
 

A Probabilistic Framework to Incorporate Mixed-Data Type Features: Matrix Factorization with Multimodal Side Information

Communicated by Steven Hoi

Journal Pre-proof

A Probabilistic Framework to Incorporate Mixed-Data Type Features:
Matrix Factorization with Multimodal Side Information

Mehmet Aktukmak, Yasin Yilmaz, Ismail Uysal

PII: S0925-2312(19)31146-4
DOI: https://doi.org/10.1016/j.neucom.2019.08.019
Reference: NEUCOM 21179

To appear in: Neurocomputing

Received date: 4 June 2019
Accepted date: 8 August 2019

Please cite this article as: Mehmet Aktukmak, Yasin Yilmaz, Ismail Uysal, A Probabilistic Framework
to Incorporate Mixed-Data Type Features: Matrix Factorization with Multimodal Side Information, Neu-
rocomputing (2019), doi: https://doi.org/10.1016/j.neucom.2019.08.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.neucom.2019.08.019
https://doi.org/10.1016/j.neucom.2019.08.019


A Probabilistic Framework to Incorporate Mixed-Data
Type Features: Matrix Factorization with Multimodal

Side Information

Mehmet Aktukmak, Yasin Yilmaz, Ismail Uysal
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Abstract

Recommender systems that exclusively rely on past interactions between the

users and the items underperform in settings with very few observations. Their

performance at such extreme sparsity can be improved by exploiting the side

information of the users and the items including the demographics and the

item descriptions. However, such side information is mostly heterogeneous and

multimodal, including both numerical and categorical features to yield a non-

trivial incorporation process. Researchers have addressed this problem mainly

by converting the categorical features into numerical ones or forming numerical

similarity matrices. This paper presents a different approach in the form of

a novel Bayesian probabilistic generative framework which can effectively in-

corporate multimodal side information into the matrix factorization (MF-MSI)

model. With the help of local quadratic bounds on the categorical likelihoods,

we derive a scalable and computationally efficient iterative optimization method

based on the variational EM to learn the posterior distributions of latent vari-

ables for both the users and the items. A comprehensive experimental study on

both simulated and real benchmark datasets demonstrate the proof-of-concept

where the additional side information improves both the prediction accuracy

and the ranking performance over more than a dozen popular baseline mod-

els. Finally, the proposed MF-MSI model claims state-of-the-art performance

in the majority of the test scenarios when compared to more recently introduced

recommender systems which can also utilize the side information via different
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techniques.

Keywords: Side information, unsupervised learning, probabilistic generative

models, recommender systems, collaborative filtering

1. Introduction

The Internet makes it possible to access an unprecedented amount of con-

sumer content. Naturally, as the number and diversity of the data sources

increase, the information retrieval process becomes a challenge of its own. The

management of big data has been an active research topic in the machine learn-5

ing community. For instance, recommender systems personalize content delivery

for popular applications such as streaming devices, e-commerce, and online me-

dia. Within this context, a successful recommender system can accurately and

efficiently guide consumers to the products and information they are looking

for.10

The ultimate objective of a recommender system is to learn the user pat-

terns explicitly or implicitly by using the available information. Depending on

the platform, the information sources can include, i) the past interactions and

feed-backs between the users and the items, ii) the demographic information

of the users, iii) the features directly related to the items, iv) the social re-15

lationships/trust between the users, v) the network structures connecting the

users/items based on specific criteria, vi) user-contributed information such as

textual reviews and vii) cross-domain knowledge from external domains [1, 2].

Collaborative filtering methods use only the interactions between the users and

the items to learn the user patterns. In contrast, content-based methods use20

only the side information which may be provided by the users (such as gender,

age, occupation) or the content provider (such as movie genre, year). The hy-

brid recommender system combines both approaches for a demonstrably more

successful in terms of overall recommendation accuracy for a variety of applica-

tions [3]. Specifically, the scenarios where the users and the items have very few25

observed interactions, called cold-start scenario, represents a particular chal-
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lenge which can be better resolved by the hybrid recommendation systems that

can combine the more readily available and less sparse user and item side infor-

mation sources with their significantly sparser interactions [1].

Incorporating side information is an intuitive solution for the cold start prob-30

lem. In most cases, the users and items have available demographic information

that can be used as relevant side information. In the case where a user has no

interactions (examples include new users or existing users trying out a new cat-

egory of products) but still some available side information like the age, gender,

occupation, etc. the system can still infer a recommendable item for this user35

based solely on the side information. On the contrary, a warm-start scenario

is considered when a user has too many interactions where his/her pattern im-

plies more about the user than their demographic information. A hybrid system

should use the information sources efficiently and make an accurate inference

for both the cold-start and warm-start settings. However, the process of incor-40

porating side information is non-trivial due to the diversity and heterogeneity

of the side information data format. For example, for a movie, the release date

corresponds to a numerical feature, whereas its genre has a categorical value.

Nonetheless, both should be incorporated appropriately according to the nature

of these observations.45

Probabilistic generative models are powerful tools that can be used for the

datasets, including many missing values. They allow missing data to be handled

in a principled way by marginalizing over the distribution of the unobserved vari-

ables [4]. Since these models account for the uncertainty of the latent variables,

they also handle over-fitting problem, that occurs severely in the case of very50

sparse data, by regularizing the latent variables with proper priors [5]. There-

fore, these models are particularly useful for recommender systems with the

condition that one can overcome the challenge of incorporating heterogeneous

multimodal side information which represents the main objective of this pa-

per. In this study, we propose a multimodal generative model and a variational55

Expectation Maximization (EM) algorithm to infer the latent representations

of both the users and the items to leverage the emerging variational inference
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methods [6]. Our method demonstrates the efficient incorporation of mixed

data type side information in a scalable probabilistic generative framework. In

summary, our contributions can be summarized as follows:60

• A novel probabilistic generative model that can incorporate mixed data

type side information. The natural parameters of the side information

sources are regressed from the latent variables. This allows the incorpo-

ration of any data type that can be modeled with the exponential family

distribution, although we mainly focus on categorical and numerical fea-65

tures. Since the model is generative, it can make an inference not only

in the presence of missing values in the rating matrix but also in the side

information as well.

• A fundamental solution to solve the problem of intractable inference,

which emerges due to the data type variety of the side information, by70

deriving a variational EM method that turns the inference into an opti-

mization problem. By using the appropriate local quadratic approxima-

tions, the posterior distributions of the user and the item latent variables

are approximated as Gaussians motivated by the Bernstein-Von Mises

theorem [7].75

• A reduced computational complexity which scales with the product of

the number of items and the number of users (i.e., only linear in each

dimension), which makes it suitable for large datasets.

• The state-of-the-art performance on both synthetic and real datasets when

compared to a wide range of well-established baselines as well as some more80

recent contributions.

The paper is organized as follows. The prior related work is given in Section

2. The model is defined in Section 3.1 and the corresponding inference method

is derived accordingly in Section 3.2. Computational complexity analysis is

given in Section 3.3. Detailed experimental studies including the simulation85

results and a wide range of performance comparisons on real-world datasets are
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presented in Section 4. Lastly, the paper concludes with possible directions for

future work in Section 6.

2. Related Work

In recent years, researchers have shown greater interest in incorporating90

side information specifically to solve the cold-start problem [1, 2]. We group

the related studies into four categories based on how the side information is

being treated. The category of baseline Matrix Factorization (MF) models

consists of algorithms that do not use side information; that is, the only source of

information is the rating matrix. Prior based models use the side information95

to regularize the latent space of the users and the items. Regression-based

models incorporate the side information into a common latent space shared by

both the interactions and the features. Disjoint models remove the latent space

sharing property and assume that the rating and side information are generated

independently.100

2.1. Baseline MF Models

Linear latent variable models such as principal component analysis (PCA)

[5] and matrix factorization (MF) [8] have originally led the way in matrix

completion tasks such as recommender systems. In particular, MF has been a

milestone in collaborative filtering. In this model, based on the assumption that105

the sparse rating matrix is low rank, the users and the items are mapped into a

joint low dimensional space such that the ratings are modeled as the products

of the representations in this space. The model optimizes the latent representa-

tions to explain the observed interactions by using Stochastic gradient descent

or alternating least squares methods. However, sparse nature of the observed110

data makes the optimization highly prone to over-fitting. Probabilistic ma-

trix factorization (PMF) [9] extends the MF models by introducing zero-mean

Gaussian priors for the latent variables for more robust performance in terms of

over-fitting. The priors result in L2 norm regularization for the latent variables
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if one performs MAP estimation for the model parameters. The regularization115

strength corresponds to the variances of the Gaussian priors which are opti-

mized via cross-validation procedure. However, it is still prone to over-fitting

unless the regularization parameters are chosen carefully. Bayesian probabilis-

tic matrix factorization (BPMF) [10] further extends the PMF model by using

Gaussian-Wishart priors for the means and the covariances of the latent vari-120

ables instead of the standard zero mean and identity covariance. That leads

to computing posterior of the latent variables instead of the point estimates,

which is useful for modeling uncertainty of the variables. Since the complexity

is controlled automatically based on the training data, the model is more robust

to the hyper-parameter selection. Some further recent extensions on top of the125

aforementioned models include, i) the local matrix factorization [11, 12, 13],

which extends the PMF model by introducing local estimation emerged from

the idea of mixture models [14], ii) the mixture rank approximation, which mod-

els the rank of the rating matrix in the mixture model with a Laplacian prior

to infer the latent space dimension automatically [15] and iii) neural network130

models [16, 17, 18, 19] as alternative factorization methods in order to replace

the linear models with their non-linear counterparts containing many free pa-

rameters, which may cause sensitivity to over-fitting due to the sparse nature

of the observations.

2.2. Prior Based Models135

Prior based models incorporate the user and item features by forming a

prior for the user and item latent vectors. A stochastic process given by a

polynomial function of features is used to regularize the latent variables of both

users and items in [20]. Applying feature-based regression to the priors of the

latent variables instead of zero-mean Gaussian priors (as in PMF) lead the140

way to incorporate side information where a Monte Carlo EM was used to fit

the model. Similarly, in [21], the priors of the user and item latent variables

are regressed from the features vectors. Factorized Gaussian priors are given as

the regression coefficients with a mean field assumption for variational inference.
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Kernelized probabilistic matrix factorization (KMF) [22] model assigns Gaussian145

process priors to the latent factors. The covariance of the priors is derived from

the similarity matrix evaluated from the side information of the users and the

items. Recently, in [23], the similarity-like matrix, which is called the user-

to-user topic inclusion degree based sparse network, is introduced for social-

network link prediction. The network is fused with the observed interaction150

matrix through a probabilistic model where the side information is used as the

mean prior.

2.3. Regression-Based Models

Regression-based models assume that the side information and the latent

vectors of the users and the items are linearly dependent. In [24], the BPMF155

model is extended to incorporate the side information by performing a linear

regression on the real-valued features of the users and the items. Dirichlet prior

is added to the model for local estimation to improve the performance fur-

ther where collapsed Gibbs sampling is used to fit the data. In another work

[25], probabilistic modeling is combined with matrix factorization where the160

side information consists of the observed words in the articles. A latent topic

space is used for fitting by introducing the latent Dirichlet allocation model

[26] with regression in the item latent space for joint estimation. Maximum a

posterior (MAP) estimation of the latent variables is performed with the EM

algorithm. In [27], the similarity matrices are used within a generative model,165

i.e. the latent factors are assumed to be the ancestors of the similarity matrices

in the graphical model. The regression parameters and the latent factors are

optimized jointly. An extended work in [28] introduces locality constraint into

the latent space to learn local collective embeddings (LCE). [29] proposes an

algorithm where the Gaussian process regression is used to incorporate the real-170

valued features to the matrix factorization model where the probit likelihood

is used for preference ranking. For inference, the EM algorithm is used along

with the expectation propagation approximation for non-Gaussian likelihoods.

Variational autoencoders are also used in probabilistic learning of feature latent
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representations [30]. By following [26], the article recommendation is performed175

by replacing the LDA model with a variational autoencoder. Additionally, es-

pecially for contextual recommendation, factorization machines [31] and tensor

factorization methods [32], that can use additional information beyond rating

matrix, are proposed. Recently, several algorithms [33, 34, 35] are developed

based on tensor factorization to transfer knowledge from other domains as side180

information to alleviate the cold-start problem.

2.4. Disjoint Models

Contrary to the previously discussed methods, there is a work in the litera-

ture that the rating matrix and side information are assumed to be generated

independently, i.e. they don’t share the same latent space. In [36], matrix fac-185

torization is augmented with regression against the real-valued side information

by using a weighted scheme. The side information is assumed to be marginally

independent. In [37], the normalized features are added to the latent vectors

and stochastic gradient descent is performed as in MF. In [38], side informa-

tion is used to compute multiple item similarity functions. These functions are190

weighted for each user with trained weights to make personalized recommenda-

tions. In [39], a dense submatrix is extracted from the rating matrix by selecting

the users and items with large numbers of interactions. Matrix factorization is

then performed to find latent factors of the corresponding users and items. Af-

terwards, a linear regression model is employed to relate the latent factors and195

the similarity matrices of the users and the items where the regression weights

are evaluated with the selected user/item latent factors. The resulting algo-

rithm is called DecRec. A similar method proposed in [40] uses concatenated

attributes instead of a similarity matrix. For warm-start users and items, latent

vectors are evaluated by using the factor model to learn a mapping between200

the attributes and latent vectors. In [41], independency assumption holds for

social and geographical information for the task of a point of interest estimation

to fuse the sources of information via matrix factorization. A neural network

model proposed in [18], in which concatenated item and user features are fed to
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two auto-encoders to learn low dimensional representations. These representa-205

tions are then added to the MF model whose networks and latent vectors are

jointly optimized.

The proposed algorithm falls in the general category of regression-based

models. The differences between our algorithm and the aforementioned models

are several folds. First, all the models treat the side information as uni-modal,210

i.e. the side information is assumed to be of a single data type. Majority of the

models [27, 28, 38, 39, 40, 22] handle the mixed data problem by pre-processing

the similarity measures to form a real-valued similarity matrix as the side in-

formation. However, that creates a significant burden on computational costs

and memory requirements to the extent where these approaches become unscal-215

able for very large datasets as discussed in Section 4. Another problem is their

performance relies heavily on the selection criteria of similarity metric which is

not straightforward to compute for mixed-data type features. In contrast, the

proposed model does not require any pre-processing, i.e the feature dimension

is preserved which allows the selection of a lower dimensional latent space for a220

demonstrably better trade-off between performance and scalability. The mixed

data problem is solved by a principle probabilistic generative approach where

the real-valued, categorical and binary features are modeled by using Gaus-

sian, categorical and Bernoulli distributions respectively. To demonstrate the

improvements in performance, we pick and compare the representative recent225

algorithms from all four categories. The comparison details are presented in

Section 4.

3. Proposed Model

3.1. Model Definition

In this section, we describe the details of the proposed model. The model230

is developed with multimodal side information including one multivariate real-

valued and one categorical observation for both the users and the items, and

with the sparse rating matrix formed by the interactions. The ultimate goal is to
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rij

ui

vj

xi yi

zj wj

W ,µW H,µH

A,µA B,µB

i = 1, ..., I

j = 1, ..., J

Figure 1: Graphical model representation of the proposed MF-MSI method. The upper plate

is for the users, the lower plate is for the items, and the intersection is for the ratings. xi and

zj denote real-valued side information while yi and wj denote categorical side information.

infer the posterior distributions of the user and the item latent variables to ex-

plain both the observed ratings and associated side information. The graphical235

representation of the proposed model is shown in Figure 1. In the probabilistic

model, ui ∈ RK corresponds to the latent variable associated with user i and

vj ∈ RK corresponds to the latent variable associated with item j. Zero-mean

spherical Gaussian priors are assumed for these multivariate latent variables as

follows:240

p(ui) = N (ui|0K , λ
−1
u IK), (1)

p(vj) = N (vj |0K , λ
−1
v IK), (2)
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where λu and λv are the precision hyperparameters for the distributions. K

is the latent space dimension. Instead of the zero-mean prior, it is trivial to

use Gaussian-Wishart priors as in [10] for fully Bayesian treatment to prevent

over-fitting that can easily occur in the case that the regularization precision

parameters are not tuned correctly within a validation set. However, for sim-245

plicity of derivations, we stick to the zero-mean spherical priors. The generative

process assumes that both the real-valued and the categorical side informa-

tion represented by xi ∈ RDu and yi ∈ RMu , respectively, are generated from

ui through the model parameters via regression. We hold on to this assump-

tion since many regression-based models in the literature [24, 25, 42, 28] have250

proved that modeling the generation process for the features linearly through

the natural parameters of their distributions is a valid assumption and results in

reasonable performance. Accordingly, the conditional probability of xi is given

as a Gaussian distribution:

p(xi|ui) = N (xi|Wui + µW ,Σx), (3)

where W ∈ RDu×K , µW ∈ RDu and Σx ∈ RDu×Du are the model parameters255

associated with the real-valued user side information. For yi, the categorical

conditional distribution is assigned as follows:

p(yi|ui) = Cat(yi|S(Hui + µH)), (4)

where H ∈ RMu×K and µH ∈ RMu are the model parameters that are as-

sociated with the categorical side information. S is the Softmax function that

maps the natural parameters of the categorical distribution to the probability of260

each class. The natural parameters of both distributions are linearly modeled,

i.e., ηG,i = Wui + µW for the Gaussian distribution, and ηC,i = Hui + µH

for the categorical distribution. ηG,i corresponds to the mean of the Gaussian

distribution, and ηC,i = [log p1

pMu+1
, . . . , log

pMu

pMu+1
]T where {p1, . . . , pMu+1} are

the probabilities in the categorical distribution. A symmetric configuration is265
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used for the item side with the following distributions:

p(zj |vj) = N (zj |Avj + µA,Σz), (5)

p(wj |vj) = Cat(wj |S(Bvj + µB)), (6)

where zj ∈ RDv andwj ∈ RMv represent the real valued and the categorical side

information for item j, respectively. The corresponding model parameters are

A ∈ RDv×K , µA ∈ RDv , Σz ∈ RDv×Dv , B ∈ RMv×K and µB ∈ RMv . Finally,

the rating matrix is assumed to be generated with the interactions between the270

user and the item latent variables. The conditional probability for each rating

is modeled with the precision parameter c as follows:

p(rij |ui,vj) = N (rij |uT
i vj , c

−1). (7)

3.2. Inference

Next, we infer the posterior distributions of the user and the item latent

variables ui and vj given the observed ratings and the multimodal side infor-

mation. We also find the Maximum Likelihood estimations of the global model

parameters that are collected in the set Θ as

Θ = {W ,µW ,H,µH ,A,µA,B,µB,Σx,Σz, c}.

The model has two hyper-parameters that is included in the set ζ = {λu, λv}.
In order to fit the latent variable models, the EM algorithm, which maximizes a

lower bound for the marginal likelihood, provides a powerful solution [4]. How-

ever, an exact EM algorithm cannot be used to infer the model parameters due

to the intractable posteriors of the latent variables for the categorical likeli-

hoods. Specifically, the complete data likelihood is given for user i and item j

by following generative process as follows:

Lij = p(ui)p(xi|ui)p(yi|ui)p(vj)p(zj |vj)p(wj |vj)p(rij |ui,vj). (8)
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The likelihood consists of the categorical likelihoods of p(yi|ui) and p(wj |vj)
which make an exact inference intractable. Instead, motivated by the Bernstein-275

von Mises theorem [7], we use variational inference by restricting the posterior

distributions only to Gaussians to make the lower bound tractable. The vari-

ational EM approach is used by defining the local quadratic bounds for cate-

gorical likelihoods where Bohning bound has been shown to provide a useful

lower bound [43, 44, 45]. This bound is obtained by locally approximating the280

log-sum-exp (lse) function for the log-likelihood of multinomial and categorical

distributions [46]. The approximation is performed around a point called the

free variational parameter. The log likelihood of the categorical distribution of

user side information after applying Bohning bound can be written as follows:

log p(yi|ui) = log
ey

T
i ηC,i

1 +
∑Mu

k=1 e
ηC,i,k

= yT
i ηC,i − lse(ηC,i))

≥ yT
i ηC,i −

1

2
ηT
C,iFuηC,i + gTi ηC,i − ei

≥ yT
i (Hui + µH)− 1

2
(Hui + µH)TFu(Hui + µH)

+ gTi (Hui + µH)− ei,

(9)

where ηC,i,k are the elements of the vector ηC,i, and the lse function is given

by lse(ηC,i) = log(1 +
∑Mu

k=1 e
ηC,i,k). When the quadratic bound approxima-

tion is used, the lower bound to the complete data log-likelihood also becomes

quadratic which lets the posteriors be approximated as Gaussian distributions.

This is a reasonable approximation for large number of features (Du +Mu + I)

since the conditions of Bernstein-von Mises theorem are satisfied under the ex-

ponential family models with a Gaussian prior [7]. The intermediate parameters

that are used within the bound are given as follows [43]:

Fu =
1

2
(IMu

− 1

Mu + 1
1Mu

1T
Mu

), (10)

gi = Fuψi − S(ψi), (11)
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ei =
1

2
ψT

i Fuψi − S(ψi)
Tψi + lse(ψi), (12)

where ψi is the free variational parameter around which the lse function is285

approximated. At each iteration, this parameter is updated as well to change

the local approximation point. Gaussian log-likelihoods for user i that appears

in the complete data log-likelihood are given as follows:

log p(ui) = −K
2

log(2π)− 1

2
log |λ−1

u IK | −
λu
2
uT
i ui, (13)

log p(rij |ui,vj) = −1

2
log(2π)− 1

2
log c− c

2
(rij − uT

i vj), (14)

log p(xi|ui) = −Du

2
log(2π)−1

2
log |Σx|−

1

2
(xi−Wui−µW )Σ−1

x (xi−Wui−µW ).

(15)

The log-likelihoods for the items are similar due to the symmetry of the

model and will not be replicated to avoid clutter. The lower bound for the290

complete data log-likelihood is found by the summation of the log-likelihoods

of each factor in Eq.8. In the EM algorithm, taking the expectation of this

bound with respect to the posterior distributions of the latent variables ui and

vj first by using the old model parameter values and later by maximizing this

expectation with respect to these parameters will yield a new parameter set [4].295

E-Step: Specifically, we first obtain the means and the variances of the Gaus-

sian approximation for the posteriors of ui and vj . These can be derived

by completing the square by collecting quadratic and linear terms in the log-

likelihood to form Gaussian likelihoods [47]. It is important to note that since

a lower bound is used, the variational posterior distributions are obtained as300

q(ui) = N (ui|mui,Σui) for ui and q(vj) = N (vj |mvj ,Σvj) for vj instead of

the exact posteriors. The E-step equations for the variational parameters mui

and Σui of q(ui) are given as follows:

Σui = (λuIK +HTFuH +W TΣ−1
x W + c(E[V OiV

T ]))−1, (16)

14



mui = E[ui] = Σui(c(E[V ]Oiri)+HT (yi+gi−FuµH)+W TΣ−1
x (xi−µW )),

(17)

E[uiu
T
i ] = Σui + E[ui]E[uT

i ], (18)

where V = [v1, . . . ,vJ ] and ri = [ri1, . . . , riJ ]T . Oi is a J × J diagonal matrix

whose entries are the binary indicators of the observed ratings of each item for

user i to calculate the sufficient statistic by summing only the second moments

of the items rated by user i. c is a global parameter that weighs this statistic

to maintain a balance between the ratings and the side information. The first

term in Eq.16 is the prior precision given for ui that prevents over-fitting. The

second and the third terms correspond to the contributions of the categorical

and real-valued side information respectively. Note the fact that the second

term depends only on the global parameters H and Fu instead of the instances.

The last term couples the user posterior covariance with the second moment

of the items through a coefficient c. The optimal parameter c is estimated

during the M-step by taking the sparsity of the dataset into account. After

calculating the posterior covariance, the posterior mean is calculated by using

Eq.17. The first term in this equation couples the mean of the item latent

variables with the observed ratings. Oi term effectively includes only those

item variables that are rated by the user i. c is used to weigh this coupling term

with respect to the second and third terms corresponding to the observations

with the categorical and the Gaussian side information respectively. The sum of

these terms is multiplied with the posterior covariance to calculate the posterior

mean of the latent variable of the user i. Next, the second moment of each user

is calculated since the coupling between the items and the users in the posterior

covariance calculation for item latent variable vj appears through this statistic,

as shown in Eq.16 for the item second moment. Finally, the variational free

parameters for each user and item are updated in the E-step for appropriate

local approximation. Optimal update for a user which has been shown in [46, 44]
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is given as follows

ψi = HE[ui] + µH . (19)

The equations for the item vector vj are similar (due to the symmetrical

graphical model) with the same form but different parameters. The sum of305

second moments over all items and users is used as a sufficient statistic to

evaluate the M-step.

M-Step: By using the predicted posterior distributions of ui and vj after

each E-step, the model parameters are estimated point-wise to maximize the

lower bound of the expected complete-data log-likelihood, which corresponds to310

the M-step of the EM algorithm. To find the update equations for the model

parameters, the derivative of the expectation of complete-data log-likelihood

with respect to each model parameter is evaluated. For the Gaussian modality

of the user side, the update equations for the global parameters W , µW and

Σx are obtained as follows.315

W =
[∑

i

(xi − µW )E[ui]
T
][∑

i

E[uiu
T
i ]
]−1

, (20)

µW =
1

I

∑

i

xi, (21)

Σx = diag
{1

I

∑

i

(xi − µW )(xi − µW )T − (xi − µW )E[ui]
TW T

}
. (22)

These are exactly the same update equations as in the factor analysis models

[14]. For the categorical modality, following the same approach, the update

equations are obtained for the global parameters H and µH as follows:

H =
[∑

i

(F−1
u (yi + gi)− µH)E[ui]

T
][∑

i

E[uiu
T
i ]
]−1

, (23)

µH =
1

I

∑

i

{
F−1
u (yi + gi)−HE[ui]

}
. (24)
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Lastly, the precision parameter c is updated in the same way as follows,

c =
1

|Ω|
∑

i,j∈Ω

(rij − uT
i vj)

2, (25)

where Ω is the set of index pairs {i, j} of the observed ratings and |Ω| is the

cardinality of the set. The successive E and M-steps are performed until all the320

parameters converge to steady-state values.

Once the model is trained and the posterior distributions for all users and

items are obtained, a user’s score on an item is predicted for the purpose of mak-

ing a personalized recommendation. A straightforward approach is to compute

the inner products of the user and the item posterior means for the unobserved325

ratings as follows:

r̂ij = E[ui]
TE[vj ] = mT

uimvj . (26)

3.3. Computational Complexity

In this section, we analyze each step of the algorithm in terms of their com-

putational complexities to develop a general understanding of the scalability

of the proposed approach. We start with the covariance computation in the330

E-step, given by Eq.16. The Gaussian modality term inside the summation

requires multiplication of a K ×Du matrix with its transpose which results in

O(K2Du). Note that multiplication with the diagonal term Σ−1
x in Eq.16 has

no additional cost. Similarly, the categorical modality term has a complexity

of O(K2Mu), where multiplication with Fu does not increase the complexity335

due to its special form given in Eq.10. The last term which couples the item

second moments with the user posterior covariance requires multiplication of a

K × J matrix with its transpose, resulting in O(JK2) computations. Hence,

for each user, the overall computation of the posterior covariance matrix in

Eq.16 requires O(K2(Mu + Du + J + K)). We can assume that for a typical340

recommender system J , (the number of items), is very large compared to Du

and Mu. Moreover, the number of latent dimensions K is also typically chosen

much smaller than I and J , hence the complexity reduces to O(JK2) for Eq.16.
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The computation of the posterior mean in Eq.17 includes only matrix-vector

multiplications that require O(KJ) computations. The computation of second345

moment in Eq.18 requires O(K2) computations. Finally, for all users, we repeat

the computations in Eq.16-Eq.18, resulting in O(IJK2) asymptotic complex-

ity. Due to the symmetry of the proposed model for categorical posterior, we

similarly have a complexity of O(IJK2), thus the total cost of the E-step is

O(IJK2).350

The computation of W in the M-step requires multiplication of two terms.

The first one requires a summation over multiplication of Du × 1 and 1 × K
vectors which result in O(IKDu). The inversion in the second term requires

O(K3) and the multiplication of the two terms requires O(DuK
2). Subse-

quently, the total cost is O(IKDu). Similarly, the computation of Σx has355

O(IKDu) complexity, and for H the complexity is O(IKMu). Their joint com-

plexity is O(IK(Du + Mu)). Due to the symmetry, the item side parameters

need O(JK(Dv +Mv)) computations, which makes the total cost of a single M

step as O(IK(Du +Mu) + JK(Dv +Mv)).

In terms of the overall computational complexity of a single EM iteration,360

the focus is on the number of users I and the number of items J as they will

significantly outweigh any other system parameter in a typical large scale im-

plementation. We see that while the complexity of the E-step scales by IJ , the

M-step scales by (I + J). Conclusively, one can say that for large I and J ,

the E-step will dominate the computational load with an overall model scaling365

factor of IJ . Since the complexity linearly scales with both the number of users

and the number of items, the proposed algorithm is competitively scalable for

big data applications in terms of time computational complexity.

4. Experimental Results

4.1. Evaluation Models370

In this section, we briefly describe the models which are included for the

purpose of comprehensive performance evaluation. For labeling purposes, the
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proposed model will be called the MF-MSI method 1. The other models can

be categorized into three groups. The first group includes some baseline MF

algorithms that are related to the proposed algorithm 2. The second group375

consists of extensively used standard benchmark algorithms. The last group

consists of the recent algorithms that can incorporate side information, which

are selected from the categories defined in Section 2.

4.1.1. Baseline MF Algorithms

BPMF: In this model, the side information is not incorporated. The user380

and item latent variables are inferred by using only the sparse rating matrix.

In this baseline model, the second and third terms in both the summations of

both Eq.16 for posterior covariance and Eq.17 for mean estimation are simply

removed. Since there are no categorical likelihoods in this altered complete data

likelihood, the exact EM solution is applied instead of the variational EM. This385

particular baseline model resembles the well-known approaches in the literature

such as Bayesian Probabilistic Matrix Factorization (BPMF)[10] and Factor

Analysis [14]. In fact, the model definition here is the same as BPMF but the

inference is performed via EM instead of Markov Chain Monte Carlo (MCMC),

hence, this algorithm will be labeled as BPMF in the comparative studies.390

PMF: A gradient-based optimization is used to find the point estimates of the

parameters and the MAP estimates of the latent variables which maximize the

complete data log-likelihood [9]. This method does not use the posterior covari-

ances of latent variables which makes it more sensitive to the hyper-parameters

[43]. PMF method is implemented by removing the side information terms in395

Eq.16.

4.1.2. Standard Algorithms

NormalPredictor: The unknown ratings are predicted by sampling from a

normal distribution whose mean and variances are estimated from the training

1The code is available at https://github.com/maktukmak/MF-MSI.
2Surprise package is used for the implementation of some algorithms in this category.
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data using the Maximum Likelihood Estimation.400

BaselineOnly: The global, the user and the item-specific means are evaluated

by using the ratings in the training dataset. Predictions are performed by

summing up the mean values [48].

KNN Models: In the user-based neighborhood models, the similarity between

users is computed by using the cosine distance and the predictions are evaluated405

by linearly weighting the predictions of the k-neighbors with the pre-computed

similarity values. We considered four different types of KNN models. KNNBasic

is performed with raw ratings. KNNWithMeans takes into account the mean

of the user and the item ratings. KNNWithZScore incorporates the z-score

normalization for each user. KNNBaseline uses the baseline ratings computed410

by summing up the global, the user and the item mean rating [49].

SVD: This model factorizes the rating matrix into two low dimensional user and

item matrices. The global mean, the user bias and the item bias are incorporated

in the model. Stochastic gradient descent is used to optimize low dimensional

matrices and biases. It is similar to the PMF model but also includes biases [8].415

NMF: This model is similar to SVD but the latent factors are forced to be

positive. It is recommended for use particularly in datasets with only positive

interactions [50, 51].

SVDpp: This is an extension of SVD taking into account implicit feedback. A

new set of item factors is introduced to capture implicit ratings. All the factors420

are optimized along with biases by using a gradient-based approach [49, 52].

SlopeOne: Average differences between the ratings of the target item and the

items rated by the other users are evaluated in a pairwise manner [53].

CoClustering: K-means algorithm is used to form the clusters for the users

and the items and the co-cluster for the ratings. The means of these three425

clusters are summed up to find the prediction of an unknown rating [54].

4.1.3. Recent State-of-the-art Algorithms

LCE: A matrix factorization model which can incorporate side information via

collective factorization. This model is similar to the proposed MF-MSI in terms

20



of the common latent space utilization. However, the model can only incorporate430

real-valued side information. For mixed data types, the side information is pre-

processed to form real-valued similarity matrices by using RBF kernels [28].

DecRec: This model extracts a submatrix from the rating matrix, which is

dense enough to be completed with low error rates. The completion is performed

via classical Matrix Factorization by evaluating the latent factors. The cosine435

similarity matrices for the users and the items are computed by using the side

information. Linear regression is performed to find the latent factors of the

users and the items which are excluded by the submatrix by using similarity

matrices and in-submatrix latent factors [39].

KMF: Kernelized matrix factorization uses Gaussian process priors to regulate440

the columns of the latent matrices as opposed to the rows as in classical PMF

models. The covariance matrices of the priors are simply assigned as similarity

matrices formed by using the side information of the users and the items [22].

LightFM: This model incorporates mixed data type side information by adding

the features from the metadata of the users and the items to the classical ma-445

trix factorization model. This model is not probabilistic and gradient-based

optimization is used to find the point estimates of the latent vectors [37].

4.2. Datasets

Four different datasets are used in the experimental study. The first one

is a synthetic dataset generated, i) to analyze the model behavior with re-450

spect to varying levels of sparsity, ii) to assess the convergence property and

iii) to observe the computational load and scalability with respect to the grow-

ing dataset. The comparative study includes three different variations of the

MovieLens dataset with the different number of interactions (100K, 1M, and

10M) commonly used as the official benchmark datasets in recommender sys-455

tem applications to assess small to large scale performance. A specific advantage

of MovieLens dataset is the availability of multimodal side information for both

the users and the items. The statistics of each dataset are summarized in Table

1.
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Synthetic: The synthetic dataset is generated by following the generative pro-460

cess described in section 3.1. The rating matrix is generated by randomly remov-

ing a fraction of the generated values. In addition to the sparse rating matrix,

the fully observed multimodal side information is generated for both the users

and the items. The Gaussian modality dimensions are chosen as Du = 3 and

Dv = 3. Two categorical modalities are incorporated for each side such that465

Mu = [5 3] and Mv = [5 3] which means that the first and the second categorical

features have 6 and 4 classes (where the last class used as the pivot) respectively.

The dimension of the latent space is fixed as K = 3. λu, λv and c are fixed as 1.

The number of the users/items (I, J) and the missing value fractions are varied

according to the specifications of the experiments.470

MovieLens 100K: MovieLens 100K is one of the most popular small-scale

recommender system datasets used for benchmarking. The rating matrix is

generated by the interactions of 943 users with 1682 items. The number of

interactions is 100K which makes the fraction of missing values 0.937. The

dataset has fully observed user side information such as age, gender, occupation475

and zip code. We model the age information as a univariate Gaussian modality

and gender and occupation information as categorical modalities with 2 and

21 classes, respectively. For the item side, the dataset has movie title, release

date, and genre. We model the release date as a univariate Gaussian. Genre

is a 21-dimensional non-1-of-K binary indicator. Hence, the genre information480

is modeled as 21 different categorical modalities where each one can have two

values (Bernoulli distribution).

MovieLens 1M: Similarly, MovieLens 1M is generated by approximately one

million interactions of 6040 users on 3883 items which makes the sparsity around

0.957. It has the same metadata as MovieLens 100K dataset for both the users485

and the items.

MovieLens 10M: Finally, MovieLens 10M is a large-scale dataset that pro-

vides approximately 10M interactions of 71567 users on 10681 items. The frac-

tion of missing values, in this case, is 0.987. Unlike the previous two datasets,

the user side information is not officially provided. For the item side informa-490
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Table 1: MovieLens Dataset Statistics.

Statistics MovieLens-100K MovieLens-1M MovieLens-10M

# Users 943 6040 71567

# Items 1682 3883 10681

# Ratings 100000 1000209 10000054

Rating Sparsity 0.937 0.957 0.987

Real-valued info for users Age Age -

Categorical info for users Gender, occupation Gender, occupation -

Real-valued info for items Release Release Release

Categorical info for items Genre Genre Genre

tion, we similarly have the genre and release date like the previous two datasets.

4.3. Evaluation Metrics

To compare the performance of the algorithms described in Section 4.1, two

performance evaluation metrics are used throughout the study. Mean Square

Error(MSE) is used to assess the performance when explicit rating prediction is

performed, which is evaluated as follows:

MSE =
1

|Ωtest|
∑

i,j∈Ωtest

(r̂ij − rij)2

where Ωtest is the set in which the indices of the test interactions are stored.

The second metric is “recall” that measures the ranking performance of the

model. Generally, recall is a more practical assessment of a recommender system

as it directly measures the recommendation performance. In the special case of

movie datasets, the evaluation is given as follows:

Recall@L =
number of movies the user liked in the top L recommendations

total number of movies the user liked

where L is the number of recommended movies that are selected from the test

set of the corresponding user. For the remainder of the paper, recall is reported495

as the average of all the user’s individual recalls.
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4.4. Splitting the Dataset for Training and Testing / Cold Start and Warm Start

We apply two different test scenarios called the warm-start and the cold-

start. The warm-start scenario corresponds to the case where at least one

interaction for all the items and the users appear in the training set such that500

at least some information in the rating matrix is present for all the test users

and items. We use the following recipe to create this condition. If the number of

interactions for an item is smaller than 5, then all of its interactions are included

only in the training set and no interaction for that item exists in the test set.

If the number of interactions for an item is larger than 5, a randomly selected505

60% − 20% − 20% of these interactions are separated for training, validation,

and testing respectively.

On the contrary, the cold-start scenario corresponds to the case where some

items have all of their associated interactions appeared in the testing set with

no associated interactions in the training set. In order to create this case, %20510

of the items are randomly chosen as test items and all of their interactions are

separated exclusively for the testing set. Similarly, another %20 of randomly

chosen items is dedicated as the validation set where all of their interactions are

also removed from the training set.

4.5. Simulation Study515

First, we conduct a simulation in which a synthetic dataset is generated

according to the configuration described in Section 4.2 with 300 users and 500

items. The purposes of this study are: i) to confirm the hypothesis that incorpo-

rating side information into the prediction process improves the performance of

the recommender system, ii) to assess the performance sensitivity with respect520

to the sparsity level and iii) to observe the convergence behavior and iv) to test

scalability of the proposed model. In this synthetic dataset, five modalities of

the information exist including the Gaussian and categorical modalities for the

user/item side information as well as the rating matrix. We induce the missing

values and calculate the MSE performance on the fully observed rating matrix525

with respect to the varying fractions of missing values from %0 to %95 with
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Figure 2: MSE vs missing value fraction on synthetic dataset

increments of %5. In this section, the proposed model is only tested against the

BPMF model which does not utilize any side information but is otherwise the

same predictor. The results are presented in Figure 2.

We see a significant improvement in the performance of the MF-MSI model530

over the BPMF across all different fractions of missing values which serves as

a strong empirical validation of the model and its behavior. These results are

averaged across 10 experiments for each fraction. Although the difference is

around 0.13 when the missing value fraction is 0, i.e., all ratings are observed,

the difference more than doubles to 0.27 when the missing value fraction is535

%0.95. This indicates that the MF-MSI model fits better to the dataset that

follows a generative model assumption even when the fraction of missing values

is very high with the help of observed side information. The high fraction of

missing values case in this experiment is important and relevant since in most of

the real world datasets, the rating matrices have high sparsity (> %95) levels.540

Next, we observe the convergence rate of the MF-MSI model compared to the

BPMF model for the same hyperparameter configuration. Figure 3.(a) shows

the “MSE with respect to time in seconds” when the fraction of missing values

is set as %95. The MF-MSI model tends to converge faster to a lower MSE.

The BPMF, on the other hand, displays an elbow during the first few iterations545
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Figure 3: Convergence analysis on synthetic dataset

which slows down the convergence. The addition of side information seems to

remove this elbow and lead to a smoother and faster (as much as 4x times)

convergence.

As discussed in Section 3.3, when the number of users I and the number

of items J are large compared to the dimensions of the side information, time550

complexity reduces to a factor of I × J . Figure 3.b shows the log of time per

iteration when I and J increase from 512 to 8192. Although the total time

increases exponentially for both models, the time difference between them van-

ishes as the numbers of users and items increase. As a result, one can conclude

that adding the side information by using the proposed approach does not nec-555

essarily increase the time complexity per iteration for large scale applications

while leading to an almost order of magnitude faster convergence to a more

accurate point in a smaller number of iterations.

4.6. Movie Recommendation Study

In this section, we conduct a comprehensive experimental study to assess560

the performance of the proposed algorithm by using the MovieLens datasets.

Firstly, we show the qualitative results by examining the latent space learned

by the algorithm. Next, we compare the prediction and ranking performance

of the algorithm with the baseline MF, the standard benchmark and the recent

26



state-of-the-art algorithms, respectively. As a pre-processing, the real-valued565

side information for both the users and the items is normalized to have zero

mean and unit variance. The categorical information is converted to 1-of-K

binary representations. The last classes are designated as pivots such that Mu

and Mv are equal to the number of the corresponding user and item classes

minus 1. Additionally, the model hyper-parameters of each algorithm in the570

experimental study are optimized by using the validation set for each dataset.

A grid search is performed and the parameter set that corresponds to the best

performance in the validation set is used in the test set to report the evaluation

results.

4.6.1. Examining the Latent Space575

In this section, we analyze how well the proposed generative model fits the

data by illustrating how the users and the items are grouped together in the

latent space with respect to their statistical similarities. Since the posterior

distributions of the user and the item latent variables are obtained after infer-

ence, the latent space can be discovered and explored by using KL divergence,

which is a more convenient distance metric than the Euclidean distance due

to the availability of posterior covariances. The closeness of two users can be

assessed via KL divergence between the two multivariate Gaussians by using

the following closed form expression:

DKL(ui||uk) =
1

2

(
tr(Σ−1

ukΣui)+(muk−mui)
TΣ−1

uk(muk−mui)−K+ln
( |Σuk|
|Σui|

))
,

where “tr” denotes the trace operator. Table 2 shows three sample users neigh-

boring in the latent space. First, User1 is selected randomly among all users

and then the two closest users are found using the KL divergence. The meta-

data of the corresponding users is provided in the table along with the names of

the movies the users liked and their corresponding metadata. One can observe580

the similarity of the users’ demographic information such as gender (all female)

and age (all middle age) and the fact that the occupations are not contrary.

Similarly on the item side, one can see that some movies such as ’Ice Storm’
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Table 2: Three sample users from MovieLens 100K that are close in the learned latent space.

User 1 (Female, 40, Librarian)

Boogie Nights 1997 Drama

In and Out 1997 Comedy

Postman, The 1997 Drama

Mad City 1997 Action, Drama

Ice Storm 1997 Drama

User 2 (Female, 50, Other)

Ice Storm 1997 Drama

As Good As It Gets 1997 Comedy, Drama

Wings of the Dove, The 1997 Drama, Romance, Thriller

Good Will Hunting 1997 Drama

Wag the Dog 1997 Comedy, Drama

User 3 (Female, 35, Administrator)

Cold Comfort Farm 1995 Comedy

Postman, The 1997 Drama

Emma 1996 Drama, Romance

Sense and Sensibility 1995 Drama, Romance

George of the Jungle 1997 Childrens, Comedy

and ’The Postman’ appear in each user’s list. The movie release dates are also

close and the genres (such as comedy and romance) are overlapping. It is obvi-585

ous that the model fits all the preferences from the rating matrix as well as the

side information which includes the metadata of the users and the items in the

latent space. Furthermore, we can use the similar approach to find movies that

are close in the latent space. A sample of two different movie groups is listed in

Table 3. The first movie in each list is chosen randomly and the KL divergence590

is used to find the 4 closest movies in the latent space for each group. Much

like the user case, one can see how the side information including the genre and

the movie release dates can help improve the clustering performance of mixed

data type observations.
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Table 3: Two sample movie groups from MovieLens 100K which are close in the learned latent

space.

Group 1

Shall We Dance? 1937 Comedy, Musical, Romance

Gay Divorcee, The 1934 Comedy, Musical, Romance

Top Hat 1935 Comedy, Musical, Romance

Women, The 1939 Comedy

Band Wagon, The 1953 Comedy, Musical

Group 2

Ghost 1990 Comedy, Romance, Thriller

Pretty Woman 1990 Comedy, Romance

While You Were Sleeping 1995 Comedy, Romance

In the Line of Fire 1993 Action, Thriller

American President 1995 Comedy, Drama, Romance

4.6.2. Comparison with Baseline MF Algorithms595

For all the models in this category, the latent space dimension is chosen the

same for a fair comparison, K = 10. Prior hyper-parameters λu and λv are cho-

sen as 1. The rating precision c is initialized as 1. Figure 4.(a) shows the recall

performances for both the warm and the cold settings. In the warm setting,

as shown in the figure on the left, all models perform similarly (with slightly600

higher performance for the proposed algorithm) due to the cross-information

being included in the rating matrix for both the training and the testing sets.

As expected, the PMF model performs the worst in every scenario, while the

proposed MF-MSI model performs slightly better than all the other models for

all the three datasets.605

The advantages of the proposed method become much clearer as shown in

Figure 4.(b) when the more challenging and realistic cold setting environment

is used. As expected, all three algorithms perform worse than the warm setting

startup, however, the proposed model is significantly less affected. Naturally,

the PMF and the BPMF models cannot generalize properly due to the initial610
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Figure 4: Recall performances on MovieLens datasets when L = 2
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Figure 5: Recall performances for the varying number of recommended movies

lack of information in the rating matrix for the cold setting, which makes their

performances depend highly on proper initialization.

Next, we analyze the effect of the number of recommended movies, L, on

the recall performance. Figure 5 shows that the differences between the recall

performances of the models are getting larger when the number of recommended615

movies (L) decreases. This behavior is even more apparent in the cold setting

case suggesting that the side information allows the proposed model to have

a significantly better recommendation performance specifically for its top rec-

ommendations. This represents the ideal case for a commercial recommender

system as the majority of the users focus on the top 2-3 items in their recom-620

mended list where accuracy becomes more important.

30



4.6.3. Comparison with the Standard Benchmark Algorithms

The standard algorithms are not capable of incorporating any side informa-

tion. To this end, the comparison is performed only for the warm-start condition

via MSE metric. Each experiment is repeated over 10 times to obtain a statis-625

tically meaningful result. At each trial, the training/testing split is performed

randomly. As indicated in table 4, the proposed model outperforms the stan-

dard algorithms by exploiting the side information. The closest performance is

achieved by the SVDpp and BPMF. KNN models cannot produce results for

the MovieLens 10M since the dataset is too large for these models to process*.630

Specifically, these models require similarity matrices to be computed and stored

in the memory. In the case of the MovieLens 10M dataset, the sizes of the

matrices are 71567× 71567 and 10681× 10681 for the user-based and the item-

based models respectively which requires a significantly large memory size for

storage and processing. Our 32GB memory could not able to store the matrices.635

This scalability issue is a well-known bottleneck of neighborhood-based models

[47, 3].

4.6.4. Comparison with Recent State-of-the-art Algorithms

The models in this category are able to incorporate the side information. We

compare their performances with the proposed model under both the warm and640

the cold start conditions. For recall performance, the number of recommended

movies L is selected as 10. Table 5 presents the averaged results over 10 ex-

periments with different random split initializations for each experiment. It is

important to note that, as in the case of the KNN models, the LCE, DecRec and

KMF algorithms cannot scale to the Movielens-10M dataset due to the space645

complexity of the models and their imposed memory limitations*. The LCE and

DecRec algorithms require storing the similarity matrices calculated by using

the side information of the users and the items, which results in O(I2+J2) space

complexity. Additionally, the KMF algorithm requires inverting these matrices

to obtain kernels for the Gaussian Process priors which results in O(I3 + J3)650

computational complexity. LightFM and MF-MSI do not have these types of
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Table 4: MSE comparison with standard benchmark algorithms on the warm setting

Algorithms MovieLens-100K MovieLens-1M MovieLens-10M

NormalPredictor 2.304 2.268 1.329

BaselineOnly 0.893 0.828 0.750

KNNBasic 0.964 0.872 *

KNNWithMeans 0.910 0.872 *

KNNWithZScore 0.910 0.874 *

KNNBaseline 0.934 0.901 *

NMF 0.872 0.848 0.766

SVD 0.895 0.794 0.664

SVDpp 0.863 0.767 0.659

SlopeOne 0.893 0.824 0.743

CoClustering 0.949 0.841 0.781

PMF 0.901 0.802 0.691

BPMF 0.850 0.776 0.671

MF-MSI 0.812 0.728 0.632

bottlenecks since they work on the raw features instead of the similarity ma-

trices. LCE also needs a relatively large latent space dimension compared to

MF-MSI. The reason is that the side information, which is the similarity ma-

trix, is high dimensional. In order to project this matrix to the latent space,655

the dimension should be extended significantly. In [28], the authors suggest a

latent space dimension of 500 while MF-MSI can achieve similar results with

only a 20 dimensional space. That makes the proposed algorithm faster and

more efficient compared to LCE. For instance, for the MovieLens 100K dataset,

MF-MSI converges in 1.9s which is several orders of magnitude faster than LCE660

which requires 61.2s for reasonable performance.

In the warm-start scenario, MF-MSI performs better than all the other algo-

rithms in terms of both RMSE and Recall. For the MovieLens 10M dataset, the

proposed algorithm outperforms LightFM which is the only other state-of-the-

art algorithm in this list scalable to the size of this dataset. In the cold-start665
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Table 5: Performance comparison with recent state-of-the-art algorithms.

MovieLens-100K MovieLens-1M MovieLens-10M

Warm-Start MSE Recall MSE Recall MSE Recall

LCE 0.854 0.890 0.729 0.901 * *

DecRec 1.187 0.842 1.196 0.814 * *

KMF 0.863 0.892 0.769 0.900 * *

LightFM 1.021 0.889 1.034 0.893 1.827 0.886

MF-MSI 0.812 0.900 0.728 0.904 0.632 0.902

Cold-Start

LCE 1.253 0.849 1.363 0.819 * *

DecRec 1.234 0.854 1.208 0.823 * *

KMF 1.208 0.821 1.140 0.791 * *

LightFM 1.274 0.857 1.343 0.822 2.047 0.824

MF-MSI 1.192 0.861 1.261 0.827 1.490 0.886

scenario, MF-MSI outperforms the other algorithms in terms of ranking per-

formance. However, KMF has better MSE performance for MovieLens 1M.

Considering the scalability issue of KMF, one can conclude by the results re-

ported in Table 5 that the overall performance of the proposed model is higher

than the competitive algorithms in a significant majority of the test scenarios670

using the three differently sized datasets.

5. Conclusion

In this paper, we introduce a fundamentally different approach to incorporate

multimodal side information using a novel probabilistic generative framework

for recommender systems. A scalable and computationally efficient statistical675

inference method based on variational EM is derived for datasets with very

sparse interactions between the users and the items to exploit their associated

multimodal side information. The Bayesian structure of the model naturally

enables the discovery of full multi-variate distributions over the latent space

to provide a better prediction performance in both the mean-square-error and680
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recall metrics as more side information becomes available. The improvement

in both the accuracy and the ranking performances of the proposed model is

clearly demonstrated over a wide range of popular benchmark models for both

warm and cold start test scenarios across both synthetic and real datasets. In

fact, the state-of-the-art performance is achieved for the majority of the cases685

when compared to other recently introduced recommender systems which also

incorporate the side information in different ways.

Our findings have several important implications when it comes to the next

generation recommender systems. First of all, the fact that side information

is utilized to improve the performance suggests that any additional knowledge690

acquisition by the companies both for the items they are promoting and their

users would be beneficial regardless of the platform. Furthermore, the reduction

in computational complexity to the level of scaling linearly with both the number

of users and the number of items, would allow competitively scalable big data

applications even when additional side information is rich and complex in nature.695

6. Limitations and Future Research Directions

Ultimately, the main purpose of this paper is to serve as the proof-of-concept

for the MF-MSI algorithm supported by both the fundamental derivations and

empirical observations with a comprehensive experimental setup. Nonetheless,

there are three separate promising pathways for further research. For instance,700

we demonstrate the scalability of the proposed model in terms of time com-

plexity. While the memory complexity of the MF-MSI algorithm is better,

especially when compared to the more recently proposed approaches, it still

represents a challenge especially for extremely large datasets. Recent work on

variational inference [55] provide promising solutions to such memory problems705

with stochastic optimization. As future work, stochastic variational EM will be

introduced to the model to deal with the memory complexity issues for very

large datasets to ultimately support online learning which is necessary for e-

commerce applications. As additional future work, the model can incorporate
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recent techniques in the literature as discussed in Section 2 primarily to increase710

the prediction performance even further. For instance, local factorization can

be performed with a mixture model, or the dimensions of the latent space can

be automatically inferred within a mixture rank model. Finally, the current

structure of the multimodal side information used in the experimental setup

(such as age, occupation, title, year) is comparatively simple compared to the715

richer and more heterogeneous representations such as textual user reviews,

movie synopsis. While the underlying model of inferring the multimodal latent

space is capable of expanding to more complex data representations, a signifi-

cant portion of the future work will nonetheless focus on exploiting more diverse

combinations of side information with the help of recent breakthroughs in data720

fusion and language modeling such as contextual word embeddings.
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