

Prostate cancer is the second most prevalent cancer among 
men in the USA [1] and the fourth most common cancer 
worldwide, with over 18.1 million new cases in 2020 [2]. 

Current disease diagnosis is dependent on serum-based 
prostate-specific antigen (PSA), but these assays are limited 
in their diagnostic ability [3]. The recent development of 
multi-parametric magnetic resonance imaging (mpMRI) has 
become the primary modality for assessing prostate disease 
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conditions [4, 5]. Determining the prostate volume (PV) pro-
vides critical information to the oncologist in prostate dis-
ease assessment, monitoring, and treatment planning. Pros-
tate volume also provides prostate disease stratification and 
is often used to standardize prostate-specific antigen (PSA) 
[6]. MRI provides visualization of the gland and enables 
the physicians to assess the disease conditions and monitor 
progression; all of these are useful in treatment planning 
[7]. In clinical practice, T2-weighted MR imaging (T2-WI) 
provides structural information on prostate gland anatomy. 
Additional MR sequences include diffusion-weighted imag-
ing (DWI) and dynamic contrast enhancement (DCE), which 
are known to provide complementary information and have 
been shown to improve prostate cancer detection [8].

MRI is the preferred modality for soft tissue–based 
organs such as the prostate gland, and the volume estimated 
using this modality provides better accuracy than widely 
used ultrasound (US) [9]. Measuring the prostate gland 
volume using manual segmentation is a standard clinical 
practice. However, it is a time-consuming process [10] that 
would benefit from automation, with the promise of artificial 
intelligence (AI)–based models.

There are explicit biases among human experts in manual 
gland delineation, most often influenced by the physician’s 
experience and glandular differences that exist among the 
patients. The organ’s shape and vasculature are two factors 
that affect the prostate gland delineation and the glandular 
volume estimate [11]. DNN models have shown promising 
results in prostate gland segmentation despite the challenges 
with variations in the gland shape and texture [12–14]. 
Training a deep learning model for segmenting the gland 
anatomy would require a large-scale dataset with clinical 
annotations [15]. Medical oncological cohorts are often 
scarce and have many limitations, including unavailable 
labeled data and limited patient diversity [16, 17]. Devel-
oping national databases through the national genome pro-
ject (The Cancer Genome Archive, TCGA, and The Cancer 
Imaging Archive, TCIA) has encouraged data sharing and 
immensely promoted open science [18, 19]. Recent work 
[20] tested the ability of AI systems to detect clinically sig-
nificant prostate cancers using MR imaging and compare 
them with radiologist-provided PI-RADS (v2.1) scores (n = 
9207). These models were independently evaluated on a test 
cohort (n = 1000).

Advancements in AI have enabled many architectures 
that are being proposed for clinical imaging applications. 
Convolutional neural networks (CNNs) have been the first 
[21] to be widely adopted for medical imaging applica-
tions to improve detection, diagnosis, and segmentation 
[22–25]. These models improve the segmentation quality 
by utilizing attention mechanisms, incorporating multi-scale 
learning, and applying various techniques to address shape 

variability. Transformer models are newer architectures that 
allow global representation compared to CNN-type models 
that may improve image-level detection. These models incur 
significant computational expenses and require robust GPUs 
to facilitate efficient training. The 3D U-Net, albeit resource-
intensive, is particularly well-suited for detailed segmenta-
tion, especially in medical imaging.

Multiple studies have examined the inter-reader variabil-
ity concerning the segmentation of the prostate gland and 
the zonal regions. In [26], three deep learning models were 
compared to segment the gland, with annotations provided by 
four readers. They report that the models’ Dice performances 
range from 0.84 to 0.91. In [27], the research employed a 
U-Net architecture and utilized five cohorts established 
through expert reader annotations to examine the impact of 
label errors. The performance of the models was determined 
through the consensus of multiple model predictions. The 
findings indicated that the inter-reader agreement of deep 
learning networks surpassed that of human readers. In [12], 
they used DenseNet and U-Net to segment the gland structure. 
The authors trained their model on a cohort of (n = 141) par-
ticipants and tested it on smaller (n = 47) cohort size, asserting 
that the optimal models yielded a Dice coefficient of 0.92. In 
[28], U-resNet was used to segment the glandular architec-
tures. Two readers were utilized to compare the performance 
of the deep learning models, resulting in a reported best Dice 
coefficient of 0.88 for the central gland. The limitation of 
these studies lies in training the deep learning model on a 
single cohort/reader type dataset. Additionally, utilizing a lim-
ited testing dataset may constrain the generalization capacity.

In [29], a framework was proposed to study the clinical 
annotator’s preferential biases and estimate the user-specific 
segmentation and stochastic errors. The study does outline 
the inherent differences among human annotators and pro-
vides bias estimates. However, it has not presented a numeri-
cal evaluation of this assessment. The study’s key limitation 
is modeling each pixel’s label distribution independently, 
ignoring the spatial correlation among pixels, which is cru-
cial for medical image segmentation. In [30], authors study 
annotator biases in lung CT delineations. They developed 
a multi-view “divide-and-rule” (MV—DAR) model that 
effectively learns from both ambiguous and reliable nodule 
annotations. The model lacks pathological training results, 
which are essential for reliable malignancy classification. 
Ambiguous radiologist labels may bias the model, affecting 
its generalization to new datasets.

In [31], the authors proposed to study the label noise 
distribution and reduce the impact of noisy labels. The 
study attempts to estimate the noise transition matrix that 
enables the estimation of posterior probabilities. The study 
reveals the importance of human-assessed label noises on 
the outcome inference. This work’s limitation is that its 
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accuracy may be compromised if the mini-batch inade-
quately represents classes or exhibits a deficiency in fea-
ture variety. In this work, we evaluate the performance of 
a modified 3D U-Net [32] with varying expert-provided 
ground truth that delineates the prostate gland anatomy in 
a T2w-MRI. We explore strategies to train a balanced net-
work to optimize performance across expert readers. The 
mixed training strategies seem to enhance model perfor-
mance, significantly improving reproducibility and reduc-
ing annotator variability by allowing the model to adapt 
to inherent biases. The U-Net model was trained using 
semi-optimal hyperparameters to segment prostate MR 
annotations. The study overview is described in Fig. 1. 
Our methodology addresses the urgent challenge of adapt-
ing DNN models across diverse annotators’ opinions.

The contribution of the presented work can be summa-
rized as follows:

(a) Our study quantifies variability in deep network perfor-
mance due to differences in human expert opinion.

(b) We explore the best strategies to train the deep network 
that can adapt across the expert opinions and generalize 
the network.

Methods

Datasets

We curated 342 patients who had magnetic resonance imag-
ing (MRI with T2-weighted sequences) that were obtained 
from The Cancer Imaging Archive (TCIA) portal under 
the ProstateX challenge cohort [33]. The imaging data was 
stored in our research Picture Archiving and Communication 
System (PACS) (MIM software®) for our clinical review 
and assessment. The downloaded patient data records were 
de-identified without any patient health identifiers, and the 
patients waived the informed consent. The University of 
South Florida/Moffitt Cancer Center institutional review 
board (IRB) protocol approved the research study. All 
research methods used anonymized patient information and 
were in compliance with relevant ethical use of human sub-
ject guidelines and regulations.

Clinical Readers

The patients’ MR image data (T2 W) was reviewed by our 
institutional clinical/research radiologist, who delineated 
the prostate gland and zonal regions in 3D using semi-auto-
mated digital tools available on the research PACS tools 
(MIM software). The first clinical expert team marking was 
denoted as Reader #1 (R#1) (MCC, Moffitt Cancer Center). 
The MCC team consists of two experts; the first expert 

possesses over 15 years of clinical experience in magnetic 
resonance (MR) prostate imaging, while the second expert 
brings over 12 years of clinical experience in MR prostate 
imaging. The regional markings in three dimensions were 
stored in RT (radiotherapy) format on our research PACS, 
and the cohort was exported for offline model training and 
validation. We obtained an independent set of delineations 
from an expert clinical reader, reader #2 (R#2). The findings 
were previously presented [14], and their annotations were 
shared through the TCIA (The Cancer Imaging Archive) 
data portal. Both R#1 and R#2 annotated the same 204 sam-
ples in the dataset. In addition, R#1 annotated 138 more 
samples, resulting in n = 342 patient image annotations. The 
data from the readers are organized as follows: the same 150 
images from R#1 and R#2 were used for training, and the 
remaining 192 images from R#1 and 54 images from R#2 
were used for testing.

Preprocessing

The MR (T2 W) image data were standardized to a uniform 
resolution across three dimensions and compared with dif-
ferent resampling settings: (1,1,1), (0.5, 0.5, 1), and (0.5, 
0.5, 3). The volumetric image data’s original size dimension 
(256 × 256 × 23) was resized (128 × 128x16) using the 3D 
cropping volume method before feeding it into the network. 
The datasets were preprocessed to eliminate the outliers, and 
the pixel intensities were snipped within the range of three 
standard deviation values outside the positive and negative 
standard deviation values. The image data was normalized 
by scaling the signal intensity between [0,1] following the 
Z-transformation [34].

The dataset was augmented by generating five times 
the number of input images for the chosen batch size. 
The augmentation function generates one random output 
image that differs from the original image, producing a 
total of between 25 and 110 augmented images, actual size 
depends on the chosen batch size. We further used five dif-
ferent functions to augment the data, namely: zoom in the 
range [0.5, 1.5], rotation of 90°, width shift of 0.4 for the 
horizontal shift, height shift of 0.4 for the vertical shift, 
and random horizontal flip. Data augmentation strategies 
are powerful strategies that aid in discriminative model 
training and contribute to improving model performance 
[35].

DNN Model and Training Parameters

A 3D U-Net convolutional neural network [32] was built 
sequentially, starting with random weights, allowing us to 
train the model using the study data with augmentation as 
described in the prior section. The U-Net architecture has 
an encoder analysis path, followed by a decoder synthesis 
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Fig. 1  Study overview. A Process flow diagram. B 3D U-Net model architecture. C Pictorial representation of the experimental setup
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path, widely useful in medical image segmentation [24, 
36, 37]. The original architecture has four convolution 
blocks with complementary arms for up-sampling, often 
represented in a U shape. Each block consists of two 
zero-padded convolution layers, followed by the rectified 
linear unit activation function and max pooling layer for 
the encoder, which is replaced by an up-sampling layer in 
the decoder path. The original network architecture [32] 
was replaced with a 3D convolutional layer (3 × 3 × 3) to 
handle the volumetric image dataset. A similar approach 
was followed for the max-pooling layers. A batch nor-
malization layer was added to the convolution block to 
standardize the data (zero mean, unit standard deviation) 
to achieve the training stabilization, following the model 
architecture recommendations described previously [25, 
38, 39]. The most popular U-Net architecture has reported 
training parameters ranging from 7.85 to 9.6 million [40, 
41]. The 3D architecture used in the study has about 90 
million training parameters with 23 convolution layers; 
the number of training parameters depends on the convo-
lutional layers [42] and kernel size [43]. The 3D model 
needs more significant computational memory than the 2D 
and 2.5D models. However, 3D models converge 20–40% 
faster than the 2D and 2.5D models and have been shown 
to perform better with limited data [44]. In a prior study 
[45], they applied a modified 3D U-Net with 62 million 
training parameters and 23 convolution layers. Figure 1(B) 
shows an overview of the model architecture representing 
the encoder (left arm) and decoder (right arm).

Several architectural advancements have shown improve-
ments in model performance [46–48]. In our work, the 3D 
U-Net model was chosen as it allows manual adjustment of 
the model’s parameters, including the number of layers and 
activation function, and allows architectural flexibility.

In our study, the model was trained with 2000 epochs, 
using multiple strategies to adjust the learning rate to mini-
mize the loss function in each iteration. Initially, we started 
with a fixed learning rate ( 10−5 ). We then tried the cosine 
annealing technique to reduce the epochs and improve the 
model’s convergence with the learning rate (∂) varied from 
10

−8 to 0.01 . Nevertheless, we obtained better performance 
using a fixed learning rate (∂). We illustrate the model 
efficacy during the training phase for single readers (R#1, 
R#2), measured by the loss function over several epochs (see 
Suppl. Figure 1). As the loss functions drop (inverse of Dice 
coefficient, 1-Dice) over the consistent number of iterations 
(over 100 epochs), the model weights would be retained.

Model Performance Evaluation

Dice score (DS) was used to measure the extent of similarity 
between the predicted region of interest and the ground truth 

(gland region) [49]. Additionally, the Hausdorff distance 
(HD) was computed to measure the distance between two 
mask regions and assess dissimilarity between the masks 
[50]. These metrics are widely used in medical imaging to 
measure the similarity or dissimilarity between the predicted 
region and the expert-provided ground truth.

Experimental Setup for Multi‑reader Training

The U-Net based DNN architectures are complex systems 
with millions of nodes to be trained with smaller sample 
datasets [51]. We designed our experiments and developed 
deep network training strategies that are broadly categorized 
in the following ways.

 (i) Hyperparameter tuning. To improve parameter con-
vergence, we attempted fixed and cosine annealing 
techniques. We also experimented with different 
batch sizes (from 5 to 22) to improve the model per-
formance across batch iterations.

 (ii) Baseline model performance. We trained a network 
using reference ground truth provided by individual 
readers (readers R#1, R#2) and evaluated model per-
formance on an independent cohort across readers 
(n= 192 for R#1 and n= 54 for R#2).

 (iii) Mixed proportional training (R#1 and R#2). We 
attempted multiple strategies to create a mixed train-
ing cohort with proportional data from two expert 
readers and evaluate the model performance.

 (iv) Small and large gland samples training. We esti-
mated the average gland volume using delineations 
provided by two readers (R#1 and R#2). The cohort 
was divided into small and large gland volumes using 
the median value as the cut point. The DNN models 
were trained and tested in each of these sub-cohorts.

Table 1  Data cohort used for the study

Groups Gland annotation (3D)

Reader#1 (n = 342) Reader#2 (n = 204)

Training 150 150
Testing 192 54
Gland volume cm3 (µ, 95% CI), median
Volume 63 [59.4 66.5], 55.357 67.4 [62.3 72.5], 

58.197
Sub-cohort size

 Large (≥ median) 167 109
 Small (< median) 175 95
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Results

In this study, we assembled a cohort of 342 patients with 
MRI T2 W scans to train a 3D U-Net architecture from 
random weights, followed by training approaches previ-
ously proposed to segment prostate gland anatomy. We used 
annotations provided by independent expert readers (R#1: 
n = 342, R#2: n = 204); see Table 1. We evaluated different 
strategies to train the network to obtain the best reproduc-
ible performance across multiple expert references (R#1 and 
R#2). We investigated the key hyperparameters such as the 
batch size (5, 16, 22), learning rate (fixed 10−5 ), and cosine 
annealing ( 0.01 to 10

−8 ) to converge on a baseline network 
that optimizes the network and provides better convergence. 
We proposed to use lower batch sizes (range from 5, 16, 22) 
due to the higher memory requirement. We found that a batch 
size of 22 and a learning rate of 10−5 exhibit better network 
convergence for our study. We evaluated the network model 
performance with input data resampled at different resolu-
tions (1, 1, 1), (0.5, 0.5, 1), and (0.5, 0.5, 3). The model 
performance varied across the resolutions with an average 
Dice coefficient of 0.77, 0.74, and 0.825, respectively, for the 
respective resolutions (using reader R#1); see Suppl. Table 1.

Independent Reader Training

The Dice performance using individual readers separately 
was suboptimal, and details on the experiment are deferred 
to Suppl. Table 2. Training on R#1 with a 22-batch size, 
the average Dice coefficient for R#1 test was 0.825, and for 
R#2, it was 0.68 using R#1 training weights. While using 
R#2 for training, the average Dice coefficient was 0.707 for 
R#1 test (using R#2 training weights) and 0.835 for R#2 

test (Table 2A). Five-fold cross-validation with individual 
training (R#1, R#2) was also used to obtain an average Dice 
of 0.7982 and 0.88, respectively (see Suppl. Table 3B). We 
also compared our findings with an n-fold random selec-
tion of train and test cohorts, averaging over five repeats, 
with n = 2,3,5. We find the average Dice coefficient ranging 
between 0.794 and 0.8204 when trained and tested on R#1, 
and between 0.8244 and 0.8539 when trained and tested on 
R#2 (see Suppl. Table 3A).

Mixed Proportions

Using mixed training examples (R#1 and R#2, each with 
n = 150), the average testing Dice coefficient is 0.811 and 
0.851 for R#1 and R#2, respectively (see Table 2B). Figure 2 
(A and B) shows the sample reader’s annotation and the 
best-performing sample patient (Dice of 0.94 and 0.91 for 
R#1 and R#2, respectively) obtained by mixed training. In 
contrast, Fig. 3 (A and B) shows representative suboptimal 
performance (Dice coefficient ranging from 0.778 to 0.75 
for R#1 and R#2, respectively).

We attempted to improve the deep network performance 
by using different proportions of expert references (R#1 
and R#2). While attempting a different number of training 
examples from each of the experts and fixing the other, the 
performance was evaluated on an unseen test set. For R#1, 
we applied different numbers of training samples (R#1, 
n = 25 to 125), considering the entire R#2 dataset. In the 
mixed training case R#1, n = 100 and R#2, n = 150, we 
find improved performance with an average Dice of 0.862 
for R#1 and 0.868 for R#2 with the lowest mean absolute 
deviation of 0.006 (see Table 3).

We systematically experimented with model training 
with several proportions of samples from the two readers. 
In addition to varying R#1 training proportion, we fixed 
the R#1 example and proportionally varied R#2 training 
examples. We used fivefold cross-validation to evaluate 
the model performance (see Suppl. Table 4A&B). The 
results were not better than the highlighted best result 
in Table 3.

Cohorts Based on Gland Size

We estimated the average gland volume using delineations 
from R#1 and R#2. Using the average median volume of 
56.77cm

3 , we divide the samples into sub-cohorts (large and 
small glands). For small glands, there are 175 samples in 
R#1 and 95 in R#2. For large glands, there are 167 samples 
in R#1 and 109 in R#2 (see Table 1).

We retrained our models in these sub-cohorts using pro-
portionally mixed readers. We used fivefold cross-valida-
tion to estimate the performance. We first fixed R#2; we 
found in the case of a large gland cohort, the best model 

Table 2  Models were trained (A) using data from individual readers 
(R#1, R#2) and (B) using the mixed dataset (R#1 and R#2) compared 
to cross-validated samples

(A) Individual cohort (average Dice coefficient (µ, 95% CI)
Training

R#1, n = 150 R#2, n = 150
Testing

 R#1 (n = 192) 0.825 [0.81 0.84] 0.707 [0.67 0.75]
 R#2 (n = 54) 0.68 [0.64 0.72] 0.835 [0.81 0.86]

(B) Mixed training (average Dice coefficient (µ, 95% CI)
Training Mixed

(R#1, n = 150 and 
R#2, n = 150)

Cross-validation 
(fivefold)

(R#1, n = 150 
and R#2, n = 
150)

Testing
 R#1 (n = 192) 0.811 [0.76 0.86] 0.826 [0.81 0.84]
 R#2 (n = 54) 0.851 [0.82 0.88] 0.875 [0.86 0.89]
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was obtained for a proportion of 70% of R#1 (n = 70% of 
167) and fixed R#2 (n = 109), yielding a Dice of 0.842 
for R#1 and a Dice of 0.866 for R#2, and the mean abso-
lute deviation equals 0.024, and results in a reduction in 
variability, with a mean absolute deviation of 0.002 using 
(R#1, n = 34 and R#2, n = 87), achieving an average Dice 
coefficient of 0.84 (see Table 4A). In the case of a small 
gland cohort, the best model performance for the propor-
tional mixture was with 85% of the R#1 dataset (n = 85% 
of 175 samples) and fixed R#2 (n = 95 samples). A Dice of 
0.803 for R#1 and 0.829 for R#2, and 0.027 mean absolute 
deviation was achieved (see Table 4B).

We then fixed R#1 and evaluated the model perfor-
mance. In a sub-cohort with large gland volumes, the best-
performing model’s Dice was 0.838 for R#1 and 0.872 
for R#2, achieved using 85% of R#2 (n = 85% of 109), 
with a mean absolute deviation of 0.034 (see Table 5A). 
In the small gland volume sub-cohort, we find the best 

model performance was achieved when selecting 70% of 
R#2 (n = 70% of 95) and fixed R#1 (n = 175); the model 
reached an average Dice of 0.804 and 0.837 for R#1 and 
R#2, respectively, with a mean absolute deviation of 0.033 
(see Table 5B).

In addition, applying small and large cohorts improved 
model reproducibility among readers compared to the sin-
gle cohort training model performance; Fig. 4 illustrates 
the Dice coefficients for large- and small-sized glands 
across different proportions. We noticed that for the small 
gland volume datasets, the Dice coefficient was approxi-
mately 0.8 using 25% of the R#1 and 100% of the R#2 
(other possible mixtures for small glands include using 
10% of the R#2 with 100% of the R#1). The model per-
formance improved when using 40% of R#1 and 100% of 
R#2 for the large gland volume group, with an average 
Dice of ≈ 0.85.

Fig. 2  Representative slices of a patient’s T2-weighted (T2W) MRI 
showing delineation results by the best-performing network (cyan) 
trained on the mixed training dataset. (A) R#1 annotations (Dice = 

0.943). (B) R#2 annotations (Dice = 0.914). Purple contours indicate 
expert references by the respective readers
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Cohorts Based on Similarity

We followed the investigation by assembling a sub-cohort 
with high concordance between readers prior to training 
(high similarity between the ground truth masks) and ana-
lyzing the model’s performance on the examined dataset for 
both readers. Of these, 72 patient samples had Dice coef-
ficients of 0.7 or higher from R#1 and R#2. Compared to 
the previous testing dataset (R#1, n = 192; R#2, n = 54), the 
sub-cohort includes 148 samples from both readers, utiliz-
ing the cross-validation technique that trained the model, 
which was then assessed with the testing dataset (R#1, n = 
270; R#2, n = 132). Comparing individual and mixed pro-
portional similarity training examples, the model achieved 
an average Dice coefficient ranging from 0.826 to 0.848 for 
R#1 and from 0.869 to 0.875 for R#2. Although using a 
mixed training dataset enhances the model’s performance 
on the larger testing dataset, the size of the training dataset 

Fig. 3  Representative slice of a patient’s T2 W image with delinea-
tion provided by suboptimal network performance (in cyan) that was 
trained on mixed training dataset (R#1, n = 150 and R#2, n = 150). 

A R#1 annotation with an average Dice coefficient of 0.76. B R#2 
annotation, with an average Dice coefficient of 0.75. The annotation 
in purple shows the original reference by the respective reader

Table 3  Performance comparison of models trained using mixed 
reader examples with varying R#1(R#2, n = 150). Where MAD is 
mean absolute deviation

Model performance Dice coefficient (µ, 95% CI)

Training: 
R1 samples,
R#2 fixed 
(n = 150)

Testing

R#1 R#1 (n = 192) R#2 (n = 54) MAD (R#1 and 
R#2)

25 0.823 [0.81 0.84] 0.868 [0.84 0.89] 0.045
50 0.833 [0.82 0.85] 0.878 [0.87 0.89] 0.045
75 0.828 [0.81 0.84] 0.874 [0.86 0.89] 0.046
100 0.863 [0.85 0.87] 0.869 [0.87 0.88] 0.006
125 0.809 [0.79 0.82] 0.856 [0.84 0.87] 0.047
150 0.811 [0.78 0.84] 0.851 [0.82 0.88] 0.04
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remains limited compared to other combination techniques. 
We explored different proportional mixture strategies to 
enhance the model’s performance and reproducibility, thus 
minimizing variability among readers (see Suppl. Table 6).

Figure 5 shows how the model performance gradually 
improves on example patient delineations using different 
training strategies; Fig. 5(A) applies a single reader train-
ing dataset, and Fig. 5(B) shows the mixed training dataset 
(train R#1 and R#2, n = 150 and 150) result. Then, using 
a network trained on the highly concordant mixed training 
datasets (R#1, n = 72 and R#2, n = 72), the result is shown 
in Fig. 5(C).

Figure 6 illustrates the comparison of model performance 
utilizing various pairwise training strategies. Figure 6(A) 
shows that the model performance remained consistent when 
trained with individual cohorts as opposed to mixed cohort 
training (readers R#1 and R#2, n = 150 samples each). 
Figure 6(B) delineates the outcomes when the model was 
trained using individual cohort training compared to mixed 
training (readers R#1 and R#2, n = 150 samples each), incor-
porating five-fold cross-validation; a notable enhancement 
in model performance was observed for reader R#2, with 

an increase in the average Dice coefficient from 0.811 to 
0.826. In contrast, Fig. 6(C) illustrates how a proportion-
ately mixed training dataset (reader R#1, n = 100 samples 
and reader R#2, n = 150 samples) contributed to improved 
model repeatability among readers in the test cohort when 
compared to mixed training (R#1 and R#2, n = 150 samples 
each). Lastly, Fig. 6(D) presents the performance outcomes 
using similar samples for mixed training (R#1 and R#2).

Statistical Significance

We compared the model performance between single reader 
and multiple reader training and computed statistical signifi-
cance (Wilcoxon rank-sum test) with Bonferroni multiple 
testing correction. A significant difference was found com-
paring single cohort to mixed cohort (p = 0.0058) and sin-
gle cohort to proportional mixed cohort with a p < < 0.001. 
Additionally, the mixed cohort with and without cross-val-
idation significantly differed from the proportionally mixed 
testing (p < < 0.001) for R#1. Regarding R#2, significant 
differences were identified across all training strategy com-
parisons (p ≤ 0.0038), except the comparison between the 
single cohort and the mixed cohort without cross-validation. 
We summarize the testing pairs in Table 6 and Fig. 7.

In addition, we evaluated the model utilizing three inde-
pendent, previously unexamined datasets. Each cohort 
weight was analyzed separately (R#1, n = 150 and R#2, n = 
150) alongside mixed training weights (R#1, n = 100 and 
R#2, n = 150). As illustrated in Table 7, the model exhib-
ited suboptimal performance when assessed with the single 
cohort models; however, there was a marked performance 
improvement when the mixed training model was applied 
to the testing cohorts. We show that a proportionally mixed 
training technique improves reproducibility compared to 
individual trained models (p-value < < 0.01 and 0.004 for 
R#1 and R#2, respectively, R#1, n = 100/R#2, n = 150).

And we compared the 3D U-Net used in the study with 
alternate architectures, SegResNet and 3D U-Net (Nvidia’s 
Monai-Zoo models [52, 53]); these models were re-trained 
for our datasets starting from random weights. We achieved 
an average Dice coefficient of 0.807 and 0.845 for R#1 (n = 
192) and R#2 (n = 54), respectively. In addition, we com-
pared the SegResNet Monai architecture; test performance 
yielded an average Dice coefficient of 0.815 and 0.852 for 
R#1 (n = 192) and R2# (n = 54), respectively. The model’s 
test performance using the (R1, n = 150 and R2, n = 150) 
mixed training dataset approach (for R#1, test) yielded an 
average Dice of 0.825 and 0.839 for U-Net and SegResNet 
models, respectively. For R#2 (n = 54), the Dice coefficients 
were 0.851 and 0.873 for U-Net and SegResNet models 
using the mixed training dataset approach, a notable per-
formance improvement when the mixed training model was 
used (see Suppl. Table 7).

Table 4  Differences in model performance with the proportion of 
#R1 (fixed R#2), in (A) large-size glands and (B) small-size glands

The results were evaluated using cross-validation using propor-
tional (15% increment of R#1) training between readers (R#1 and 
R#2) where MAD is mean absolute deviation

(A) Large glands: Dice coefficient (µ, 95% CI): fivefold-CV
Training: 

R1 (%),
R#2 fixed 

(n = 87)

Testing
R#1 R#2 (n = 22) MAD (R#1 

and R#2)

100 0.835 [0.82 0.85] 0.859 [0.85 0.87] 0.022
85 0.843 [0.83 0.85] 0.862 [0.85 0.88] 0.019
70 0.842 [0.82 0.86] 0.866 [0.86 0.87] 0.024
55 0.84 [0.83 0.85] 0.849 [0.83 0.86] 0.009
40 0.846 [0.82 0.87] 0.849 [0.84 0.86] 0.003
25 0.838 [0.83 0.85] 0.836 [0.82 0.86] 0.002
10 0.833 [0.8 0.87] 0.838 [0.82 0.85] 0.005
(B) Small glands: Dice coefficient (µ, 95% CI): fivefold-CV
Training: 

R1 (%),
R#2 fixed 

(n = 76)

Testing
R#1 R#2 (n = 19) MAD (R#1 

and R#2)

100 0.809 [0.8 0.82] 0.831 [0.82 0.85] 0.022
85 0.803 [0.78 0.83] 0.829 [0.81 0.85] 0.027
70 0.798 [0.77 0.82] 0.813 [0.79 0.84] 0.015
55 0.798 [0.78 0.82] 0.817 [0.81 0.83] 0.018
40 0.8 [0.79 0.81] 0.809 [0.79 0.83] 0.009
25 0.805 [0.79 0.82] 0.798 [0.78 0.81] 0.007
10 0.754 [0.74 0.77] 0.787 [0.75 0.82] 0.033
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Table 5  Differences in model performance with the proportion of #R2 (fixed R#1), for (A) large-size glands and (B) small-size glands. Where 
MAD is mean absolute deviation

The results were evaluated using cross-validation using proportional (15% increment of R#2) training between readers (R#1 and R#2)

(A) Large glands: Dice coefficient (µ, 95% CI): fivefold-CV
Training: R2 (% proportion), R#1 fixed (n = 134) Testing

R#1 (n = 33) R#2 MAD (R#1 
and R#2)

100 0.834 [0.82 0.85] 0.866 [0.86 0.87] 0.032
85 0.838 [0.83 0.84] 0.872 [0.86 0.89] 0.034
70 0.823 [0.81 0.83] 0.866 [0.85 0.88] 0.043
55 0.832 [0.82 0.84] 0.870 [0.86 0.88] 0.038
40 0.825 [0.82 0.83] 0.869 [0.84 0.89] 0.044
25 0.827 [0.82 0.84] 0.86 [0.84 0.88] 0.033
10 0.815 [0.8 0.83] 0.857 [0.78 0.93] 0.042
(B) Small glands: Dice coefficient (µ, 95% CI): fivefold-CV
Training: R2 (% proportion), R#1 fixed (n = 140) Testing

R#1 (n = 35) R#2 MAD (R#1 
and R#2)

100 0.808 [0.79 0.83] 0.826 [0.81 0.84] 0.018
85 0.803 [0.79 0.82] 0.817 [0.79 0.84] 0.014
70 0.804 [0.79 0.81] 0.837 [0.82 0.85] 0.033
55 0.792 [0.78 0.81] 0.824 [0.81 0.84] 0.032
40 0.795 [0.79 0.81] 0.841 [0.82 0.86] 0.045
25 0.802 [0.79 0.81] 0.824 [0.8 0.84] 0.023
10 0.794 [0.78 0.81] 0.808 [0.77 0.85] 0.014

Fig. 4  Deep network models test performance for mixed proportional training for: A large glands (fixed R#2), B small glands (fixed R#2), C 
large glands (fixed R#1), and D small glands (fixed R#1). The Dice coefficient was estimated by fivefold cross-validation



Journal of Imaging Informatics in Medicine 

Discussion

The study used a 3D U-Net architecture [32] where a con-
volutional layer is added to a 2D U-Net to segment the 
prostate gland in three dimensions. We trained the network 
using annotations obtained from two expert groups for the 
same patient’s T2w-MR imaging. Using these as references, 
we developed strategies to train deep models to perform at 

their best and reproducibly across the two readers. We show 
that proportionally mixed training with expert examples 
improved the performance and reproducibility across the 
readers.

The 3D U-Net architecture has been popularly used in seg-
menting structures in clinical imaging and provides the possibil-
ity of replacing manually intense tasks [38, 42]. The architec-
ture has an encoder/decoder arm that complements each other, 

(A) 

(B) 

(C) 

Fig. 5  Representative slice of a patient’s T2 W image with delinea-
tion provided by the best network performance (in cyan). The model 
was trained using examples from A Reader R#2, and tested on R#2 
(Dice of 0.736), B mixed training (R#1, n = 150 and R#2, n = 150), 

tested on R#2, yielded a dice of 0.75, C samples with similar exam-
ples and mixed training (R#1, n = 72 and R#2, n = 72), tested on R#1 
(Dice = 0.7) and R#2 (Dice of 0.81). Annotation in purple is the orig-
inal reference by respective readers
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Fig. 6  Deep network models test performance using different training 
datasets: A individual cohort training (R#1, R#2) and mixed training 
(R#1 and R#2, n = 150 samples each), B individual cohort and mixed 
training estimated using five-fold cross-validation, C mixed training 
(R#1 and R#2, n = 150 samples each) compared to proportion mix-

ture (R#1, n = 100 samples and R#2, n = 150 samples), D mixed 
training (R#1 and R#2, n = 150 samples each) compared to mixed 
training of similar examples (R#1 and R#2, n = 72 samples each) 
with five-fold cross-validation

Table 6  Comparing the test 
performance of deep network 
models using different 
training strategies, including 
single cohort training, mixed 
cohort training (with and 
without cross-validation), and 
proportional mixed cohort 
training

# The Wilcoxon rank-sum test with Bonferroni correction is applied, setting the significance threshold at 
p ≤ 0.0083

Training strategy comparison p-value (R#1) Is Significant # p-value (R#2) Is Signifi-
cant #

Single cohort (Table 2A)
vs
Mixed cohort (Table 2B)

0.0058 Yes 0.5905 No

Single cohort (Table 2A)
vs
Mixed cohort (CV) (Table 2B)

0.379 No 0.00053 Yes

Single cohort (Table 2A)
vs
Proportional mixed cohort (Table 3)

 < 0.001 Yes 0.0036 Yes

Mixed training cohort (with CV and 
without CV) (Table 2B)

0.1588 No  < 0.001 Yes

Mixed cohort (Table 2B)
vs
Proportional mixed cohort (Table 3)

 < 0.001 Yes 0.0036 Yes

Mixed cohort (CV) (Table 2B)
vs
Proportional mixed cohort (Table 3)

 < 0.001 Yes 0.0038 Yes
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allowing better boundary decisions [38, 39]. These architec-
tures have been widely used in segmenting prostate MRI [13, 
14, 54]. Prostate gland segmentation poses a challenge due to 
differences in the organ’s shape and texture and the cellular 
heterogeneity that adds to the complexity of developing auto-
mated models [55]. There have been many prior studies that 
have proposed automated segmentation methods for the gland 
anatomy [11, 13, 56]. The challenge has been developing an 
architecture that can work across different population groups.

Our study is one of the first to evaluate network performance 
and provides strategies to train deep models using two expert 
reader annotations (in 3D) on T2 W MR images. Previous stud-
ies in prostate gland segmentation [56–59] have shown that 
U-Net and CNN-type architectures have been used on smaller 
cohorts to test their network performance, which limits repro-
ducibility across clinical centers. Our study has assembled 
a relatively larger cohort (n = 345) that allows better model 
training and evaluation. Data augmentation techniques were 
employed to enhance model training efficacy. Prior research 
[60] have substantiated that data augmentation significantly 
improves segmentation performance, as quantified by the Dice 
coefficient, yielding enhancements ranging from 2 to 26%.

In [61], the model was trained on an institutional cohort 
and tested on two independent datasets, claimed that central 
gland segmentation achieved Dice score 0.909 and for zonal 
segmentation performance reached Dice of 0.86 for internal 
testing group. They concluded that the central gland volume 
is a crucial factor affecting the model’s segmentation per-
formance. In reference to [62], three distinct deep learning 
models were evaluated to segment the prostate gland. Signal 
quality and prostate gland volume were considered influenc-
ing elements of network performance. It was reported that 
both prostate volume and inadequate signal quality adversely 
affect the performance of the model. In [63], which reports 
the model performance for prostate segmentation, the Dice 
coefficient score showed improvements for the model with 
larger glands that were consistent in independent cohorts.

Deep learning models present significant potential for 
enhancing the accuracy of prostate gland segmentation, which 
is critical for the standardization of prostate-specific antigen 
(PSA) density [64–66]. The integration of PSA and segmen-
tation outputs seeks to improve the classification of Gleason 
grades. Increased precision in tumor boundary detection may 
enable more targeted therapeutic strategies and signifies a 
considerable advancement in the detection of prostate can-
cer, as well as in the formulation of patient treatment plans.

In summary, our study addresses real-world clinical chal-
lenges to reproduce the deep network across readers and 
identify strategies to improve the performance of these net-
works. In our study, of the several experiments, the propor-
tional mixture-based model training significantly improved 
model performance and decreased variability among readers.

Limitations

Deep model reproducibility across cohorts is challeng-
ing due to many acquisition level differences, such as 
the patient cohort, scanner type, and operator setting. 
Our study uses a large cohort of examples, with multiple 

Fig. 7  Deep network model test performance by applying different 
training strategies, including single cohort training, mixed cohort 
training (with and without cross-validation), and proportional mixed 

cohort training. The Wilcoxon rank-sum test with Bonferroni correc-
tion is applied, setting the significance threshold at p < 0.0083

Table 7  Evaluating model performance on three independent datasets 
using a single cohort model (R#1, R#2) and a mixed training model 
(R#1, n = 100 and R#2, n = 150)

Unseen testing dataset Dice coefficient (test)

Train: 
(R#1, n = 
150)

Train: 
(R#2, n = 
150)

Mixed (R#1, n = 
100 and R#2, n = 
150)

Public dataset (TCIA—
prostatectomy, n = 
25)

0.6 0.54 0.765

MCC#1 dataset (n = 
171)

0.665 0.545 0.77
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readers from two diverse institutions. Having a much 
larger cohort with a few more readers would capture the 
spectrum of variability among the readers and improve 
the network’s generalization. To mitigate the differ-
ences in imaging systems, acquisition settings, patient 
level factors, expert reader training, a much larger cohort 
size with diverse readers becomes necessary to improve 
model training/validation.

Conclusion

We used a 3D U-Net-based DL architecture to segment 
prostate gland anatomy on MRI-T2 W and quantified 
variability between independent expert readers. The pro-
posed models use balanced hyperparameters and strate-
gies to improve training to mitigate variability and pro-
vide a reproducible network across varying ground truth. 
We show that proportionally mixed data training is one 
strategy that improves network translation across expert 
references.

We find the cohort with large glands (over median 
value) shows better model performance and improved 
variability between the readers.

Supplementary Information The online version contains sup-
plementary material available at https:// doi. org/ 10. 1007/ 
s10278- 025- 01504-8.
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