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ABSTRACT
A multimodal system with Poisson, Gaussian, and multi-
nomial observations is considered. A generative graphical
model that combines multiple modalities through common
factor loadings is proposed. In this model, latent factors are
like summary objects that has latent factor scores in each
modality, and the observed objects are represented in terms
of such summary objects. This potentially brings about a
significant dimensionality reduction. It also naturally enables
a powerful means of clustering based on a diverse set of
observations. An expectation-maximization (EM) algorithm
to find the model parameters is provided. The algorithm is
tested on a Twitter dataset which consists of the counts and
geographical coordinates of hashtag occurrences, together
with the bag of words for each hashtag. The resultant factors
successfully localizes the hashtags in all dimensions: counts,
coordinates, topics. The algorithm is also extended to accom-
modate von Mises-Fisher distribution, which is used to model
the spherical coordinates.

Index Terms— multimodal data fusion, unsupervised
learning, graphical models, Twitter

1. INTRODUCTION

In complex systems a variety of observation modes (e.g.,
sensor readings, images, text) may be available to the deci-
sion maker. For instance, the emerging technologies, such
as cyber-physical systems, internet of things, autonomous
driving, and smart grid, can provide such a rich observation
space, both in volume and modality. In monitoring a complex
system, all modalities bear information about the system’s
internal state. In some cases, an anomaly may not be detected
in each modality alone, but can be easily detected through a
joint processing.

Unsupervised learning methods are instrumental in dis-
covering hidden structures in data (e.g., factor analysis [1],
topic modeling [2]), which can then be used to perform di-
mensionality reduction, anomaly detection, and clustering.
Conventionally, they deal with unimodal data [1, 2]. Efficient
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fusion of multimodal data brings about information diversity
and can greatly improve the statistical inference performance
[3]. For example, data used for detection and estimation tasks
are strongly coupled when both problems are solved jointly,
considerably increasing the overall performance [4].

In [5], Gaussian and multinomial observations are jointly
modeled using a mixture of factor analyzers. Although that
work is conceptually similar to our work, its probabilistic
model is quite different. In [5], the latent factor scores are
shared in the system, which also synchronizes the modalities.
Here we do not impose a synchronized observation model.
We let the different modalities run in their own continuous-
valued state, and only link them through the factor loadings
of objects. On the contrary, in [5], modalities differ in their
factor loadings, which can take a discrete set of values.

2. PROBLEM STATEMENT

We consider P objects (e.g., documents) each of which is ob-
served through three disparate information sources. In this
paper, we assume Poisson, Gaussian, and multinomial sta-
tistical models for the information sources because of their
wide application areas. Specifically, Poisson distribution is
used to model event counts; Gaussian distribution is used for
continuous-valued observations; and multinomial distribution
models categorical observations. (Real-world examples can
be seen in the Experiments section.)

The graphical model in Fig. 1 is assumed to generate the
multimodal observations Y P×N , ZP×M , and HP×D. For
each object i, the latent factor scores xn, wm, and vd for K
factors are mixed in the the natural parameters of the distri-
butions through the unknown factor loadings ci. Gaussian
priors are assumed for the latent factor scores. In particular,
each Poisson observation yin is conditionally distributed as

yin|xn ∼ Pois(ec
T
i xn), (1)

xn ∼ N (ζ,R)

for i = 1, . . . , P, n = 1, . . . , N . Similarly, for each Gaussian
observation zin we have

zim|wm ∼ N (cTi wm, σ
2
i ), (2)

wm ∼ N (α,S)
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Fig. 1. Generative graphical model. Plate representation is
used to show repeated structures. Circles and rectangles rep-
resent random and deterministic variables, respectively. Ob-
served variables are shaded. Each object i has three disparate
observation streams: Poisson {yin}n, Gaussian {zim}m, and
multinomial {hid}d. Factor loadings ci, and the latent fac-
tor scores xn, wm, and vd constitute the multimodal factor
model.

for m = 1, . . . ,M . We use different observation indices for
different information sources since they do not need to be syn-
chronized and the total number of observations may vary. For
each multinomial observation hid we have

hid|{vd} ∼ Mult

(
Li;

ec
T
i v1∑D

d=1 e
cTi vd

, . . . ,
ec
T
i vD∑D

d=1 e
cTi vd

)
,

(3)

vd ∼ N (β,Q),

where Li is the total number of instances and hid is the num-
ber of instances observed under category d.

The above probabilistic models are similar to generalized
linear models since mixing occurs in the natural parameters.
However, here the regressors xn, wm, and vd are unknown,
as well as the regression coefficients ci, as opposed to gener-
alized linear models.

3. EXPECTATION-MAXIMIZATION ALGORITHM

In this section, we derive the expectation-maximization (EM)
algorithm to find the parameters

θ = {ci, ζ,R, σ2
i ,α,S,β,Q}.

3.1. Poisson E-step

We are interested in computing the expectation of the complete-
data log-likelihood E [logP({yn,xn}|θ)] over the posterior
distribution P({xn}|{yn}, θ) of the latent factor scores. Due
the lack of conjugacy between the prior on xn and the Poisson
likelihood, the posterior distribution does not have a closed

form expression. Therefore, as in [6], we approximate the
posterior with a Gaussian whose mean and covariance are
the mode of the posterior (i.e., MAP estimate of xn) and the
negative inverse Hessian of the log posterior at that mode.

We start by writing

logP(xn|yn, θ) = logP(yn|xn, θ) + logP(xn|θ) + C1

=

(
P∑
i=1

−ecTi xn + yinc
T
i xn

)

− 1

2
xTnR

−1xn + ζTR−1xn + C2,

where C1 and C2 are constants that do not depend on xn, and
we used the Poisson likelihood from (1) and the multivariate
Gaussian pdf. Then, the gradient and the Hessian are given
by

∇xn logP(xn|yn, θ) =

P∑
i=1

(
−ecTi xn + yin

)
ci −R−1(xn − ζ)

∇2
xn logP(xn|yn, θ) =

P∑
i=1

−ecTi xncicTi −R−1. (4)

Since logP(xn|yn, θ) is strictly concave in xn, we can find
the unique mode ξn using the gradient and the Hessian in
Newton’s method, i.e.,

Hxtn(xt+1
n − xtn) = −Gxtn , xtn → ξn,

where Gxtn andHxtn are the gradient and the Hessian at itera-
tion t, computed using (4).

We approximate the posterior as
P(xn|yn, θ) ≈ N (ξn,Ψn), where Ψn = −H−1

ξn
. Finally,

the expected complete-data log-likelihood is given by

E [logP({yn,xn}|θ)]

=

N∑
n=1

E [logP(yn|xn, θ) + logP(xn|θ)]

=

N∑
n=1

P∑
i=1

E
[
−ecTi xn + yinc

T
i xn

]
− 1

2
E
[
xTnR

−1xn
]

+ ζTR−1E [xn]− 1

2
ζTR−1ζ − 1

2
|R|+ C3

≈
N∑
n=1

P∑
i=1

(
−E
[
ec
T
i xn

]
+ yinc

T
i ξn

)
− 1

2
Tr
(
R−1(Ψn + ξnξ

T
n )
)

+ ζTR−1ξn

− 1

2
ζTR−1ζ − 1

2
|R|+ C3, (5)



where C3 is a constant and we used the fact that

E
[
xTnR

−1xn
]

= E
[
Tr(xTnR

−1xn)
]

= E
[
Tr(R−1xnx

T
n )
]

= Tr
(
R−1E

[
xnx

T
n

])
≈ Tr

(
R−1(Ψn + ξnξ

T
n )
)
. (6)

3.2. Poisson M-step

In iteration t+ 1, we find the parameters ζt+1 andRt+1 that
maximize (5). Particularly,

ζt+1 = arg max
ζ
ζTR−1

N∑
n=1

ξtn −
N

2
ζTR−1ζ.

Equating the derivative to zero we find that the mean of the
factor scores is given by the average of the posterior means,
i.e.,

ζt+1 =
1

N

N∑
n=1

ξtn. (7)

Similarly,

Rt+1 = arg max
ζ

N∑
n=1

−1

2
Tr
(
R−1(Ψt

n + ξtn(ξtn)T )
)

+ ζTR−1
N∑
n=1

ξtn −
N

2
ζTR−1ζ − N

2
|R|.

Taking the derivative and equating to zero we get

N∑
n=1

(Rt+1)−1

[
1

2
(Ψt

n + ξtn(ξtn)T )− ζt+1ξTn

+
1

2
ζt+1(ζt+1)T

]
(Rt+1)−1 − N

2
(Rt+1)−1 = 0

Rt+1 =
1

N

N∑
n=1

(
Ψt
n + ξtn(ξtn)T

)
− ζt+1(ζt+1)T . (8)

3.3. Gaussian E-step

We want to compute E [logP({zm,wm}|θ)] over the poste-
rior distribution P({zm}|{wm}, θ) of the latent factor scores.
Since the Gaussian prior on the factor scores is conjugate to
the Gaussian likelihood, the posterior is also Gaussian. To
find its mean and covariance, from (2), we write

P(zm,wm|θ) = P(zm|wm, θ)P(wm|θ)

=
e−

1
2 [(zm−Cwm)TΣ−1(zm−Cwm)+(wm−α)TS−1(wm−α)]

(2π)
P+K

2 |Σ| 12 |S| 12
,

whereC = [c1 . . . cP ]T and Σ = diag(σ2
1 , . . . , σ

2
P ). Collect-

ing the terms that depend on zm together and completing the

square we finally obtain the posterior mean and covariance as

am = B(CTΣ−1zm+S−1α), B = (CTΣ−1C+S−1)−1,
(9)

respectively.
Then, the expected complete-data log-likelihood is writ-

ten as

E [logP({zm,wm}|θ)]

=

M∑
m=1

E [logP(zm|wm, θ) + logP(wm|θ)]

= −1

2

{
M∑
m=1

P∑
i=1

(
1

σ2
i

E
[
(zim − cTi wm)2

]
+ log(2πσ2

i )

)

+ E
[
(wm −α)TS−1(wm −α)

]
+ log((2π)K |S|)

}
.

(10)

3.4. Gaussian M-step

At each iteration t + 1, we find the parameters αt+1, St+1,
and {(σ2

i )t+1}i that maximize (10). Specifically,

αt+1 = arg max
α
−1

2

M∑
m=1

E
[
(wm −α)TS−1(wm −α)

]
= arg max

α
αTS−1

M∑
m=1

atm −
M

2
αTS−1α,

where atm, given in (9), is the posterior mean E[wm] at itera-
tion t. Taking the derivative we get

αt+1 =
1

M

M∑
m=1

atm. (11)

Similarly,

St+1 = arg max
S

− 1

2

M∑
m=1

E
[
(wm −α)TS−1(wm −α)

]
− M

2
log |S|

= arg max
α
−1

2

M∑
m=1

Tr
(
S−1(B + ama

T
m)
)

+αTS−1
M∑
m=1

atm −
M

2
αTS−1α− M

2
log |S|,

where we used (6) to write E
[
wT
mS

−1wm
]
. Similar to (8),

taking the derivative we find

St+1 =
1

M

M∑
m=1

(
Bt
m + atm(atm)T

)
−αt+1(αt+1)T . (12)



We next find

(σ2
i )t+1 = arg max

σ2
i

− 1

2σ2
i

M∑
m=1

E
[
(zim − cTi wm)2

]
− M

2σ2
i

log σ2
i ,

where, from (9), cTi wm|zm ∼ N (cTi am, c
T
i Bci), hence

E
[
(zim − cTi wm)2

]
= cTi Bci + (cTi am − zim)2. Equat-

ing the derivative to zero and solving for σ2
i we get

(σ2
i )t+1 =

1

M

M∑
m=1

(zim − cTi am)2 + cTi Bci. (13)

3.5. Multinomial E-step

In the multinomial case, for identifiability, we use the last cat-
egory as pivot and write the likelihood in terms of the alterna-
tive factor scores ud = vd − vD, d = 1, . . . , D,

P(hi|{ud}, θ) =

D∏
d=1

(
ec
T
i ud

1 +
∑D−1
l=1 ec

T
i ul

)hid

=

D∏
d=1

e[ηid−lse(ηi)]hid , (14)

where ηid = cTi ud and ηi = [ηi1 . . . ηiD−1]. The normal-
izing term in the probability expression, also called the log-
sum-exp (lse) function prevents a closed form solution for
the posterior. Finding a quadratic upper bound for it we can
bound from below the likelihood, and in turn the expected
complete-data log-likelihood, which we want to maximize.

Using the Taylor series of lse(ηi) we can find such a
quadratic bound [7] as follows,

lse(ηi) = lse(γi) + (ηi − γi)T∇lse(γi)

+
1

2
(ηi − γi)T∇2lse(γi + ε(ηi − γi))

≤ 1

2
ηTi Aηi − bTγiηi + cγi . (15)

To show the above inequality note that ∇lse(γi) is the prob-
ability vector pi(γi), and ∇2lse = Λpi − pipTi where
Λpi = diag(pi1, . . . , piD−1). In [7], the latter is shown to be
bounded as follows

∇2lse ≤ A =
1

2

(
ID−1 −

1D−11
T
D−1

D

)
,

where ID−1 and 1D−1 are the identity matrix and the vector
of ones of size D − 1 ×D − 1 and D − 1 × 1, respectively.
Substituting A and ∇lse(γi) and organizing the terms gives
us the inequality in (15), where

bγi = Aγi − pi(γi), cγi = lse(γi) +
1

2
γTi Aγi − pi(γi).

From (14) and (15), we get

logP(hi|{ud}, θ) ≥ hTi ηi−
(

1

2
ηTi Aηi − bTγiηi + cγi

)
Li

= −1

2

(
ηi −A−1

(
hi
Li

+ bγi

))T
A(

ηi −A−1

(
hi
Li

+ bγi

))
+

1

2

(
hi
Li

+ bγi

)T
A−1

(
hi
Li

+ bγi

)
− cγi .

Exponentiating we obtain the following lower bound for the
likelihood

P(hi|{ud}, θ) ≥ N (h̃i|ηi,A−1)fi(γi),

where h̃i = A−1
(
hi
Li

+ bγi

)
= A−1

(
hi
Li
− pi(γi)

)
+γi is

the Gaussian pseudo-observation

Since the factor scores {ud} are correlated given the ob-
servations, we seek the posterior of the combined vector
u = [u11 . . . uD−1 K ]T ∼ N (0, Q̃) where 0 is the zero vec-
tor and Q̃ = ID−1⊗Q is a block-diagonal matrix. Similarly,
defining C̃i = ID−1⊗ ci we can write ηi = C̃T

i u. Then, for
the complete-data likelihood we have

P({hi},u|θ) ≥(
P∏
i=1

N (h̃i|C̃T
i u,A

−1)fi(γi)

)
N (u|0, Q̃). (16)

Organizing the terms and completing the square we write

P({hi},u|θ) ≥ N (u|φ,Φ) gi({hi,γi}),

where

φ = Φ

P∑
i=1

C̃iAh̃i, Φ =

(
P∑
i=1

C̃iAC̃
T
i + Q̃−1

)−1

(17)

are the posterior mean and covariance.

3.6. Multinomial M-step

We maximize the expected complete-data log-likelihood of
the lower bound given in (16) using the posterior mean and



covariance, given in (17), as in [5].

Qt+1 = arg max
Q

E [logP({hi},u|θ)]

= arg max
Q
−1

2
E
[
uT Q̃−1u

]
− D − 1

2
log |Q|

− 1

2
E

[
uT

P∑
i=1

C̃iAC̃
T
i u

]
+ E[u]T

P∑
i=1

C̃iAh̃i

− 1

2

P∑
i=1

h̃Ti Ah̃i +

P∑
i=1

log fi(γi) + C4

(18)

Qt+1 = arg max
Q
−1

2
Tr
(
Q̃−1(Φ + φφT )

)
− D − 1

2
log |Q|

= arg max
Q
−1

2

D−1∑
d=1

Tr
(
Q−1(Φd + φdφ

T
d )
)

− D − 1

2
log |Q| (19)

where C4 is a constant, φd is the dth vector of size K in φ,
and Φd is the dth matrix of size K × K on the diagonal of
Φ. The last equality follows from the fact that Q̃ is block
diagonal. We used (6) for E

[
uQ̃−1u

]
. Similar to (8) and

(12) we find

Qt+1 =
1

D − 1

D−1∑
d=1

(
Φt
d + φtd(φ

t
d)
T
)
. (20)

Since (15) holds with equality for γi = ηi, and the curva-
ture does not depend on ηi, it can be shown that the optimal
value for γi is C̃T

i φ [5]. Note that using the factor scores
ud ∼ N (0,Q) the mean vector β in (3) is not needed.

3.7. Factor Loadings

Finally, combining (5), (10) and (18) we compute ct+1
i as

follows

ct+1
i = arg max

ci
E[{yn,xn, zm,wm,hi,u}|θ]

= arg max
ci

N∑
n=1

(
−E
[
ec
T
i xn

]
+ yinc

T
i ξn

)
− M

2σ2
i

cTi Bci −
1

2σ2
i

M∑
m=1

(cTi am − zim)2

− 1

2
Tr
(
C̃iAC̃

T
i (Φ + φφT )

)
+ φT C̃iAh̃i. (21)

Note that cTi xn|{yn} ∼ N (cTi ξn, c
T
i Ψnci). Completing the

square in the Gaussian integral it is straightforward to show

that E
[
ec
T
i xn

]
= ec

T
i ξn+

cTi Ψnci
2 . Moreover, we can write

Tr
(
C̃iAC̃

T
i (Φ + φφT )

)
= cTi Uci, and φT C̃iAh̃i =

cTi δi, where U = D−1
2 Qt+1 − V , V = [ψ1 · · ·ψK ],

ψk = 1
2D

∑D−2
`=0

∑D−1
d=1 and F = [φ1 . . .φD−1].

We can use Newton’s method to find ct+1
i through the

gradient and the Hessian, i.e.,

∇ci = −
N∑
n=1

ec
T
i ξn+

cTi Ψnci
2 (ξn + Ψnci) +

N∑
n=1

yinξn

− M

σ2
i

Bci −
1

σ2
i

M∑
m=1

(cTi am − zim)am

−
D−1∑
d=1

ad(Φd + φdφ
T
d )ci + FAh̃i

∇2
ci = −

N∑
n=1

ec
T
i ξn+

cTi Ψnci
2 [(ξn+Ψnci)(ξn+Ψnci)

T +Ψn]

− 1

σ2
i

M∑
m=1

ama
T
m −

D−1∑
d=1

ad(Φd + φdφ
T
d ). (22)

4. EXPERIMENTS

We test our algorithm on a Twitter dataset that is filtered from
the 10% of the tweets in January 2013. In our dataset, we
consider 2444 hashtags as objects (i.e., P = 2444); and an-
alyze their number of occurrences in 743 hours (i.e., N =
743), available geographical coordinates, and word counts.
We model the hashtag occurrences (i.e., number of tweets that
mention a hashtag) using Poisson distribution. Word counts
are modeled using multinomial distribution with a dictionary
size of 2645 after eliminating the words that appear less than
100 times in the whole dataset.

The number of available coordinates ranges between 10
and 10456 with a mean of 134. Since geographical coordi-
nates (latitude and longitude) constitute spherical data, they
are better modeled using von Mises-Fisher (vMF) distribution
than Gaussian, which is treated initially due to its popularity.
Thus, we here present an extension of our algorithm for vMF
distribution. The observation model for vMF distribution is
given below

zTim|Wm ∼vMF(cTi Wm, κi),

wT
mk ∼vMF(αk, sk),

for m = 1, . . . ,Mi, where z3×1
im is the spherical coordinate

vector obtained from the original latitude and longitude infor-
mation;
WK×3

m = [wm1 . . .wmK ]T is the latent factor scores for all
three dimensions. The scores w3×1

mk for each factor k are also
vMF distributed.



The vMF likelihood is given by

P(zim|Wm, θ) = C(κi)e
κiW

T
mcizim ,

where C(κi) = κi
2π(eκi −e−κi )

, κi is the concentration parame-

ter, and cTi Wm is the mean direction. Combining the likeli-
hood with the prior it is straightforward to show that the poste-
rior P(wmk|zim, θ) is also vMF with mean and concentration
given by

amk =
skαk + κicikzim

bmk
, bmk = ‖skαk + κicikzim‖,

respectively. Maximizing the expected complete-data log-
likelihood E[logP({zim,wmk}|θ)] we get

αt+1
k =

∑M
m=1 a

t
mk

‖∑M
m=1 a

t
mk‖

, M = max(Mi).

Using the well-known approximation we estimate the concen-
tration parameters as

st+1
k =

3r̄k − r̄3k
1− r̄2k

, r̄k =
‖∑M

m=1 a
t
mk‖

M

κi =
3R̄i − R̄3

i

1− R̄2
i

, R̄i =
‖∑Mi

m=1 zim‖
Mi

.

We choose the number of factors through experiments based
on the perplexity performance for the Poisson observations.

Table 1 lists the dominant hashtags in five selected fac-
tors. Our algorithm localizes factors in three aspects: popu-
larity, geography, and topic. On the other hand, a unimodal
factor analyzer handles only one of those. For example, the
first factor in Table 1 is about European soccer, and the dom-
inant hashtags in this factor are all popular. Average number
of occurrences over 743 hours are given in parentheses. Sim-
ilarly hashtags related to the second factor share the common
topic of new year, and are on average tweeted from US. Third
factor is about Middle East countries. The reason Bahrain
was so popular in January 2013 seems to be the Gulf Cup of
Nations, a soccer tournament organized in Bahrain between

Table 1. Factors localized in terms of popularity, geography,
and topic. Numbers in parentheses denote the average popu-
larity scores.

Europe Soccer US New Year Middle East Countries Astrology East Coast Sports
#CFC (83) #HappyNewYear (49) #bahrain (133) #Aries (210) #Patriots (29)

#FACup (40) #NewYear (13) #Pakistan (30) #Pisces (231) #Knicks (18)
#Arsenal (33) #newyearseve (3) #India (11) #Capricorn (210) #GoHawks (20)

#ballondor (17) #Best2012Memories (4) #kuwait (5) #Virgo (192) #Steelers (2)
#realmadrid (14) #Feliz2013 (1) #Iraq (2) #Sagittarius (216) #Yankees (3)

January 5th and 18th. Astrology hashtags have regularly high
counts. The last factor focuses on the East Coast sports teams
in football, basketball, and baseball.

5. CONCLUSION

A generative graphical model and an EM algorithm to ana-
lyze it have been proposed to be able summarize multimodal
objects that consist of disparate observations. In a one-month
Twitter dataset, the discovered factors, each of which acts as
a summary multimodal object, have been shown to success-
fully localize hashtags in terms of popularity, geography, and
topic.

6. REFERENCES

[1] Mingyuan Zhou, Lauren A. Hannah, David B. Dunson,
and Lawrence Carin, “Beta-negative binomial process
and poisson factor analysis,” in AISTATS, 2012.

[2] David M. Blei, Andrew Y. Ng, and Michael I. Jordan,
“Latent dirichlet allocation,” J. Mach. Learn. Res., vol. 3,
pp. 993–1022, Mar. 2003.

[3] J. Ngiam, A. Khosla, B. Kim, J. Nam, H. Lee, and A.Y.
Ng, “Multimodal deep learning,” in ICML, 2011.

[4] Y. Yılmaz, G.V. Moustakides, and X. Wang, “Sequential
joint detection and estimation,” Theory of Probability &
Its Applications, vol. 59, no. 3, 2014.

[5] M.E. Khan, G. Bouchard, B.M. Marlin, and K.P. Mur-
phy, “Variational bounds for mixed-data factor analysis,”
in Neural Information Processing Systems (NIPS) Con-
ference, 2010.

[6] A.C. Smith and E.N. Brown, “Estimating a state-space
model from point process observations,” Neural Comput.,
vol. 15, no. 5, pp. 965–991, 2003.
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