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Abstract—Electrical utility companies offer dynamic electricity
pricing to limit peak demand of residential homes to provide
charging for the fast-growing Electric Vehicle (EV) fleet. Charg-
ing EV at off-peak hours is economical for a user; however,
scheduling brings the possibility of an undercharged EV at the
time of use. The user has the best knowledge about his driving
schedule, so including his input about target charge level and
available charging time is an effective way to avoid such discom-
fort. To this end, this work proposes a Consumer Input Based
Electric Vehicle Charge Scheduling (CIBECS) for a residential
home. CIBECS takes consumer input, electricity price, and load
forecasts to propose an adaptive scheduling technique. Moreover,
we utilize an artificial neural network, particularly an LSTM
network, to predict highly volatile residential loads. Experiments
show our model’s superior performance in minimizing electricity
cost compared to existing approaches.

Index Terms—Electric Vehicle, charge scheduling, LSTM,
electricity optimization, human-in-the-loop system.

NOMENCLATURE

L̂t Household load forecast in kW.
Et EV battery state in kWh at time t.
Ecap EV battery capacity in kWh.
Ecomp Charge to be compensated in kWh.
Ecrit Threshold for critical state of charge in kWh.
Etgt Consumer input for target state of charge in kWh.
Lt Household load in kW at time t.
Lmax Household maximum load capacity in kW.
Lpeak Household historical peak load in kW.
Pt EV charge allocation in kW at time t.
Pmax Maximum EV charging capacity in kW.
Pa,t Available power for EV charging in kW at time t.
Rt Real time electricity price in $/kWh at time t.
t Index of time slot in hour.
Tcomp Charge compensation time in hour.
TW Consumer input for charging time window in hour.

I. INTRODUCTION

Electric Vehicles (EVs) do not have combustion engines
to burn fuels; instead, they run on the power stored in their
battery. It brings two significant benefits to the EV owner,
higher fuel efficiency and low maintenance cost. The key
challenges are affordable, adequate-sized batteries for long-
distance travel and infrastructure support to accommodate EV
battery charging. Contributions from the academic community
and the automobile industry have brought EV battery price
to an affordable range and expect to reach price parity
with gasoline cars by the year 2027 [1], [2]. Subsequently,
the number of EVs is growing faster than predictions, and

the researchers are providing more aggressive EV adoption
forecasts [1].

The vast number of EVs put a significant burden on the
electrical power system. So, the power system requires expan-
sion plans in energy generation, transmission, and distribution
capacity at all levels. Many works provide guidelines for
charging station planning and implementation techniques [3],
[4]. However, EV charging is convenient and cheaper at home,
especially in homes that have a garage [5]. Recent EV models
need less time for charging but are more demanding than
the other electrical loads in a residential home. The utility
companies often limit maximum demand for a household to
evade capacity expansion expenses [6]. They impose a demand
charge proportional to the peak demand, and in some cases, set
a controller-based load cut if demand goes above a threshold
[7].

Utility companies employ Demand Response (DR) tech-
niques like day or hour-ahead dynamic electricity pricing
schemes for the customers, which is known as Time of Use
(TOU) [8]. On the other hand, the consumers follow Demand
Side Management (DSM) techniques that schedule electrical
appliance usage to capitalize the TOU tariffs [9]. EV inclusion
has further escalated the research scope, resulting in popular
Home Energy Management (HEM) techniques [8], [10]. [11]
demonstrates the impact of uncoordinated EV charging on
residential demand. EV charge scheduling techniques need
to satisfy two objectives from a user point of view, elec-
tricity cost minimization and a sufficiently charged battery
before departure. Existing literature proposes rule-based or
data-driven methods; however, human driving behavior is
too stochastic to predict. So, even state-of-the-art Artificial
Intelligence (AI) based techniques [12], [13] may suffer to
manage their experimental success in real-life implementation.

EV charging event is determined by the battery’s state of
charge and available charging time. However, these features
depend on daily life needs that are too complex to predict. We
hypothesize that human input is the most viable and straight-
forward way to optimize an EV charging event. Therefore, we
propose a direct approach of integrating human preference and
control over the scheduling method (i.e., a human-in-the-loop
system). The proposed algorithm prompts the user to set the
required charging amount and available time at the start of
every charging event. This Consumer Input Based Electric
Vehicle Charge Scheduling (CIBECS) technique schedules
the required charging within the time window based on the
electricity price Rt (provided by the utility company) and
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Fig. 1. LSTM block architecture. σ and tanh denote the
logistic sigmoid and hyperbolic tangent functions

the forecasted household load Lt. Recursive Neural Network
(RNN) based Long Short-Term Memory (LSTM) network is
widely popular for time series prediction tasks [14], [15]. Our
scheduling technique proposes a customized LSTM network
to predict the highly volatile residential load Lt. Furthermore,
we include an adaptive strategy in our model to compensate
for any prediction error of Lt. This method is the first such
work to the best of our knowledge. Our main contributions
are:

• an adaptive scheduling technique formulation that in-
cludes human input for EV charge scheduling,

• formulation of an LSTM based household load forecast
method,

• adaptability analysis of the proposed technique,
• performance comparisons with an uncoordinated case

and an RL-based approach [12] in terms of electricity
cost minimization.

The remainder of the paper is organized as follows. We
provide background information in Section II. Then, the
adaptive EV charge scheduling technique and its adaptability
analysis are given in Section III and Section IV, respectively.
The experimental setup and results are discussed in Section V.
We discuss the insights of the paper in Section VI. Finally,
the paper is concluded in Section VII.

II. BACKGROUND

A. Recurrent Neural Network (RNN)

RNN is a particular type of Artificial Neural Network
(ANN) suitable for sequential prediction tasks like speech
synthesis and recognition, handwriting recognition, and ma-
chine translation [14]. RNN captures the temporal behavior
of the data by connecting the output neurons to the input
neurons, thus building a memory of previous events within
the neural network architecture. RNN-based algorithms have
recently outperformed the state-of-the-art methods for most of
the time series tasks.

B. Long Short-Term Memory (LSTM) Network

LSTM network is a popular adaptation of the RNN idea
[15]. The LSTM network maintains a long-term memory and
short-term memory that gives it the leverage to remember the
critical information for a long term without using enormous
memory resources. LSTM is especially suitable for cases
where significant events appear periodically and intermittently
within a long time window, making residential load predic-
tion a good application for LSTM. Forgetting and saving
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Fig. 2. EV Charging Flow Chart.

mechanisms are critical for LSTM, which balances forgetting
irrelevant information and saving essential information. Fig.
1 shows the LSTM architecture that operates with the help of
4 concept gates:

(1) The Learn Gate captures the relevant information from
the current event Xt and Short Term Memory STMt−1 for
the LSTM network.

(2) The Forget Gate passes some information from the
previous Long Term Memory LTMt−1 to the next one LTMt

and forgets some information.
(3) The Remember Gate combines the outputs of Forget

Gate and Learn Gate, which directly forms the LTMt.
(4) The Use Gate combines information from LTMt,

STMt−1, and Xt to create STMt and output for the current
event.

LSTM achieves its objective by passing the event data, pre-
vious long and short-term memories through several ANNs.
These ANNs hold the correlation between their inputs and
outputs through weight matrices Wi,Wn,Wf ,Wu, and Wv

and activation functions like the logistic sigmoid and tanh
functions shown in Fig. 1.

III. PROPOSED TECHNIQUE

We propose an adaptive EV charge scheduling technique
that aims to satisfy two objectives: attain target charge level
within the allowed time and minimize electricity cost by
charging in the low tariff periods. The proposed CIBECS
technique makes scheduling decisions based on the user input,
the electricity price, and forecasted household load. The flow
chart in Fig. 2 summarizes the proposed scheduling technique.
We divide the technique into the following tasks.

A. Consumer Input

In the beginning, CIBECS waits for an EV charging event
to switch on. Whenever the EV gets connected to the charger,
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Fig. 3. LSTM network for load forecasting.

Algorithm 1 EV Charge Scheduling Technique

Input: EL = Et, TW , Etgt, R = {Rt, . . . , Rt+TW−1}, L̂ =
{L̂t, . . . , L̂t+TW−1}.
Sort electricity prices R in ascending order and store the
indices in vector I .
for τ = 1, 2, ..., TW do

Forecast available power: P̂a,I(τ) = Lmax − L̂I(τ).
Remaining charge ER = Etgt − EL.
EV charge allocation PI(τ) = min(Pmax, ER, P̂a,I(τ))
Update EL = EL + PI(τ)
Update Pt+I(τ)−1 = PI(τ)

end for
Output: EV charge schedule {Pt, Pt+1, . . . , Pt+TW−1}.

the user is asked to set a charging time range TW in hours
and target battery state of charge Etgt in kWh. Users may
select default values for these parameters in case they skip
the manual input. CIBECS collects TW , Etgt, and the battery’s
current state of charge Et from the EV device memory.

B. Electricity Price and Household Load Forecast

Electricity price and household electrical load for the fol-
lowing TW hours are the other two inputs for the scheduling
technique. CIBECS collects day-ahead hourly prices Rt from
the electrical utility company. However, the future household
load is unknown, and an accurate forecast L̂t is essential for
the success of CIBECS. Household load is sequential data that
depends on previous values apart from some other features.
So, the LSTM network discussed in Section II provides a
suitable framework for making the forecasts. We customize
and shape the LSTM network to fit our problem, as shown in
Fig. 3. Household load typically follows periodical patterns,
such as daily, weekly, and yearly. For the experiments, we
choose the following inputs for the LSTM network: the load
data of the last k time steps {Lt−k, Lt−k−1, ..., Lt−2, Lt−1},
the temperature forecast θt, and the holiday flag Ht ∈ {0, 1}.

C. Scheduling

EV charging scheduling within a user-defined time range
is a critical part of our proposed technique in Fig. 2. The
pseudo-code is given in Algorithm 1. Firstly, the agent takes
user inputs TW and Etgt, the current battery state Et, the
electricity price data R, and the LSTM-based load forecast
data L̂ for the next TW time steps. The algorithm sorts the
electricity prices in ascending order and stores their index

Condition Power compensation
Et > Etgt No

Ecrit < Et < Etgt min{0.5× Pmax, Ecomp, Pa,t}
Et < Ecrit min{Pmax, Ecomp, Pa,t}

Table I: Charge Compensation Logic.

in the vector I . Then, the algorithm schedules EV charging
starting from the cheapest hour. Next, it predicts the available
power P̂a,I(τ) for EV charging by subtracting the predicted
load for the hour L̂I(τ) from the electrical power capacity of
the household Lmax.

Then, it calculates the remaining EV charging ER by
subtracting the battery state of charge EL from the target EV
charging Etgt. The allocated EV charge is the minimum among
the maximum EV charging capacity Pmax, remaining charge
ER, and power available P̂a,I(τ). Note that the unit time step
is one hour; hence the power and energy amounts coincide
in unit time. The loop continues for TW time steps and the
algorithm outputs the scheduled charge {Pt} for the TW time
steps.

D. Adaptation & Implementation

The scheduling technique shown in Algorithm 1 is based on
load forecast, so the actual available power Pa,t = Lmax−Lt
may be less than the scheduled charge Pt. In that case, the
charge allocation will be updated as Pt = Pa,t. The battery
state of charge for the next time step will be Et+1 = Et+Pt.
If the charging time range is not over, i.e., TW > 0, then the
process will move back to check if the EV charge reached the
target amount, i.e., Et+1 = Etgt. If no, repeat Algorithm 1 for
scheduling at time t + 1; otherwise, the system restarts and
waits for a new charging session. If the charging time is over,
but the charging target is not achieved, i.e., TW = 0, Et+1 <
Etgt, then we propose charging compensation (discussed next).
In case of completed charging Et+1 = Etgt, the process moves
back to wait for a new EV charging initiation.

E. Charge Compensation

The forecasted and actual load difference yields lower than
estimated charging in the EV, which we aim to compensate.
The compensation charge amount is

Ecomp = Etgt − Et.

The compensation takes place during the gap (if any) between
the end of requested charging duration TW and EV disconnec-
tion. The proposed compensation EV charge depends on two
user-defined variables, Etgt and critical charge level Ecrit as
shown in Table I. If the battery level is greater than Etgt, then
no compensation takes place. If the battery level is less than
Ecrit, then compensation takes place at the maximum possible
level.

IV. ADAPTABILITY ANALYSIS

This section demonstrates the benefit of our adaptive ap-
proach. The presented analysis assumes the consumer assigns
enough time to reach the target charge level. In other words,
the remaining charge is attainable by charging at full capacity
Pmax or using all the available power Pa,t (whichever is
smaller).

3



A. Toy exmaple

Fig. 4 shows a toy example of charge scheduling with
the x-axis representing time steps, TW = 4. The right y-
axis represents the electricity price for the corresponding
hours, indicating that R1 = R4 < R3 < R2. The left y-
axis represents the household load, where solid lines are for
the actual load and dashed lines are for the load forecast.
The horizontal line at the top represents the maximum load
capacity of the household Lmax. CIBECS schedules charging
from low to high electricity prices according to the electricity
price, as shown in the algorithm. The area in the shaded
regions represents energy transfer in kWh to the battery. So,
the initially scheduled energy is given by

∆E = Etgt − Et = A1 +A2 +A3 +A4 +A5.

In a non-adaptive approach, area (A1 + A3) remains un-
charged due to higher actual load in time steps 1 and 3.
However, in our adaptive technique, after the first time step,
CIBECS will reschedule the uncharged portion A1 in time
step 1 through areas A6 and A7, where A1 = A6 + A7. The
process will go on till the charging time range TW ends.
No rescheduling is required after the second time step as
the actual load is lower than the forecast. However, CIBECS
can not adjust for all the uncharged energy in time step 3
as represented by A3. The adaptive approach utilizes the
lower actual load of the final time step to accommodate
additional A8 energy. In summary, CIBECS misses the target
by (A3−A8) energy compared to (A1+A3) in a non-adaptive
approach, where clearly (A3 −A8) < (A1 +A3).

B. Worst case scenario

Further, we analyze the adaptability of our model in a
worst-case scenario which will occur if all of the charging
is scheduled for the last n hours and the actual load is higher
than the forecasts for each of those hours. We can limit n as,

n ≤
Ecap

Pmax
.

The uncharged amount Ecomp after the charging window
ends gets compensation charging, as discussed in the previous
section. The algorithm aims to minimize the compensation
charging amount Ecomp and time Tcomp. The compensation
charge and charging time depends on the load prediction error
Err. By plotting Err (forecast-actual) values of an adequate
size load forecasting sample, we get a normal distribution with
the mean µ = 0 (Fig. 5). Denoting the standard deviation
of this distribution with σ, the error range [−2σ,∞], covers
97.8% of predictions. Thus, we define the worst case as
n consecutive hours of −∞ < Err < −2σ to draw the
following conclusions,
(1) Probability of the worst-case scenario is Pworst = 0.022n.
(2) Compensation charge is Ecomp < 2nσ.
(3) Compensation charging time is Tcomp <

2nσ
Lmax−Lpeak

, where
Lmax is the household maximum load capacity and Lpeak is
the household historical peak load.
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Fig. 4. CIBECS toy example.

Energy (kWh) Ecap= 40 Ecrit= 15 Etgt= 36
Power (kW) Lmax= 10 Lpeak= 6 Pmax= 6.6

Table II: Experiment parameters.

V. RESULTS

A. Experimental Setup

[11] provides meter-validated load data for 200 households
in the Midwestern USA for 2010 with 10-minute granularity.
We use these household data for our LSTM network training
and implementation. This dataset also provides EV charging
data associated with those households based on the model in
[16]. We choose ‘household 2’ for our experiments whose
residents drive two vehicles. As the dataset does not give the
EV at-home period, we generate the consumer input of time
window TW and the EV at-home time Thome (assuming the EV
is always connected to the charger while at home) as follows:

TW = TC + Poisson (λ = 3),

Thome = TW + Poisson (λ = 1). (1)

Here, TC is the charging time observed from the dataset in
[11]. The dataset models uncoordinated EV charging, meaning
the EVs immediately charge at Pmax rate till the battery is
fully charged. Ideally, TC < TW ≤ Thome and the consumer
might set TW close enough to Thome to maximize his benefit.
We establish the relation with Poisson distribution, which
is suitable for generating integer-valued extra time. Poisson
means λ = 3 and λ = 1 work well for our purpose in Eq. 1.
We use one-year hourly electricity price data between July 1,
2020, to June 30, 2021, from the real-time Locational Based
Marginal Pricing (LBMP) of NYISO [17]. 2021 Nissan Leaf
is a popular EV model with a 147 hp (110 kW) engine and
40 kWh battery that gives 149 miles of range. The Level–2
charging of 6.6 kW (240 V, 32 A) would require n = 6 hours
to charge a completely depleted EV battery. Table II shows
the parameters used for the experiments.

B. Forecasting accuracy

Household electrical load for the last 24 time steps, current
temperature (°C), and holiday flag are the inputs to the

4



σ

Worst
Case

Scenario

x= -760

Fig. 5. Histogram of load prediction error in Watts.

LSTM network in Fig. 3. The LSTM network consists of
2 LSTM layers in series, each of which has 100 neurons
and Rectified Linear Unit (ReLU) activation function. The
second LSTM layer outputs the load forecast for the current
time step. We train our LSTM network for each of the
200 households in the dataset. The trained LSTM network
achieves 95% accuracy in predicting the selected household,
as shown in Fig. 6. Importantly, the forecast picks up fast
to follow the current trend, negating the probability of
consecutive hours of forecast lower than actual load, i.e., the
worst-case scenario in Section IV-B. The load forecasting
accuracy is critical for our adaptive CIBECS technique as
discussed in Section IV. The error histogram in Fig. 5 shows
the resemblence of normal distribution in Err values. We
fit a Gaussian curve and compute the mean µ = 14 W and
standard deviation σ = 380 W. The left side of the dashed
line in Fig. 5 represents the worst case scenario as defined
in Section IV, that occurs when errors for all n consecutive
hours are Err < −760. We get the following quantities for
our experimental setup with the 2021 Nissan Leaf:
(1) n = 40 kWh

6.6 kW ≈ 6h
(2) Pworst = 0.0226 = 1.13× 10−10

(3) Ecomp < 2× 6× 380 = 4560 Wh
(4) Tcomp <

4560 Wh
10000 W−6000 W = 1.14 h

Hence, in such an improbable worst-case event, the EV
will remain less than 12.7% undercharged than the consumer’s
target charge. This amount of charge requires less than 1.14
hours (1hr 8min) to compensate completely. The viable upper
limit of compensation charging amount and time indicates that
CIBECS does well to minimize consumer discomfort due to
undercharged EV.

C. Benchmark Policies

We compare our proposed technique with the following
policies in terms of electricity cost minimization.

1) Uncoordinated Charging: [11] demonstrates the impact
of uncoordinated EV charging in residential power demand.
In this policy, the EV gets immediate charging at Pmax or
Pa,t (whichever is lower). This policy emphasizes immediate
charging and does not consider cost optimization, hence called
uncoordinated charging. We take this as the baseline policy.

2) RL-based approach: [12] proposes a Deep Reinforce-
ment Learning (RL) based appliance scheduling method for
electricity cost optimization of a home. They use the last 24
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Fig. 6. Actual load and LSTM network forecast for household
2 of the dataset in [11].

Hardware Software Task Computation time
Intel(R) Core i7,3.60 Python 3.7 LSTM Training 12 min
GHz, 16 GB RAM Pytorch 1.8.1 Online Scheduling 1.6 sec

Table III: Compute time for the experiments.

hour data to predict the next 24-hour electricity price. These
forecasts work as the deciding factors (states) for the RL
agent. For a fair comparison, we use the same LSTM forecast
for this policy. In addition, we make the following adaptations
to perform this comparative analysis.

(i) We do not consider photovoltaic (PV) generation in this
analysis.

(ii) The RL method makes decision whenever the EV is
connected to the charger. The state for RL is given by

St = (∆E, Tw, Lt, Rt)

where ∆E = Et − Etgt.
(iii) The RL agent tries to minimize the electricity cost.

D. Electricity Cost Minimization

Table III shows that LSTM training takes 12 minutes and
online scheduling requires 1.6 seconds, exhibiting the real-
life applicability. Note that the LSTM network is trained only
once in a while (e.g., a year).

We consider two scenarios. In scenario 1, only one of the
two vehicles is EV; and in scenario 2, both vehicles are EVs.
Fig. 7 shows the cumulative electricity cost comparison among
the three policies for both scenarios for one year.

In scenario 1 (left figure), the single EV consumes 2905.1
kWh of energy for the one-year period. The uncoordinated
charging costs 509.2$ for providing the energy, whereas the
deep RL-based policy costs 444.1$ and achieves 12.78%
cost reduction. Our CIBECS technique costs only 400.1$ and
reduces the uncoordinated method’s cost by 21.43%.

In scenario 2 (right figure), the second EV consumes
3514.5 kWh of energy, making the total energy consumption
by both EVs 6419.6 kWh for one year. The uncoordinated
charging costs 1142.5$ for providing the energy, whereas the
deep RL-based policy costs 976.2$ and achieves 14.55% cost
reduction. Again, CIBECS outperforms the other two policies
and costs 879.6$ with a 23.01% reduction with respect to
the uncoordinated charging method. Both CIBECS and the
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deep RL-based method are more cost efficient for the 2 EV
case, indicating the necessity of smart scheduling for high EV
penetration.

VI. DISCUSSION

Experimental results show that our prediction and rule-
based technique (CIBECS) outperforms the state-of-the-art
deep RL-based charge scheduling. Although important fea-
tures are included in the RL state definition, it lacks the
advantage of looking at the electricity price and the load
forecasts of future time steps. This result shows that a one-
step look-ahead is not sufficient in cost minimization; the RL
needs to look at TW future time steps like CIBECS. However,
TW may vary for each user and each charging event; thus, the
deep neural network in RL has to deal with variable-length
inputs, which complicates the design, implementation, and
learning process for the RL technique. This limitation paves
the way for further research to include RL in our CIBECS
technique. Moreover, research may include other features and
prediction techniques for more accurate load forecasting to
make CIBECS more efficient.

VII. CONCLUSION

The residential homes need immediate and feasible schedul-
ing techniques to accommodate the fast-growing Electric
Vehicle (EV) charging load. We proposed an adaptive process
that schedules each EV charging event within a consumer as-
signed time window, based on electricity price and household
load forecast. We designed a suitable LSTM neural network
to accurately predict household load during the charging time
window for load forecasting. Furthermore, since a single
household load bears much uncertainty for precise prediction,
we provided compensation charging measures for situations
when the actual load differs from the prediction. We presented
an adaptability analysis, worst-case scenario analysis, and a
comparative experimental analysis with respect to the unco-
ordinated charging method [11] and the Deep Reinforcement
Learning (RL) based approach [12]. Our experiments showed
the superiority of our technique in electricity cost minimiza-
tion.
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