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Abstract—Methods to draw maximum power from Photo-
voltaic (PV) modules are an ongoing research topic. The so-
called Maximum Power Point Tracking (MPPT) method aims
to operate the PV module at its maximum power point (MPP)
by matching the load resistance to its characteristic resistance,
which changes with temperature and solar irradiance. Pertur-
bation and Observation (P&O) is a popular method that lays the
foundation for many advanced techniques. We propose a deep
reinforcement learning (RL) based algorithm to determine the
optimal perturbation size to reach the MPP. Our method utilizes
an artificial neural network-based predictor to determine the
MPP from temperature and solar irradiance measurements. The
proposed technique provides an effective learning-based solution
to the classical MPPT problem. The effectiveness of our model
is demonstrated through comparative analysis with respect to
the popular methods from the literature.

Index Terms—Photovoltaics, MPPT, deep reinforcement
learning, Markov decision process.

I. INTRODUCTION

Solar Photovoltaic (PV) system is one of the fastest-
growing renewable energy sources as it is inexhaustible and
eco-friendly. A PV module can generate electrical energy
directly from the sun without producing air pollution or
greenhouse gases. However, PV energy generation systems
have two problems, which are low efficiency of electrical
power generation (52.94%), especially in times of low solar
irradiation, and continuous fluctuations of produced electrical
energy with changes in weather [1].

Maximum power point tracking (MPPT) methods are
mainly used to extract maximum power from the PV module.
Various MPPT algorithms have been discussed in the litera-
ture with their pros and cons [2]. These optimizing method-
ologies can be categorized into two major categories as
indirect and direct techniques. Indirect techniques are mainly
based on precomputed informational data about output power
and voltage from a specific PV module for different envi-
ronmental conditions. These data from experimentation are
stored in terms of mathematical functions. Open Circuit Volt-
age and Short Circuit Current are the most commonly used
indirect methods [3]. Another example of indirect methods
is the lookup table method, which can extract the maximum
power and voltage data from an experimental setup. A
lookup table does not require complicated computations but
rather provides a reference voltage for varying insolation [4].
The main advantage of these techniques is their simplicity.

However, they cannot easily adapt to the external irradiance,
and temperature changes as their core structures are based
on estimated data.

On the other hand, direct techniques are based on instan-
taneous current and voltage measurements and thus are more
accurate and have a faster response than the indirect methods.
Also, depending on their structure and complexity, direct
methods can further be categorized into different types. In
this article, the conventional and heuristic types are discussed.
Perturbation and observation (P&O), Incremental conduc-
tance (INC), and hill-climbing (HC) are common examples
of conventional MPPT techniques, and these algorithms are
based on fixed step size [5], [6]. The structure of these
algorithms is simple with fewer implementation expenses, but
they face problems of reaching the optimal value whenever
solar irradiation becomes nonuniform during partially shaded
conditions [6]. The major concerns of these techniques are
high steady-state oscillation, slow convergence, and slow
tracking speeds during fluctuations in temperature and solar
irradiation.

In order to improve the transient and steady-state perfor-
mance, meta-heuristic artificial intelligence (AI) based MPPT
techniques have been proposed in the past, e.g., fuzzy logic
(FL) and artificial neural network (ANN) controllers. Ac-
cording to [3] the ANN methodology has demonstrated better
performance in comparison to FL-based MPPT controller for
a wide range of solar irradiation, 1000 W/m2-200 W/m2,
under rapidly varying irradiance. Especially in times of low
irradiance, the efficiency difference is more significant. Also,
[7] proposed AI-based technique known as Adaptive Neural-
Fuzzy Interface System (ANFIS), which is an integration
of ANN and FL. This MPPT technique has been designed
in Matlab/Simulink and proved better convergence under
varying solar irradiance. However, its main weakness is
high cost and computational complexity due to integrating
two smart methods. Moreover, in [8], hybrid techniques
consisting of two MPPT techniques were shown to provide
promising performance. For instance, the combination of
ANN and P&O outperforms the hybrid method of particle
swarm optimization (PSO) and P&O.

To further improve the efficiency, recently reinforcement
learning (RL) has been used for MPPT control. For instance,
[9] proposes a RL technique that takes temperature and
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Fig. 1. I-V and P-V curve for the PV Module 1STH-220-P.

irradiance sensor data as state variables, apart from the
voltage and current values. However, this method assumes
stationary load resistance and thus becomes infeasible for
practical application. This work proposes a novel deep RL
technique to obtain fine-grained duty cycle adjustments for
optimal MPPT considering variable load resistance. We
support the deep RL method with maximum power point
(MPP) and MPP resistance predictions using temperature and
irradiance observations within an ANN regression model.
Furthermore, our reward definition with predicted maximum
power provides more stable feedback for the RL agent than
the change in power used in the literature. The proposed deep
RL method outperforms the state-of-the-art method in [9]
in terms of both the transient and steady-state performance
(Section IV). The main contributions of this work are:

• A novel deep RL technique which provides fine-grained
duty cycle control under varying load resistance;

• An ANN based MPP and MPP resistance predictor for
any temperature and solar irradiance;

• An efficient way based on the Newton-Raphson method
to train the ANN regressor.

The remainder of the paper is organized as follows.
Section II gives the necessary background. The proposed
technique is explained in Section III, and the experimental
results are presented in Section IV. Finally, concluding dis-
cussions and remarks are given in Section V and Section VI,
respectively.

II. BACKGROUND

In a PV system, the operation point determines the pro-
duced power, which can be defined as the product of the
generated current Ipv and voltage Vpv at any moment in the
current versus voltage (I-V) curve, for fixed environmental
conditions. The solid red curve in Fig. 1 shows the I-V curve
for a solar cell under the standard test conditions (STC)
of Tr = 25°C panel temperature and Gr = 1000W/m2

irradiance. The same figure also shows the P-V curve with
the dashed blue line where P=(V×I) represents power. The
point on the operating curve where the generated power
is maximum is called the Maximum Power Point (MPP),
labeled in the figure. The voltage, current, and power for
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Fig. 2. MPP shifts with change in temperature and irradiance.

this point are 29.3 V, 7.47 A, and 218.87 W, respectively.
The operating point of the PV system is the point where the
load line intersects the I-V curve. And, the slope of the load
line is equal to inverse of load resistance. The MPP creates
the angle θMPP with the origin, whose slope can be written
as

SMPP =
IMPP

VMPP
=

1

RMPP
,

where RMPP is the load resistance at MPP, also known as
MPP characteristic resistance. The electrical load of resis-
tance RA connected to the PV source defines the operating
point A, and the corresponding produced power. When the
load resistance equals the MPP resistance, i.e., RA = RMPP ,
the operation point overlaps with the MPP, requiring no
further tracking. However, the PV system does not generate
maximum power when a load resistance with a different value
is connected. Thus, for MPPT, it is essential to ensure that the
load line passes through the MPP to deliver the maximum
power to the output. A DC/DC converter between the PV
source and load must be connected for this to happen. The
DC/DC buck converter can move the operation point of the
PV source from A to MPP by changing the slope SA of the
resistive load line as

D2 × SA =
D2

RA
=

1

RMPP
= SMPP ,

where D ∈ [0, 1] is the duty cycle of the converter. Notably,
the DC/DC buck converter can move the operating point only
to the right side. Hence, this converter can only reach MPP
when RA < RMPP , limiting its operability for heavier loads.
As most PV systems are connected to a variable resistive
load, the MPPT task is essential to match the value of source
resistance to the value corresponding to the MPP. Electrical
resistive loads’ variable or dynamic behavior always tries
to shift the operating point from the MPP to the right or
left depending on the power demand from the load side.
Therefore, considering constant environmental conditions,
the applied technique must continuously locate and track the
MPP for efficient output power in the system.

Temperature and solar irradiance are the other two factors
that affect the MPP. Fig. 2 shows that the I-V curve changes
when the environmental condition changes from STC (solid
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curve). In fact, for a particular PV cell, there is a distinct
I-V curve for each temperature and irradiance pair. Along
with the I-V curve, the MPP also changes. Fig. 2 shows
that when the temperature or irradiance changes to 10 °C or
500 W/m2, MPP changes to MPP1 and MPP2, respectively.
To summarize, MPP for a particular PV is a function of
temperature and irradiance. The environmental conditions
differ continuously, and the I-V curve of the PV source
changes consequently. So, the change in environment makes
the MPPT task more essential and challenging. For brevity,
we collectively call the load resistance, temperature, and
irradiance as the PV dynamics hereafter.

III. PROPOSED TECHNIQUE

The proposed technique consists of an ANN regressor and
a RL agent which controls the duty cycle of the DC/DC
converter. In this work, we use the advantage actor-critic
(A2C) deep RL structure, which can accommodate arbitrarily
fine-grained action space [10]. As shown in Fig. 3, data
from temperature Tt and irradiance Gt sensors, connected
to the PV module, are fed into an ANN which predicts
the MPP (Pmax) and the MPP resistance (RMPP ) as a
state variable R̂t for the RL agent. The RL agent also has
access to an online voltmeter and ammeter that provides
voltage Vt and current It measurements. The agent decides
the required change in duty cycle, ∆Dt, based on the current
load resistance Rt = Vt/It and target resistance R̂t. The
agent’s selected duty cycle change, ∆Dt, is implemented by
the Duty Cycle Controller. The controller updates the duty
cycle Dt = Dt−1 + ∆Dt and achieves the target duty cycle
through an Integrator and Pulse Width Modulator (PWM) to
set the DC/DC buck converter. Finally, the action taken is
evaluated to inform and direct the next action by subtracting
the predicted MPP P̂t from the actual power Pt.

A. ANN Predictor

If Rt = RMPP , then Vt, It and power Pt = Pmax,
all becomes deterministic through a complex relationship.
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Fig. 4. Average accuracy for different regressor models for
predicting Pmax and RMPP from temperature and irradiance
values.

In order to attain unique RMPP and Pmax for a particular
environmental condition, we train fully connected ANNs
(i.e., multilayer perceptrons) using the temperature Tt and
irradiance Gt input to predict the RMPP and Pmax. We
consider several regression models (Ridge, Lasso, and Huber)
with two fully connected layers and select Huber regressor,
which gives the maximum accuracy, for our experiments.
Notably, all of the regressors provide around 99% accuracy,
as shown in Fig. 4. The real-time predictor continuously
provides prediction R̂t for RMPP , which is in turn used as
input for the deep RL state. Similarly, the predictor provides
prediction P̂t for maximum power Pmax that we use to
calculate the reward of the RL agent. Besides, we use P̂t

to estimate the performance of the algorithms.
To train the predictor, the voltage and current values are

generated from solar irradiance Gt at temperature Tt using
the equations [11]

It = Isc
Gt

Gr
(1 + niscT (Tt − Tr))− a1eb1Vt ,

Vt = It ×Rt,

b1 =
bSTC

1 + nvocT (Tt − Ts)
,

where a1, bSTC , Isc, nvocT , and niscT are constant values for
a particular PV module. These parameters for our experimen-
tal PV module 1STH-220-P are given in Table I. Tr = 25°C
and Gr = 1000W/m2 are the reference temperature and
irradiance values under STC. Pmax and RMPP are found by
iteratively solving the above interlocked equations using the
Newton-Raphson method. Using those equations and iterative
optimization we avoid the time and computations needed for
the Simulink simulations commonly used in the literature.

B. MDP Model

To formulate the problem for the RL agent we develop a
Markov Decision Process (MDP) model, which is based on
the Markov Property: the future state is dependent only on
the current state and action taken by the agent. The physical
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part within the green dashed box in Fig. 3 constitues the
Environment of the MDP model. The MPPT controller is
the MDP agent that takes action at about change in duty
cycle ∆D of the DC/DC Buck converter.

1) State, st: The agent collects the MPP resistance pre-
diction R̂t for the current environment condition from the
predictor and Vt, It from the voltmeter and ammeter. We
calculate the load resistance Rt = Vt/It and define the two-
input MDP state

st = (Rt, R̂t).

2) Action, at: The MDP agent’s action at is selecting the
duty cycle change ∆Dt of the DC/DC Buck converter. We
consider a fine-grained action space for A2C and choose the
duty cycle change ∆Dt ∈ {−0.05,−0.04, ..., 0.04, 0.05},
i.e., at takes a value from these 11 actions . Ideally, the
optimal duty cycle change ∆Dt satisfies

∆D2
t

Rt
=

1

R̂t

.

Since, in practice, Rt changes continuously, a sequential data-
driven RL controller is an ideal fit for determining ∆Dt. The
agent’s selected duty cycle change, ∆Dt, is implemented
by the Duty Cycle Controller. This controller includes an
Integrator Pulse Width Modulator (PWM) to achieve the
target duty cycle Dt = Dt−1 + ∆Dt.

3) Reward, rt: We define reward as the difference between
output power and the predicted maximum power of the ANN
regressor

rt = Pt − P̂t (1)

The agent tries to maximize the reward, i.e., maximize the
power output. Our reward selection provides the RL agent
a stable target to reach, instead of the floating incremental
power ∆Pt = Pt − Pt−1 used in [9]. Since the maximum
reward an agent can achieve is zero, once the MPP is reached,
changing duty cycle will incur negative reward and the agent
is expected to select making no change in the duty cycle. i.e.
∆D = 0.

4) State Transition: If the PV dynamics do not change,
the agent’s action sets the state parameters Rt and R̂t

deterministically. After taking the action, the agent takes the
voltmeter and ammeter reading Vt+1 and It+1 and calculates
Rt+1 to determine the next state for the RL agent. This
completes one complete step for the RL decision-making.
If the PV dynamics change, the state inputs will be different
from the estimated next state. However, we assume the next
state for MDP estimation to be free of such change due to
instant impact of duty cycle change.

C. Solution Approach

Our RL agent aims to maximize the discounted total
reward in T time steps,

rT =

T∑
t=0

γtrt, (2)

Algorithm 1 A2C algorithm for MPPT.

Input: discount factor γ, learning rate, and number of
episodes E
Input: Irradiance {GT }, temperature {Tt}, and resistance
{Rt}
Initialize: Actor network with random weights and critic
network with random weights
for episode = 1, 2, ..., E do

for t= 1, 2, ..., T do
ANN predictor predicts R̂t, and P̂t.
Select action at for state st = (Rt, R̂t) using actor
network.
Execute action at and observe reward rt from Eq. (1).
Store transitions (st, at, rt, st+1).
Update actor network via advantage function.
Update critic network through back propagation.

end for
end for

Parameter Definition Value
Vocr Open circuit voltage 36.6 V
Iscr Short circuit current 7.97 A

Vmppr MPP voltage 29.3 V
Imppr MPP current 7.47 A
niscT Short Circuit Current Temp Coefficient 0.102 (% /°C)
nvocT Open Circuit voltage Temp Coefficient -0.361 (% /°C)

bSTC

loge(1−
Imppr
Iscr

)

Vmppr−Vocr
0.37929

a1 Iscre
−bSTCVoc 7.46×10−6

Table I: PV Module 1STH-220-P details for Standard Test
Conditions (STC).

where γ ∈ (0, 1) is the discount factor for future cost. There
are two popular approaches to find the optimal policy {at},
value-based methods (e.g., deep Q-learning) and policy-based
methods (e.g., policy gradient). The Advantage Actor-Critic
(A2C) is it’s popular deep RL algorithm for continuous state
environments [10], hence we consider A2C in this work. A2C
is a hybrid deep RL method which consists of a policy-based
actor network and value-based critic network. A pseudo code
for the A2C algorithm is given in Algorithm 1.

IV. RESULTS

A. Experimental Setup

In our experiments, we use the PV Module 1STH-220-
P, whose operation details are provided in Table I. All the
experiments are performed in Python 3.6.8 version. Fig. 5
shows the convergence of our A2C deep RL algorithm for
varying irradiance. The y-axis represents the episodic output
energy difference with respect to the ideal case (if the PV
always operates at MPP). The smoothed reward is the running
mean of the last 10 episodes of raw (actual) rewards. The
algorithm converges within 4000 episodes and minimizes this
energy difference to 0.36 kJ, where the total ideal output is
32.7 kJ for the episode duration (200 s). This minimal 1.1%
loss of energy happens during the irradiance change time
step, which is impossible to nullify.

B. Benchmark Policies

We compare our method with the following policies.
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Fig. 5. Convergence of our A2C deep RL method under
varying irradiance.
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1) Perturb and Observe (P&O): We use the popular P&O
method [6] as our baseline policy. We determine 0.01 to be
a suitable step size for perturbation through a grid search.

2) RL-based approach: Chou et al. [9] propose a deep
Reinforcement Learning (RL) based MPPT. Their method
uses temperature, irradiance, and duty cycle of the DC/DC
converter as the RL state, so they require pretty much the
same setup as ours except the ANN predictor. Also, the
reward used in [9] is the change in power, ∆Pt = Pt−Pt−1,
which provides a less stable (i.e., more fluctuating) feedback
than our prediction-based reward Rt = Pt − P̂t. As the
hardware requirement is quite similar, this method provides
a fair comparison for our method.

C. Performance Analysis

We aim to test our method for different environments.
Hence, we provide three sets of case simulations where we
examine our method by changing either irradiance, tempera-
ture, or load resistance. The experiment duration is 200 time
steps (seconds) for each analysis.

1) Varying Irradiance (G): We keep the temperature (25
°C) and the load resistance (5 Ω) stationary for this setup.
The right y-axis in Fig. 6 represents the irradiance value
that changes between 600, 800, and 1000 W/m2, shown by
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the dashed line. The left y-axis shows the output power for
different methods. The solid blue line represents the ideal
output power that all the methods try to reach. P&O method
is the slowest to reach, and our proposed method is the
fastest. Chou et al.’s method [9] lie in between.

2) Varying Temperature (T): We set the irradiance at 800
W/m2 and the load resistance (5 Ω) stationary for this setup.
The right y-axis in Fig. 7 represents the temperature value
that changes between 20, 25, and 30 °C, shown by the dashed
line. The left y-axis represents the output power, and the solid
blue line shows the ideal output power. Our method performs
significantly better than the other methods.

3) Varying Load Resistance (R): The temperature and
irradiance are fixed at 25 °C and 800 W/m2 respectively for
this case. But the load resitance changes among 1, 1.5 and 2
Ω as shown in Fig. 8. We don’t include Chou et al. method
[9] here as their model does not consider variable load. The
maximum power remains stable at 172.8 W as it is free of
load variability. The P&O method cannot reach the MPP
fast enough due to small step size. We also experimented
with bigger step sizes, which provided worse results and
unstable output power. Our method uses its variable step size
to provide the optimal solution. Clearly, MPPT for variable
load is a more challenging task as it shifts the operation point
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Time to reach MPP for each change in operating condition (s) Energy Output (kJ)
Case P&O Chou et al. Proposed Ideal P&O Chou et al. Proposed

Variable G 25, 22, 19, 18, 19 18, 14, 13, 13, 15 2, 6, 6, 6, 4 32.68 31.78 32.2 32.34
Variable T 19, 2, 3, 13, f/r* f/r*, 22, 13, 2, 13 8, 6, 3, 5, 4 34.52 34.08 34.11 34.27
Variable R 25, 22, 19, 18, 19 n/a** 2, 6, 6, 6, 4 34.56 27.76 n/a** 31.84

* Fails to reach the MPP, ** Not applicable

Table II: Summary of performances under different cases considered in Figs. 6–8. The five numbers in each cell represent
the performance under five time intervals in each case.

further from the MPP.
Table II shows the summary of the performance for the

methods for different cases. Our proposed deep RL method is
the fastest to track the MPP and maximizes the power output
for each case. All the methods does well to maximize the
output for variable irradiance and temperature; however, our
method outperforms the others to be the closest to ideal case.
The benefit of our method is more evident in the variable
resistance case, where it outputs 13 % more energy than
the P&O method. The time to reach the MPP after every
change in PV dynamics is also provided in Table II, which
is consistent with the output energy results.

V. DISCUSSIONS

The MPPT task aims to reach MPP by shifting the load
resistance towards the MPP resistance through duty cycle
change. We define our MDP state as estimated MPP resis-
tance and current load resistance, which has enough infor-
mation to change the duty cycle. This effective breakdown
of the problem helps us keep the RL state small and to the
point, which is the underlying reason for the success of this
model. This model is suitable for large-scale PV units where
temperature and irradiance from multiple sensors may keep
it apart from unnecessary noise from those sensors. Further-
more, periodical (yearly) calibration of the ANN predictor
may compensate for degradation and corresponding changes
in the I-V curve of the PV module over long-term usage.
Deep RL algorithms with continuous action may further
benefit this approach; however, the action range is a matter
of deliberation as a significant change in the duty cycle may
complicate the action of the DC/DC converter. The real-life
implementation of this simulation-based method may provide
further insights into this technique. Our discrete action setup
has small granularity and a suitable operating range for the
DC/DC converter. Our method addresses the major problem
of optimal perturbation size of the P&O method by providing
flexible duty cycle change based on the state of the MDP
model.

VI. CONCLUSION

This work aims to provide a state-of-the-art solution to the
MPPT task for photovoltaics by modeling a deep RL-based
technique. We integrated an ANN-based pre-trained predictor
into the deep RL model that predicts power and resistance
at MPP for a given irradiance and temperature. These two
parameters help to shape the state and reward of the RL
model. This process breaks down the task for the deep RL-
based algorithm, resulting in superior performance than the
existing P&O and a recent deep RL-based method [9]. Our
method is robust and can be used for any PV module by
training the predictor with the module’s I-V data.
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