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Abstract—This paper considers the real-time and nonparamet-
ric detection and localization of anomalies in high-dimensional
systems. The goal is to detect anomalies quickly and accurately
such that the appropriate countermeasures could be taken before
any possible harm is caused by the anomalous event. We propose
a kNN-based sequential anomaly detection method in both semi-
supervised and supervised settings, in conjuction with an effective
method for localizing the anomalous data dimensions. We prove
that the proposed method is asymptotically optimum in the
minimax sense under certain conditions in terms of minimizing
the average detection delay for a given false alarm constraint.
The proposed method is shown to be capable of multivariate
anomaly detection and also scalable to high-dimensional datasets.
We further propose an online learning scheme that combines
the desirable properties of our semi-supervised and supervised
methods.

I. INTRODUCTION

Anomaly detection is an important problem which deals
with the identification of abnormal data patterns which do
not conform to the normal behavior of a system. It has
applications in a wide range of domains, such as cyber-
security [1], quality control, medical health care [2], etc.
The importance of anomaly detection lies in the fact that an
anomaly in the observations is typically due to an unwanted
behavior/event in the underlying system that needs to be dealt
with by a field specialist. Due to the potential unpleasant and
even catastrophic consequences of an undetected anomalous
event in the system, it is crucial to detect the anomalies
quickly and timely, so that the appropriate countermeasures
could be taken in time. Moreover, certain applications require
further information in addition to detection of the anomalies,
explaining where the detected anomaly has occurred in the
system.

Statistical anomaly detection approaches consider an
anomaly as a change in the probability distribution of data,
e.g., change in the mean, variance or correlation structure be-
tween individual data-streams. Multivariate anomaly detection
has the potential to achieve better performance in comparison
to univariate detection, especially in challenging settings. For
instance, detecting the anomalous observations that appear
to be normal (e.g., as a result of a malicious activity), and
the detection of a change in the correlation structure of
data [3] are two examples that highlight the importance of

multivariate analysis and joint monitoring of data-streams,
which in turn, leads to the high-dimensionality challenge. A
practical multivariate anomaly detection method needs to scale
well to high-dimensional data in real-time.

Parametric anomaly detection methods assume knowledge
of the underlying probability distributions, hence they are not
effectively applicable to high-dimensional real-world problems
with complex distributions. Additionally, these methods are
limited to the detection of certain types of anomalies that
match the assumed distributions well. Nonparametric tech-
niques, on the other hand, do not assume specific probability
distributions for the data. Nonparametric anomaly detection
methods based on k nearest neighbors (kNN) are proposed
in several works, e.g., [4]–[7]. These geometric methods are
based on the assumption that anomalous instances occur in the
less concentrated regions of the nominal data space. Although
the methods proposed in [4], [5] are effective in multivariate
anomaly detection in high-dimensional data, they are not well
suited for accurate detection in real-time systems as they do
sample-by-sample detection without considering the sequential
aspect of anomalies [8]. While [6] has a sequential nature,
its computational complexity is note suitable for real-time
applications.

Motivated by the aforementioned challenges, aiming
at timely and accurate detection of anomalies in high-
dimensional systems, in this paper we (i) prove the asymptotic
optimality of the nonparametric sequential method proposed
in [7] in the minimax sense, (ii) propose an extension for su-
pervised settings with training data available for both nominal
and anomalous cases, (iii) propose an anomaly localization
approach based on the proposed detection methods, in order
to identify the anomalous data dimensions, and (iv) introduce
an online learning scheme by combining the advantages of
both supervised and semi-supervised variants.

The rest of the paper is organized as follow. In Section II, we
present the problem formulation and the related background
information. In Section III, we present the semi-supervised,
supervised, and unified variants of our anomaly detection
method, as well as the localization technique. The experimen-
tal results on simulated data and a real dataset are provided in
Section IV. Finally, the paper is concluded in Section V.



II. PROBLEM FORMULATION

Suppose that a system is sequentially monitored through d-
dimensional observations Xt = {x1,x2, ...,xt} in time. As-
suming an abrupt and persistent anomaly occurs at an un-
known time τ in the observations, the objective is to detect
the anomaly as soon as possible while satisfying a false alarm
constraint. This problem is typically formulated as an online
change detection problem:

f = f0, t < τ, f = f1( 6= f0), t ≥ τ, (1)

where f is the true probability distribution of observations,
and f0 and f1 are the nominal and anomalous probability
distributions, respectively. The objective of the problem is to
find the stopping time T that minimizes the average detection
delay while satisfying a false alarm constraint, i.e.,

inf
T

Eτ [(T − τ)+] subject to E∞[T ] ≥ β, (2)

where Eτ represents the expectation given that change occurs
at τ , (.)+ = max(., 0), and E∞[T ] denotes the the expectation
of false alarm period.

Lorden’s minimax problem is a commonly used version of
the above problem [9], in which the goal is to minimize the
worst-case average detection delay subject to a false alarm
constraint:

inf
T

sup
τ

ess sup
Xτ

Eτ [(T − τ)+|Xτ ] s.t. E∞[T ] ≥ β, (3)

where “ess sup” denotes essential supremum that is equivalent
to supremum in practice. In short, the minimax criterion
minimizes the average detection delay for the least favorable
change-point and the least favorable history of measurements
up to the change-point while the average false alarm period is
constrained by β.

The Cumulative Sum (CUSUM) detector provides the op-
timum solution to the minimax problem [10], given by (3),

St = max{0, St−1 + `t},
Tc = inf{t : St ≥ hc},

(4)

where Tc is the stopping time, St is the test statistic, `t =
log f1(xt)

f0(xt)
is the log-likelihood ratio at time t, S0 = 0, and

hc is the predefined decision threshold. Considering `t as
a statistical evidence for anomaly, the CUSUM algorithm
accumulates the evidences over time, and stops when the cu-
mulative evidence St is sufficiently high for reliable detection,
where the level of “sufficiently high" is represented by hc and
chosen to satisfy the false alarm constraint β.

CUSUM requires the complete knowledge of the probability
distributions f0 and f1, which are typically unknown in
real-world applications. Generalized CUSUM (G-CUSUM)
is a variation of CUSUM which knowing the distributions,
estimates the parameters of f0 and f1 by maximum likelihood
estimation and achieves asymptotic optimality. Moreover,
CUSUM and in general parametric methods are limited to
the detection of certain anomaly types whose true probability
distribution matches the assumed f1 well.

III. THE PROPOSED METHOD

A. Online Discrepancy Test (ODIT)

We have recently proposed a kNN-based sequential
anomaly detection method, called Online Discrepancy Test
(ODIT) [7] demonstrated its applications to cyberattack de-
tection in smart grid [1] and intelligent transportation systems
[11]. In this section, we present a modification for ODIT to
prove its asymptotic optimality in the minimax sense under
certain conditions. ODIT combines the sequential nature of
CUSUM and the nonparametric nature of the Geometric
Entropy Minimization (GEM) method [4] for multivariate and
online anomaly detection. In a semi-supervised fashion, ODIT
trains only on nominal data to learn a statistical description of
normal system behavior, and tests the new observations in a
sequential manner against the learned nominal model.We next
describe the ODIT procedure with the proposed modification.

Considering a nominal training set XN of size N , ODIT par-
titions XN into two sets XN1

and XN2
, where N1 +N2 = N ,

for computational efficiency as in the bipartite GEM algorithm
[5]. Then, it computes the Euclidean distances between each
point xm ∈ XN1

and its k nearest neighbors in XN2
. The total

kNN distance of xm is defined as

Lm =

k∑
n=k−s+1

gn(xm)γ , (5)

where gn(xm) is the Euclidean distance between point xm ∈
XN1

and its nth nearest neighbor in XN2
, s ∈ {1, . . . , k}

is a fixed number introduced for convenience, and γ > 0 is
a weight also introduced for flexibility. Given a significance
level α ∈ (0, 1), e.g., 0.05, the training phase is finished by
choosing the (1−α)th percentile of total kNN distances {Lm}.
That is, ODIT selects the Kth smallest distance L(K), where
K = bN1(1 − α)c, as a baseline statistic for measuring the
deviation of new observations from the nominal dataset in
the test phase. In other words, in the training phase, ODIT
practically learns the most compact region in the nominal data
geometry.

During the test phase, for each observation xt, ODIT com-
putes the total kNN distance Lt with respect to the nominal
points in XN2

using (5), and computes the anomaly evidence
as

Dt = d(logLt − logL(K)), (6)

where d is the dimensionality of the data. This equation is
the modification that we propose for ODIT in this paper. In
[7], Dt has the simpler form Dt = Lt − L(K). Although this
simpler form of Dt and the form proposed in (6) have similar
difference structures, and they perform quite similarly in prac-
tice, the new form given in (6) naturally appears while proving
the asymptotic optimality of ODIT in the minimax sense, as
shown in Theorem 1. Dt denotes a positive/negative evidence
for anomaly. Positive Dt suggests that the observation lies
outside the estimated most compact set of the nominal training
set, hence it provides a positive evidence for anomaly. ODIT
recursively updates a detection statistic ∆t by accumulating



the anomaly evidences over time. The test continues until the
first time ∆t exceeds a predefined threshold h, suggesting
that there is sufficient evidence supporting anomaly in the
observations. The update and decision rule of ODIT are given
as

∆t = max{∆t−1 +Dt, 0}, ∆0 = 0,

T = min{t : ∆t ≥ h},
(7)

which is a CUSUM-like procedure (cf. (4)). The threshold h
controls the trade-off between minimizing average detection
delay and minimizing false alarm rate. Larger threshold would
decrease the false alarm rate at the expense of larger detection
delays, and smaller threshold would result in smaller detection
delays and larger false alarm rates. Thus, h should be selected
to strike a desired balance between false alarm rate and
detection delay. The ODIT procedure is summarized in 1.

Algorithm 1 The proposed ODIT procedure

1: Input: XN , k, s, α, h
2: Initialize: ∆← 0, t← 1
3: Training phase:
4: Partition XN into two sets XN1

and XN2

5: For each xm ∈ XN1
compute Lm as in (5)

6: Find L(K) by selecting the Kth smallest Lm
7: Test phase:
8: while ∆ < h do
9: Get new data xt and compute Dt as in (6)

10: ∆ = max{∆ +Dt, 0}
11: t← t+ 1

12: Declare Anomaly

Theorem 1. When the nominal distribution f0(xt) is finite
and continuous, and the attack distribution f1(xt) is a uniform
distribution, as the training set grows, the ODIT statistic Dt

converges in probability to the log-likelihood ratio,

Dt
p→ log

f1(xt)

f0(xt)
as N →∞, (8)

i.e., the ODIT converges to CUSUM, which is minimax opti-
mum in minimizing expected detection delay while satisfying
a false alarm constraint.

Proof: Consider a hypersphere St ∈ Rd centered at xt
with radius gk(xt), the kNN distance of xt with respect to
the training set XN . The maximum likelihood estimate for the
probability of a point being inside St under f0 is given by
k/N . It is known that, as the total number of points grow, this
binomial probability estimate converges to the true probability

mass in St in the mean square sense [12], i.e., k/N L2

→∫
St f0(x) dx as N → ∞. Hence, the probability density

estimate f̂0(xt) = k/N
Vdgk(xt)d

, where Vdgk(xt)
d is the volume

of St with the appropriate constant Vd, converges to the actual
probability density function, f̂0(xt)

p→ f0(xt) as N → ∞,
since St shrinks and gk(xt) → 0. Similarly, considering a
hypersphere S(K) ∈ Rd around x(K) which includes k points

with its radius gk(x(K)), we see that as N →∞, gk(x(K))→
0 and f̂0(x(K)) = k/N

Vdgk(x(K))d
p→ f0(x(K)). Assuming a

uniform distribution f1(x) = f0(x(K)), ∀x, we conclude

with log

k/N

Vdgk(x(K))
d

k/N

Vdgk(xt)
d

= d
[
log gk(xt)− log gk(x(K))

] p→

log f1(xt)
f0(xt)

as N →∞, where Lt = gk(xt) for s = γ = 1. For
γ values different than 1, Dt converges to the log-likelihood
ratio scaled by γ.

Note that ODIT does not train on any anomalous data, i.e.,
does not use any knowledge of anomaly to be detected. While
this generality is an attractive trait as it allows detection of any
statistical anomaly, it also inevitably limits the performance
for known anomaly types on which detectors can train. We
will next extend ODIT to this case with available anomaly
information. In Theorem 1, we show that in the lack of
knowledge about anomalies, ODIT reasonably assumes an
uninformative uniform likelihood for the anomaly case, and
achieves asymptotic optimality under this assumption in the
CUSUM-sense for certain parameter choices.

B. An Extension: ODIT-2

In this section we consider the case of having an anomaly
training dataset in addition to the previously discussed nominal
dataset. We extend the ODIT algorithm to take advantage of
the anomaly dataset in order to improve the performance.
Consider the nominal and anomalous datasets of XN =
{x1,x2, ...,xN} and X ′M = {x′1,x′2, ...,x′M}, respectively. In
this case, the anomaly evidence for each observation instance
can be computed by comparing the total distance Lt with
respect to XN to the total distance L′t with respect to X ′M .
Hence, ODIT-2 doesn’t require the borderline total distances
of the train data to use as a baseline in testing (cf. 6). This
implies that no training is needed for ODIT-2.

During the test phase, the anomaly evidence for each
observation instance xt is calculated by

Dt = d(logLt − logL′t) + log(N/M), (9)

where Lt and L′t are the total kNN distances of xt with
respect to the points in XN and X ′M , respectively; and N and
M are the number of points in the nominal and anomalous
training sets. The statistic update and decision rule of ODIT-2
are computed in the same way as ODIT, given by (7).

The anomaly evidence Dt of ODIT-2 practically contrasts
the new observation against the nominal and anomaly training
data and computes a measure of how well xt is aligned with
the anomaly class as compared to the nominal class. The
positive Dt suggests that the new observation is closer to the
description of the anomaly class, compared to the nominal
class. Due to the inherent difficulty in collecting anomaly
samples, typically there is an imbalance between the nominal
and anomaly training sets. The total kNN distances in a dense
nominal set XN are expected to be small as compared with
the total kNN distances in a sparse anomaly dataset. The term
log(N/M) is used as normalization factors to deal with such
imbalance.



Corollary 1. When the nominal distribution f0(xt) and
anomalous distribution f1(xt) are finite and continuous, as
the training sets grow, the ODIT-2 statistic Dt, given by (9),
converges in probability to the log-likelihood ratio,

Dt
p→ log

f1(xt)

f0(xt)
as M,N →∞, (10)

i.e., ODIT-2 converges to CUSUM, which is minimax optimum
in minimizing expected detection delay while satisfying a false
alarm constraint.

Proof: From the proof of Theorem 1, we know that
k/N

Vdgk(xt)d
p→ f0(xt) as N →∞. Similarly, we can show that

k/M
Vdg′k(xt)

d

p→ f1(xt) as M → ∞, where g′k(xt) is the kNN
distance of xt in the anomalous training set X ′M . Hence, we

conclude with log

k/M

Vdg
′
k
(xt)

d

k/N

Vdgk(xt)
d

= d [log gk(xt)− log g′k(xt)] +

log(N/M)
p→ log f1(xt)

f0(xt)
as M,N →∞, where Lt = gk(xt)

and L′t = g′k(xt) for s = γ = 1.
It is also noteworthy that for challenging applications in

which the nominal and anomaly datasets are very similar, a
pre-processing step on the anomaly train set might be required
to remove the data points that are similar to the nominal train
set. This step is done by finding and removing the data points
of X ′M which lie in the estimated most compact region of the
nominal train set, i.e.,

X clean
M = X ′M \ {x′m ∈ X ′M : Lx′

m
≤ L(KN )}, (11)

where Lx′
m

is the total distance of x′m with respect to the
nominal train set. If the cleaning process is performed on the
anomaly training set, L′t in (9) is computed with respect to
X clean
M .

C. Anomaly Localization

In this section, we propose a localization scheme to identify
the data dimensions in which the anomaly has occurred,
leading to the detection. An effective localization has a pivotal
role in identifying the cause of anomaly and hence mitigating
it in time. We approach this task by examining the contri-
bution of each dimension individually to the increase in the
detection statistic that resulted in detection. In ODIT detector,
the increase in the detection statistic ∆t, given by (7) and
consequently the anomaly alarm, is caused by the increase in
Dt, given by (6) which in turn is the result of an increase
in the total distance Lt, given by (5). Let us assume xt is
the test observation at time t and y1, ..., yk are its k nearest
neighbors in the train set. We can rewrite the total kNN
distance Lt =

∑k
n=k−s+1 ||xt − yn||γ , for γ = 2 in terms

of the sum of total distances along each dimension d:

Lt =

d∑
i=1

δit, where δit =

k∑
n=k−s+1

(xit − yin)2, (12)

where xit and yin are the ith dimension of the observation
xt and its nth nearest neighbor yn, respectively, and δit is the

contribution of the ith dimension of the observation xt to ∆t

at time t. By analyzing the δit per each dimension, during a
period of which ∆t is increasing, we identify the anomalous
data dimensions. To that end, we propose to use a history
of Qi = {δiq : q = τ̂ + 1, ..., τ̂ + S} per each dimension i,
where τ̂ is the estimated anomaly onset, is the most recent
time that the detection statistic was zero. We perform a t-test
on the S samples in Q〉 to decide whether the ith dimension
is anomalous.

The localization procedure after an anomaly alarm is raised
by ODIT at time T , is as follows:

1) Find τ̂ = max{t < T : ∆t = 0}
2) for each dimension i, compute the sample mean and

sample standard deviation of Qi:

δi =
1

S

τ̂+S∑
t=τ̂+1

δit, ηi =

√√√√ 1

S − 1

τ̂+S∑
t=τ̂+1

(δit − δi) (13)

3) Identify the anomalous dimensions dimensions by t-test:

dimension i is anomalous, if
δi − µi
ηi/
√
S
≥ θ, (14)

where µi is the sample mean of the contributions of
dimension i of nominal training data i.e. {δi1, ..., δiN1

},
and θ is the (1 − β)th percentile, given the significance
level β, of Student’s t-distribution with S − 1 degree of
freedom.

Significance level β makes the balance between sensitivity
to anomalies and robustness to outliers. Given the β and S
values, the threshold θ can be easily found according to the
Student’s t-distribution lookup table. Additionally, the number
of the samples S should be at least 2, to ensure that the degree
of freedom is at least 1.

Localization by ODIT-2 is slightly different. According to
(9), the detection by ODIT-2 is caused by the increase in the
logLt− logL′t. Similar to (12), we can write the Lt and L′t in
terms of the individual contributions, δit and δ

′i
t , respectively.

It is obvious that the increase in the (δit − δ
′i
t ) for some

dimensions i, causes the Statistic to increase. Therefore, the
localization by ODIT-2 procedure is done by replacing δit with
(δit − δ

′i
t ) in (13) and (14).

D. The Unified Framework

Availability of labeled training data is a major limiting
factor for improving the performance of anomaly detection
techniques. While obtaining comprehensive and accurate la-
beled data for the anomaly class in several applications is
very difficult, in most applications typically sufficient amount
of labeled nominal data is available. Semi-supervised meth-
ods including ODIT, constitute a popular class of anomaly
detection methods that build a model of normality only from
the nominal training data, and perform anomaly detection
by finding the data which deviates from this model. On the
other hand, supervised techniques including ODIT-2, require
both nominal and anomalous datasets to build models for



classifying data into nominal vs. anomaly classes. ODIT-
2 outperforms the semi-supervised ODIT method, for the
known anomaly types (as shown in Section IV). However,
ODIT-2, and in general supervised anomaly detectors, have
the drawback of achieving poor performance for detecting
unknown anomaly types. Whereas, ODIT, and in general
semi-supervised anomaly detection methods, are capable of
detecting any anomaly type as long as it sufficiently deviates
from the nominal model. This motivate us to combine the
desirable properties of ODIT and ODIT-2, and propose an on-
line learning scheme which is capable of detecting previously
unseen anomalies and achieving better performance for the
known anomalies.

In the unified framework, both ODIT and ODIT-2 run in
parallel while a feedback loop includes the anomalous data
points first detected by ODIT in the anomaly training set of
ODIT-2 to empower the detection of similar anomaly types.
The unified scheme, called ODIT-uni, monitors the detection
statistics of ODIT and ODIT-2 in parallel, and stops the first
time either one stops:

∆
(1)
t = max{∆(1)

t +D
(1)
t , 0}, ∆

(2)
t = max{∆(2)

t +D
(2)
t , 0}

T = min{t : ∆
(1)
t ≥ h1 or ∆

(2)
t ≥ h2}, (15)

where D
(1)
t and D

(2)
t are the anomaly evidences given by

(6) and (9), respectively, and h1 and h2 are the predefined
thresholds of ODIT and ODIT-2. It is expected that for known
anomaly types, ∆

(2)
t ≥ h2 happens earlier. Whereas for

unseen anomaly types, ∆
(1)
t ≥ h1 is expected to detect the

anomaly. If ODIT raises an alarm at time T , anomaly start
time τ̂ is estimated as the last time before T that ODIT
statistics was 0. Then, the feedback loop incorporates the data
instances {xτ̂+1, . . . ,xT } between τ̂ and T into the anomaly
train set. The threshold h1 needs to be selected sufficiently
large to prevent false alarms by ODIT and consequently false
inclusions of detected data instances into ODIT-2 training set,
even though this causes an increase in the detection delay of
unseen anomalies.

IV. NUMERICAL RESULTS

In this section we present numerical results to demonstrate
the advantage of multivariate analysis by ODIT and ODIT-2
over the G-CUSUM detector, in a challenging case in which
anomaly is defined as a change in the correlation between
individual data-streams. We simulate a 100-dimensional sys-
tem in which the nominal data is distributed according to a
multivariate Gaussian distribution, with µ = 20 and a diagonal
covariance with standard deviation being σ = 10. The anomaly
is defined as adding ρ = 0.6 correlation between 50% of the
data-streams, while the mean and standard deviation are intact.

Fig. 1 compares the average performance of ODIT and
ODIT-2 with the oracle CUSUM which has the complete
knowledge of the underlying multivariate distributions. Since
it is not tractable to estimate the high-dimensional multivariate
distributions, G-CUSUM assumes independence among indi-
vidual data-streams and combines the univariate analysis on

Fig. 1: Performance comparison of ODIT, ODIT-2 and CUSUM in
the correlation monitoring example.

each data-stream as in [13]. G-CUSUM fails to detect the
anomalies in the observation as it is not able to monitor
the correlations. The ODIT methods successfully detect the
change in the covariance structure of observations by multi-
variate analysis while ODIT-2 outperforms ODIT as expected,
and well-approximates the optimum CUSUM, which is not a
practical detector.

(a) Decision statistics of the proposed ODIT detectors in both scenarios (known
and unknown types of anomalies).

(b) Performance comparison for the proposed ODIT detectors in the unknown
anomaly type scenario.

Fig. 2: Experimental results on the N-BaIoT dataset.

We also applied the proposed ODIT detectors to a dataset
of real traffic data for network-based detection of IoT botnet
attacks (N-BaIoT dataset [14]) in order to compare ODIT
detectors and demonstrate the unified framework presented in
Section III-D. This dataset is gathered from 9 IoT devices
under nominal operation and while infected by IoT-based
botnets. In the experiments the dimensionality of the data is
1035. We assume that we have anomaly training data from past
observations, where device 2 is acting maliciously. In order to
fairly compare ODIT with ODIT-2, we test for two different
scenarios: 1) device 2 is compromised (known anomaly type)



Fig. 3: ROC curve for anomaly localization using ODIT and ODIT-2
in the known attack scenario for the N-BaIoT dataset.

2) device 6 is compromised (unknown anomaly type).
In case of the first scenario, both ODIT and ODIT-2 are able

to detect the anomaly with zero average detection delay. Fig.
2(b) compares the average performance of ODIT and ODIT-
2 for the second scenario. Although ODIT-2 is still able to
detect the anomaly, its performance degrades as compared to
the known anomaly scenario. This is due to the mismatch
between the type of anomaly in the observations and that of
the anomaly train set. Fig. 2(a) shows the decision statistics of
ODIT and ODIT-2 for both scenarios. Unlike the first scenario
in which the decision statistic of ODIT-2 is stronger than that
of the ODIT, in second scenario, the decision statistic of ODIT-
2 becomes weaker than that of ODIT.

Next, Fig. 3 demonstrates the performance of localization
techniques, in terms of the ROC curve (true positive rate vs.
false positive rate) under the known anomaly type scenario.
Both methods, identify the malicious device with very high
accuracy, and very low false alarm rate.

Fig. 4: The average detection delay of ODIT-2 for an unknown
anomaly type, versus the number of the data instance of the unknown
anomaly added to the anomaly train set. The false alarm probability
is set to be P (False Alarm rate) = 0.01

We employed the unified framework ODIT-uni to demon-
strate the improvement of ODIT-2 performance for novel
anomaly types, as the anomaly train set grows by the incor-
poration of new anomaly observations. Following the above
experiment on N-BaIoT, we test for the performance of ODIT-
2 in detecting the new anomaly type (scenario 2). Fig. 4
suggests that as the anomaly train set is enhanced by the new
data instances of unknown anomaly type, ODIT-2 performance
for detecting future observations of the same anomaly type

improves and converges to zero for sufficiently enhanced
training set.

V. CONCLUSION

In this paper, we proposed a multivariate and online
anomaly detection and localization framework that is suitable
for real-time and high-dimensional systems for both semi-
supervised and supervised settings. We showed the asymptotic
optimality of the proposed methods in the minimax sense, in
terms of minimizing the average detection delay for a given
false alarm constraint. The performance of the variations of
proposed methods was evaluated in the challenging case of
detecting a change in the covariance structure. Both ODIT
and ODIT-2 successfully detect the change while ODIT-2
achieves a close performance to the oracle CUSUM detector,
which is the minimax optimum detector but not tractable in
practice. We also provided experiment results in the context of
botnet detection on a real dataset (N-BaIoT). Combining the
advantages of the variations of our method, we also proposed
a unified ODIT scheme that can detect novel anomaly types,
as well as improve its performance over time by enhancing
its training set via the detected anomalous data instances.
The experiments on the N-BaIoT dataset corroborated that
the unified scheme efficiently learns to quickly and accurately
detect similar anomalies in the future.

REFERENCES

[1] Y. Yilmaz and S. Uludag, “Mitigating iot-based cyberattacks on the
smart grid,” in Machine Learning and Applications (ICMLA), 2017 16th
IEEE International Conference on. IEEE, 2017, pp. 517–522.

[2] H. Zhang, J. Liu, and N. Kato, “Threshold tuning-based wearable sensor
fault detection for reliable medical monitoring using bayesian network
model,” IEEE Systems Journal, vol. 12, no. 2, pp. 1886–1896, 2018.

[3] V. Avanesov, N. Buzun et al., “Change-point detection in high-
dimensional covariance structure,” Electronic Journal of Statistics,
vol. 12, no. 2, pp. 3254–3294, 2018.

[4] A. O. Hero, “Geometric entropy minimization (gem) for anomaly de-
tection and localization,” in Advances in Neural Information Processing
Systems, 2007, pp. 585–592.

[5] K. Sricharan and A. O. Hero, “Efficient anomaly detection using
bipartite k-nn graphs,” in Advances in Neural Information Processing
Systems, 2011, pp. 478–486.

[6] H. Chen, “Sequential change-point detection based on nearest neigh-
bors,” arXiv preprint arXiv:1604.03611, 2016.

[7] Y. Yilmaz, “Online nonparametric anomaly detection based on geomet-
ric entropy minimization,” in Information Theory (ISIT), 2017 IEEE
International Symposium on. IEEE, 2017, pp. 3010–3014.

[8] M. Baker, “Statisticians issue warning over misuse of p values,” Nature
News, vol. 531, no. 7593, p. 151, 2016.

[9] G. Lorden et al., “Procedures for reacting to a change in distribution,”
The Annals of Mathematical Statistics, vol. 42, no. 6, pp. 1897–1908,
1971.

[10] G. V. Moustakides et al., “Optimal stopping times for detecting changes
in distributions,” The Annals of Statistics, vol. 14, no. 4, pp. 1379–1387,
1986.

[11] A. Haydari and Y. Yilmaz, “Real-time detection and mitigation of ddos
attacks in intelligent transportation systems,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018,
pp. 157–163.

[12] A. Agresti, An introduction to categorical data analysis. Wiley, 2018.
[13] Y. Mei, “Efficient scalable schemes for monitoring a large number of

data streams,” Biometrika, vol. 97, no. 2, pp. 419–433, 2010.
[14] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breiten-

bacher, and Y. Elovici, “N-baiot—network-based detection of iot botnet
attacks using deep autoencoders,” IEEE Pervasive Computing, vol. 17,
no. 3, pp. 12–22, 2018.


