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Abstract 13 

The Automatic Identification System (AIS) provides essential services in support of maritime 14 

domain awareness. Accurate AIS values for hull dimension and type are often critical for safe 15 

and efficient management of ship traffic, and for development of new artificial intelligence 16 

maritime algorithms. AIS variables are subject to fault from multiple sources, ranging from bad 17 

weather to human error. New heuristic methods for correcting ship draft, beam, and class were 18 

developed and evaluated, using AIS data in the vicinity of large Florida ports as a test bed. Novel 19 

low order polynomials for 9 broad functional vessel classes yielded predicted values for draft and 20 

beam as functions of vessel length. The majority of relative differences between predicted and 21 

reported values were <0.1. A logistic regression (LR) multiclass classification scheme using the 22 

residuals from these polynomial predictions generally showed good agreement between 23 

estimated and reported vessel class. The LR scheme demonstrated skill in verifying AIS-24 

transmitted classification, detecting incorrectly classified vessels, and flagging those with 25 

incorrect draft or operating near an extreme draft. A diagnostic of reports whose classification 26 

had very low and very high confidence suggested directions for further improvement of the 27 

algorithm. A new hierarchy for processed AIS data is proposed. 28 

 29 
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Introduction 35 

The Automatic Identification System (AIS) is a maritime vessel recognition scheme originally 36 

designed to increase situational awareness between vessels, and between vessels and ports 37 

(Harre, 2000; Murk, 1999). Through the AIS, vessels transmit their identifying information every 38 

few minutes using automated radio signals. Two general categories of data are provided by the 39 

AIS: static and dynamic. Static variables are typically fixed quantities, including the Maritime 40 

Mobile Service Identity (MMSI) number, length (𝐿), beam (𝐵), draft (𝐷), and type (𝑌), though 41 

the draft of cargo and tanker ships can change when material is offloaded or onloaded. Crew 42 

members are responsible for entering the static values into the AIS transmitter. Dynamic 43 

variables include time of transmission, vessel position, speed over ground, and heading. These 44 

are typically entered into the report automatically by instrumentation.  45 

AIS data can be accessed in real-time using specialized receivers that pickup broadcasts within a 46 

~50 km radius, or with a slight delay through data service companies such as Pole Star USA, 47 

Marine Traffic, GateHouse Maritime, and others that access the ground-based as well as satellite 48 

AIS receivers. These companies often provide small amount of AIS data to researchers without 49 

charge. Processed AIS data in US coastal waters is also available, sometimes with a significant 50 

delay but without cost, from Marine Cadastre (marinecadastre.gov/ais), a combined service of 51 

the U.S. Department of Commerce’s National Oceanic and Atmospheric Administration 52 

(NOAA) Office for Coastal Management and the U.S. Department of the Interior’s Bureau of 53 

Ocean Energy Management (BOEM). Regardless of the provider, most of these data are offered 54 

with little to no error flagging or correction. This may be because objective error handling 55 

routines for AIS data are still under development, most of which have focused on the dynamic 56 

variables. There have been few publications regarding the static AIS variables in this context. 57 

Adoption of a standard set of handling routines would facilitate AIS usage in a range of 58 

applications. The outline for such a system is proposed at the end of this article.  59 

AIS data have become essential to the monitoring and management of global vessel traffic, as 60 

well as in academic and private sector maritime research programs (Tu et al., 2017; Yang et al., 61 

2019). The latter encompasses many areas of maritime operations, including relatively simple 62 

maps of vessel traffic density (Demšar and Virrantaus, 2010; Shelmerdine, 2015), predicting 63 

future routes and collision avoidance (Chen et al., 2018; Rong et al., 2019; Silveira et al., 2013; 64 

Wang et al., 2013), predicting arrival times (Dobrkovic et al., 2016; Jahn and Scheidweiler, 65 

2018; Xin et al., 2019), and detecting anomalous vessel movement (Liu, 2015; Oh et al., 2018; 66 

Sidibé and Shu, 2017). Lim et al. (2018), Robards et al. (2016), and Zhou et al. (2019) provide 67 

reviews of AIS applications, many of which utilize artificial intelligence / machine learning 68 

where AIS records are used as a source of training data.   69 

Incomplete or inaccurate AIS reports can confound studies of maritime operation. Such faulty 70 

data arise from multiple causes, such as human error, instrument failure, an overwhelmed 71 

transmission spectrum, and atmospheric interference (Emmens et al., 2021; Harati-Mokhtari et 72 



al., 2007). Processed AIS data may also be subject to 73 

errors or inconsistencies in sorting, filtering, or 74 

transcription. Most previous studies have focused on 75 

detection of dynamic AIS errors (Bošnjak et al., 2012; 76 

Sun et al., 2021; Zhao et al., 2018). Of relevance to 77 

this study, Guo et al. (2021) used kinematically-based 78 

cubic polynomials to model trajectories and determine 79 

errors in vessel position and speed by their generic 80 

“distance” from the model. There have been few 81 

publications that focused on correcting static AIS 82 

errors. Wang et al. (2021) applied the Random Forest 83 

algorithm to AIS static values to identify five vessel 84 

classes. Sheng et al. (2018) developed a logistic 85 

regression binary classifier that discriminated between 86 

Cargo and Fishing class vessels based on their 87 

position, course, and speed near Shantou, China. 88 

Steidel et al. (2019) suggested correcting AIS 89 

Destination data using a combination of automated and 90 

direct communication with each vessel. Atypical B vs. 91 

L values were used to manually identify 3 92 

misclassified, misreported, or unusually large vessels 93 

in a narrowly defined group of bulk carriers (Smestad 94 

et al., 2017).  95 

This study examines some novel methods for correcting errors in static variables associated with 96 

hull dimension and type for many vessel classes. As demonstrated below, these variables were 97 

found to be interrelated and could be used to help determine missing values or detect 98 

inconsistencies in the group of values for many vessels. The methods examined start with simple 99 

heuristic drop-out replacement, but also include a new algebraic representation that takes 100 

advantage of the dependence between the static variables related to hull geometry, and a 101 

multiclass classification (MCC) scheme for confirming functional vessel class. The methods 102 

developed here can be used to flag or correct some missing or unusual static AIS variables.   103 

Section 2 describes the AIS data used in this study. Restricting the analysis to underway vessels 104 

in the vicinity of large Florida ports (Figure 1) reduced computational cost for this initial analysis 105 

while retaining diversity of vessel types. Polynomial models and logistic regression are described 106 

as they relate to this study. Section 3 presents the geometric relations of hull dimensions found 107 

when partitioning by vessel functional class. The number of missing or inconsistent static values 108 

is then examined, and the potential use of polynomials to represent geometric hull relations and 109 

correct these errors is tested. This is followed by the development and testing of the new vessel 110 

Figure 1. Map of peninsular Florida. The 

5 largest ports are indicated. 



classification system. Section 4 is a Discussion of the findings and how the methods employed 111 

might be adapted or improved. A new system of organizing processed AIS data is proposed. 112 

 113 

2. Data and Methods 114 

2.1 AIS Data  115 

The AIS is divided into Class A and Class B. Class A transmissions have a range around 30-50 116 

km, are prioritized by the system, and are mandatory for large and passenger vessels subject to 117 

the International Convention for the Safety of Life at Sea (SOLAS). Class B transmissions have 118 

a range ~16 km, are not prioritized, and are used by non-SOLAS craft, typically personal 119 

watercraft and some smaller, domestic commercial vessels.  120 

AIS reports for the years 2015-2019 were obtain from Marine Cadastre who added Class B to 121 

their AIS records starting in 2018. Years prior only contained Class A reports. Also prior to 122 

2018, 𝐿 and 𝐵 were provided to a precision of 0.01 m, but afterwards were provided as integer 123 

values. A relatively small subset of these reports was utilized in this analysis to facilitate 124 

development of the algorithms presented in this study.  125 

Following Mitchell and Scully (2014), irregular polygonal Areas of Interest (AOI) around the 126 

five largest commercial ports in the state of Florida, Miami, Everglades, Jacksonville, Tampa, 127 

and Palm Beach, (Figure 1), were used to delimit a subset of AIS records. Vessel traffic is 128 

concentrated around ports. Extracting AIS records near them reduces the volume of records to be 129 

examined while retaining a breadth of sample comparable to that obtained from larger areas 130 

(e.g., the entire coast of Florida) that would include many of the same vessels as they traveled 131 

between ports. Each AOI included the port and its access waters and channels. AIS reports from 132 

all the ports were binned and analyzed collectively. Vessels that were slow or not moving (speed 133 

< 0.5 kn) for an entire year were not considered. This yielded a nominal 107 AIS reports per year 134 

of which <~0.01% lacked an MMSI, and were removed from the analysis. Some of the reports 135 

with missing MMSI provided an IMO number which could have been be used to check the 136 

vessel identification using an external database (Winkler, 2012), but the focus here was on 137 

exploiting relations between the geometric static values.  138 

The unique MMSI and associated values of 𝐿, 𝐷, 𝐵, and 𝑌 reported in the AIS were determined. 139 

The number of vessels by class, and the number of vessels in each class with problems in their 140 

statics were found. For example, the number of vessels reporting both 𝐷 = 0 and 𝐷 > 0 (at 141 

different times) provided a measure of the utility for a direct replacement method. Calculating 142 

this same number but restricted to 𝐿 > 30 m, eliminated many personal craft that have a higher 143 

rate of static AIS errors (Meyers et al., 2020), and helped focus the analysis on commercial and 144 

other ships more likely to be professionally maintained.   145 

  146 



2.2 Functional Vessel Classes  147 

Vessel identification in the AIS includes a choice from about 100 unique numbers that indicate 148 

vessel type such as search and rescue, recreational, cargo, and tanker, with the latter two further 149 

divided into a general type or one of several hazard classifications. Marine Cadastre organizes 150 

many of these AIS types into functional classes. A similar prescription was followed here, with 151 

each AIS report being labeled according to the class for the reported type (Table 1). About 10-152 

15% of the vessels were not readily incorporated into a functional class (e.g., types 1005, 1007, 153 

1018), so were not part of the class-based analysis. The number of unique vessels within each 154 

class was determined for each year 2015-2019 (Tables 2, 3). Large year over year changes in the 155 

relative number of vessels for some classes appear to have been associated with changes in the 156 

processing of the AIS data provided by Marine Cadastre. For example, in 2018 several Supply 157 

class vessels started reporting as type 90, which is ‘unspecified’, decreasing the number in the 158 

class. Similarly, many pilot and tender vessels made the opposite switch in 2018, changing from 159 

an unspecified type to one that fit within the Enforcement class as defined here, though most of 160 

these were smaller vessels (L<30 m) so did not impact the bulk of the analysis. Additionally, a 161 

small number of military vessels became identifiable as such in 2018 before which they were 162 

typically listed as ‘public’ or ‘other’ AIS types.  163 

Table 1. AIS types in defined functional vessel classes, and the number of unique vessels in each class by 164 
year. 165 

Class AIS Vessel Type 2015 2016 2017 2018 2019 

Recreational 36,37,1019 3011 3595 3858 5953 6596 

Cargo 70-79,1003,1004,1016 1263 1306 1266 1189 1129 

Tug 21,22,31,32,52,1023,1025 342 373 395 404 373 

Tanker 80-89, 1017, 1024 303 262 244 218 212 

Passenger 60-69, 1012-1015 171 212 245 260 263 

Fishing 30,1001,1002 51 1025 158 211 224 

Supply 1010 28 34 42 0 0 

Research 1020 24 22 24 0 0 

Enforcement 35,50,53,55 0 2 3 39 55 

 166 

It was useful to define the set of all AIS reports (𝐴) such that 𝐿, 𝐵, 𝐷, and 𝑌 are positive, real-167 

valued numbers. That is, the set 𝐴 = {𝑘: 𝐿𝑘 , 𝐵𝑘 , 𝐷𝑘 , 𝑌𝑘 > 0}, where 𝑘 indexes the reports. 168 

Further, subsets of 𝐴 for a particular class 𝑐, 𝑆𝑐 = {𝐴: 𝑌 ∈ 𝑐} and its complement 𝑆𝑐
′ = {𝐴: 𝑌 ∉ 𝑐} 169 

were defined. 170 

 171 

  172 



Table 2. Total numbers by year: Number of unique MMSI, number with only zero or missing values for 173 
the indicated static variable, number with multiple 𝐷, number with multiple 𝐷 including at least one zero 174 
value, number with all hull dimensions but undefined type. 175 

 2015 2016 2017 2018 2019 

# Unique Vessels  6728 7561 8428 9052 9838 

# all 𝐿=0 1449 1928 2843 2220 2263 

# all 𝐷=0 4310 5327 6401 6924 7827 

# all 𝐵=0 3178 3931 4808 4017 3899 

# all 𝑌=0 1378 581 1994 487 683 

# Multiple 𝐷 147 883 523 118 99 

# Multiple w/𝐷=0 9 846 491 25 10 

# 𝐿𝐵𝐷>0 & 𝑌=0 42 6 28 10 11 

 176 

 177 

Table 3. Same as Table 2 but restricted to 𝐿>30 m. 178 

 2015 2016 2017 2018 2019 

# Unique Vessels 2472 2520 2468 2422 2371 

# all 𝐷=0 244 451 562 464 508 

# all 𝐵=0 80 181 185 177 180 

# all 𝑌=0 51 3 24 16 17 

# Multiple 𝐷 136 804 474 93 91 

# Multiple w/𝐷=0 4 768 443 5 3 

# 𝐿𝐵𝐷>0 & 𝑌=0 5 1 4 4 6 

 179 

2.3 Replacement Methods for Static AIS 180 

The 2018 change in some AIS types suggested a simple method for improving the accuracy of 181 

static descriptors for a vessel. If a static AIS variable is accepted as valid during one time period, 182 

but provides a different, invalid or missing value during another time, then the valid value can be 183 

used to replace the values in question. This was the first method assessed in this study.  184 

 185 

  186 



Table 4. Quadratic fitting for each class (Table 1) beam and draft, based on 2015-2019 AIS records. 187 
Shown are the class name, maximum AIS vessel length value in class (𝐿𝑚𝑎𝑥), the extrema vessel length 188 
(𝐿𝑒𝑥), fitting coefficients (1), number of unique vessels used in the fit (𝑁), the root-mean-square 189 
difference between estimated and actual values in the fit (RMSD), and the mean relative absolute 190 
difference (MRAD) of the fit.  191 

Class 

𝐿𝑚𝑎𝑥  

(m) 

𝐿𝑒𝑥  

(m) 

c2  

(10-4 m-1) 

c1 

 

c0  

(m) 

N 

 

RMSD 

(m) 

MRAD 

 

Beam 

Cargo 200 -46.9 4.15 0.0389 8.16 2198 1.906 0.058 

Tanker 200 -159.3 3.03 0.0965 3.35 576 1.697 0.047 

Passenger 199 188.1 -6.80 0.2570 0.75 67 3.052 0.141 

Tug 180 197.9 -4.60 0.1808 5.03 379 2.783 0.101 

Fishing 40 58.3 -20.5 0.2386 1.90 36 1.059 0.136 

Recreational 163 -707.7 0.84 0.1187 3.33 667 1.335 0.089 

Research 126 18.1 21.4 -0.0775 9.64 35 4.012 0.142 

Supply 130 30.2 12.4 -0.0746 15.48 46 4.608 0.153 

Draft 

Cargo 367 366.4 -1.10 0.0812 -1.21 3048 1.408 0.125 

Tanker 337 390.2 -1.40 0.1069 -3.27 718 1.405 0.101 

Passenger 362 498.4 -0.35 0.0353 0.94 182 0.593 0.094 

Tug 180 118.0 7.00 0.1651 -0.29 379 0.996 0.148 

Fishing 40 14.4 -2.70 0.0079 2.60 36 0.616 0.191 

Recreational 163 -6.1 2.31 0.0028 2.13 667 0.870 0.201 

Research 126 145.9 -4.20 0.1225 -1.36 35 0.706 0.164 

Supply 130 145.4 -5.20 0.1519 -2.97 46 0.633 0.110 

 192 

The second method was developed to fill missing 𝐵 and 𝐷 values when no such replacement 193 

value is available, and to potentially detect faulty values of these variables. Hull aspect ratios 194 

such as 𝐷/𝐿 are often selected by marine engineers to maximize operational performance 195 

(Bertram and Schneekluth, 1998; Papanikolaou, 2014; Zhang et al., 2008), and therefore often 196 

vary in a consistent way within a functional class. The dependence of beam 𝐵(𝐿) and draft 𝐷(𝐿) 197 

on length for each class were represented using 𝑛-degree polynomials with independent variable 198 

𝐿 as  199 

 𝜙𝑛(𝐿) =  𝑐0 + ∑ 𝑐𝑖𝐿
𝑖

𝑛

𝑖=1

 (1) 

 200 

where the constants 𝑐𝑖 were determined through standard least-squares (Table 4). A minimum of 201 

10 independent (𝐿, 𝑆) pairs for each class were required for the estimate, where 𝑆 represented the 202 



static value 𝐵 or 𝐷 being modeled. Changes in vessel draft due to changes in deadweight tonnage 203 

were not represented by (1). Bulk measures of the accuracy of (1) compared to values from AIS 204 

were root mean square difference (RMSD)  205 

 √
1

𝑁𝑐
∑(𝜙𝑛(𝐿𝑘) − 𝑆𝑘)2

𝑁𝑐

𝑘=1

 (2) 

 206 

and mean relative absolute difference (MRAD)  207 

 
1

𝑁𝑐
∑

|𝜙𝑛(𝐿𝑘) − 𝑆𝑘|

𝑆𝑘

𝑁𝑐

𝑘=1

 (3) 

 208 

where 𝐿𝑘 is the 𝑘-th AIS length value in class 𝑐, 𝑆𝑘 is the matching static value, and 𝑘=1,…,𝑁𝑐. 209 

The relation between (𝜙𝑛(𝐿𝑘) − 𝑆𝑘)/𝑆𝑘 and 𝐿𝑘 was also examined to further evaluate this 210 

method of estimating static values.  211 

  212 

2.4 Multiclass Classification 213 

Logistic regression (LR) is widely used to represent a dichotomous (2-valued) variable (𝑦) that 214 

has a single transition between one value and the other (generally 0 and 1), dependent upon 215 

predictor variables 𝑿 (Hilbe, 2016; Hosmer Jr et al., 2013). Here LR was used to identify vessels 216 

according to their functional class. Basic LR models the odds ratio of probability 0 ≤ 𝜋 ≤1 for 217 

𝑦=1 as 218 

 ln (
𝜋

1 − 𝜋
) = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖

𝑁𝑣

𝑖=1

= 𝜷 ∙ 𝑿 (4) 

where 𝑿 is a set of 𝑁𝑣 independent variables (alternatively called covariates or predictors), and 𝜷 219 

is a vector of coefficients. In this application, the predictors were the difference between the 220 

AIS-reported values of draft and beam and those predicted from (1). Inverting (4) yields the 221 

probability 222 

 𝜋(𝑦 = 1|𝑿) =
exp(𝜷 ∙ 𝑿)

1 + exp(𝜷 ∙ 𝑿)
 (5) 

 223 

In practice, a set of data 𝒟 = {𝑿, 𝑦} of index 𝑘 = 1,…,𝑛, is divided according to the value of 𝑦 224 

into two sets of size 𝑛0 and 𝑛1, respectively. The 𝜷 are then determined, usually by maximizing 225 

the log-likelihood function  226 



 arg max
𝛽

∑[𝑦𝑖 log  𝜋𝑖 + (1 − 𝑦𝑖) (1 − log  𝜋𝑖)]

𝑛

𝑖=1

  (6) 

 227 

where the 𝜋𝑖  carry the 𝜷-dependence. A common issue that must often be addressed is 228 

unbalanced data, when 𝑛0 ≫ 𝑛1, or the reverse, which can bias (6), resulting in poor estimates of 229 

the coefficients and degrade the fidelity of the model. See King and Zeng (2001) and Salas-230 

Eljatib et al. (2018) for additional details. A similar issue arises when 𝒟 contains clusters around 231 

one or more points in the data space (Merlo et al., 2006). Defining a subset of 𝒟 using random 232 

subsampling is often employed in the case of unbalanced data, whereas Tomek Link, Synthetic 233 

Minority Oversampling, and Neighborhood Cleaning are common solutions to clustered data 234 

(Elhassan and Aljurf, 2016; Guo and Wei, 2019). In this study, random subsampling was used to 235 

address the data imbalance as there was little clustering in the data. 236 

 237 

LR can also be used to represent the probabilistic choice between two distinct quantities based 238 

on the same independent variables. Here we examined the probability of vessels being in class 𝑐 239 

compared to the probability of the vessel belonging to any other class 𝑐′,  240 

 ln (
𝜋(𝑐| 𝛿, 𝛾)

𝜋(𝑐′| 𝛿, 𝛾)
) = 𝜷𝑐 ∙ 𝑿 (7) 

 241 

given the parameters 𝛿 and 𝛾 related to the residuals of (1), defined below. Similar “one-vs-rest” 242 

classification schemes (Bisong, 2019) have been applied to a variety of labels, including cancer 243 

diagnosis (Zhu and Hastie, 2004), handwriting analysis (Klimaszewski, 2015), and astronomical 244 

redshift (Stivaktakis et al., 2019).  245 

 246 

The result of LR (5) is a real value in the range [0,1]. A threshold probability value is typically 247 

defined such that if 𝜋 < 𝜋0 then 𝑦 is considered to equal 0, and 𝑦=1 when 𝜋 ≥ 𝜋0. The most 248 

common selection for this threshold is 𝜋0=0.5, but this is somewhat arbitrary. In this study 𝜋0 249 

was allowed to vary, and the resulting changes in the rate of true positive (TPR) vessel 250 

classifications, and the rate of false Positive (FPR) classifications were found for each class, 251 

assuming the AIS-reported vessel type was correct. These were used to construct Receiver 252 

Operating Characteristic (ROC) curves, defined as TPR vs. FPR on the unit square, and the Area 253 

Under Curve (AUC) of the ROC (Fawcett, 2006; Huang and Ling, 2005). ROC curves in 254 

proximity to the upper-left corner of the domain (high TPR, low FPR) are have higher fidelity. 255 

Values of AUC range from 0 to 1, with the higher values generally considered an indication of 256 

an accurate classification scheme. An AUC value of 0.5 indicates even probability of TP and FP, 257 

essentially random classification.   258 

  259 

 260 



3. Results 261 

The vessel class with the highest number of unique vessels was the Recreational class (Table 1). 262 

From 2015 to 2019 the total number of Recreational vessels roughly doubled after Marine 263 

Cadastre started reporting class-B AIS in 2018. The number of reported Fishing vessels spiked in 264 

2016. This is also likely to again be due to changes in reporting. During that same time period 265 

the number of Tanker vessels decreased by almost 1/3, but this was likely due to a change in 266 

operations, not reporting. Overall, the total number of vessels roughly doubled (Table 2), with 267 

most of that due to an increase in the number of small (𝐿<30 m) vessels. The total number of 268 

larger vessels showed a weak trend, decreasing from 2520 in 2016 to 2371 in 2019. 269 

3.1 Hull Dimensions 270 

Scatter plots of the 271 

hull dimensions 272 

illustrate how the 273 

dependence of 274 

vessel beam 𝐵(𝐿) 275 

and draft 𝐷(𝐿) 276 

varied by class 277 

(Figure 2), with 278 

both generally 279 

increasing with 𝐿. 280 

There was little 281 

class difference 282 

apparent for 𝐵(𝐿). 283 

For 𝐿 < ~200 m, 𝐵 284 

increased roughly 285 

linearly with 𝐿 for 286 

all classes. Tug and 287 

Supply class vessels 288 

had the largest beam 289 

for 𝐿 < 50 m, and 50 290 

m<𝐿< 100 m, 291 

respectively. Larger 292 

vessels (𝐿 > ~200 293 

m) often had limited 294 

𝐵 by design. Many of these ships have been in operation for years and were built to pass through 295 

the Panama Canal, so had 𝐵 capped at the “Panamax” limit of 32.31 m, in place since the 296 

opening of the canal in 1914. Vessels at or just below this beam size were found for, roughly, 297 

170 m <𝐿< 300 m. In 2016 the Panama Canal expanded the maximum permissible vessel beam 298 

to 51.25 m (“PostPanamax”). Ships with 𝐵 > 32 m were exclusively Passenger, Tanker, and 299 

Figure 2. (a) Unique-vessel beam vs length, by functional class (Table 1). Dashed 

lines indicate Panamax beam (PX) and Post-Panamax (PPX) beam sizes. Number 

of vessels (𝑁) with both 𝐿, 𝑌>0 and 0<𝐵≤200 m is indicated. (b) Unique-vessel 

draft vs length, coded by functional class. Solid lines are quadratic fits for each 

class. Number of vessels with 𝐿, 𝐷, 𝐵, 𝑌>0 is indicated. 



Cargo class with 𝐿>200 m (Figure 2), though their voyage may not have necessarily included 300 

passage through the Panama Canal.  301 

In contrast, 𝐷(𝐿) showed more separation by class (Figure 2). Tugs had the highest nominal rate 302 

of increasing 𝐷 with 𝐿, and Passenger class the lowest, though Tugs were generally limited to 303 

𝐿<~60 m. The Cargo class included the largest 𝐿 reported. Tankers often had the highest 𝐷 for a 304 

given 𝐿 in their range, and Cargo class generally had drafts between those of Tankers and 305 

Passenger classes for 𝐿 ≳100 m. There was less apparent distinction between the classes in the 306 

range 𝐷 ≲ 3 m and 𝐿 ≲ 60 m.  307 

3.2 Static Errors  308 

The quality of the static data was measured by the number of vessels with missing or conflicting 309 

static values. The unique MMSIs in the study region each year were first identified. Then the 310 

reported values for the static variables of every vessel were determined each year. All vessels 311 

examined reported a single value for 𝐿, 𝐵, or 𝑌. About 1-10% of all vessels, depending on the 312 

year, had multiple 𝐷 values (Table 2), with up to 24 unique values for a single vessel in one year. 313 

A high percentage of vessels reported zero (or were missing) values for 𝐿, 𝐵, 𝑌, or 𝐷, with 𝐷 314 

having the highest rate of zero, reaching ~80% in 2019. The number of vessels reporting at least 315 

one 𝐷 = 0 and at least one 𝐷 > 0 over the same year fluctuated, peaking in 2016 at just under 316 

12% of vessels, and declining to ~1% in 2019. These rapid changes in quality may be indicative 317 

of changes to the handling of the AIS data, rather than changes in the raw AIS data themselves. 318 

The static error rates were lower for vessels with 𝐿 > 30 m (Table 3). For example, only about 319 

10-20% of vessels failed to report any 𝐷 value in a given year.  320 

Individual AIS reports with a missing or zero static value, and a nonzero value for the same 321 

vessel in another report, can be easily corrected by filling the missing value with the nonzero 322 

value. Most static values were unchanging, so a single non-zero value would be sufficient. 323 

However, in the case where multiple 𝐷 are available, the choice needs to be judicious, or some 324 

level of acceptable error needs to be determined based on the application.  325 

Those vessels entirely missing a static variable, or those without an historical record on which to 326 

draw, require another method for correction. A simple method for estimating 𝐷(𝐿) was therefore 327 

tested. The first step was to identify those MMSI with a complete set of static variables, and then 328 

implement (1) with 𝑛=2 for each class of ships with at least 10 unique (𝐿, 𝐷) value pairs per 329 

class. All classes except Enforcement class met these qualifications. The minimum count of ten 330 

was somewhat arbitrary, but helped avoid fitting too sparsely represented classes.    331 

 332 

3.3 Polynomial Correction 333 

Beam size could only reasonably be represented by a polynomial for 𝐿 < ~200 m, above which 334 

Panamax restrictions dominated the distribution of vessel beam sizes (Figure 2). Just over 4000 335 



total vessels with complete static AIS data were partitioned by functional class and their beam 336 

estimated using (1). The most abundant vessel class was Cargo, with about 2200 unique vessels 337 

identified (Table 4). Tanker, Passenger, and Tug classes all had several hundred unique vessels; 338 

all other classes contained a few dozen unique vessels.  339 

Differences between the estimated beam (𝐵2) and the beam from AIS (𝐵) were found for each 340 

year, and were generally small. For example, in 2017, 66% of the residual values 𝛾 = |𝐵2 − 𝐵| < 341 

1 m, and 89% were < 2 m (Figure 3). A smaller number of much larger 𝛾 were found in all 342 

classes. The relative difference 𝑟𝐵 = 𝛾/𝐵 was usually higher for smaller (𝐿<~75 m) vessels. 343 

With the exception 344 

of a few outliers, the 345 

highest 𝑟𝐵 was ~0.8-346 

1.0, found near 347 

𝐿~10 m. Overall, 348 

about 63% of the 349 

values had 350 

𝛾/𝐵<0.1, and about 351 

90% had 𝛾/𝐵<0.25. 352 

These percentages 353 

decreased in 2018 354 

and 2019 to about 355 

40% and 75%, 356 

respectively, with 357 

the increased 358 

number of smaller 359 

Recreational vessels 360 

in the database. 361 

The resulting beam 362 

RMSD for all years 363 

was highest (4.6 m) 364 

for Supply class, with a MRAD 0.15 (Table 4). The smallest RMSD was slightly above 1 m, 365 

found for the Fishing class, though because these vessels are smaller (maximum 𝐿~40 m), their 366 

MRAD was 0.136. The smallest MRAD was found for the Tanker class at just under 0.06. 367 

Differences between 𝐷2 and the AIS-reported 𝐷, followed a similar pattern. About 70% of 368 

residuals 𝛿 = |𝐷2 − 𝐷| values were < 1 m and 90% were < 2 m (Figure 4). The majority (~61%) 369 

of the relative differences 𝛿/𝐷 were < 0.1. This was fairly consistent for the other years. The 370 

draft RMSD for all years was largest for Cargo and Tanker ships, at ~1.4 m. The higher number 371 

of Cargo, Tanker, and Passenger vessels in the draft error analysis than that for beam was due to 372 

the inclusion of 𝐿>200 m vessels in the former. Passengers ships had the lowest RMSD, just 373 

under 0.6 m. Most of the draft MRAD were about 0.1-0.2, for all classes.   374 

Figure 3. (a) Polynomial predicted draft (𝐵2) vs AIS (from 2017) reported draft. 
Black line indicates the identify; (b) relative difference of estimated and 

reported beam vs vessel length from AIS. 



The polynomials (1) by definition yielded values of vessel length (𝐿𝑒𝑥) that defined extrema 375 

values of 𝐵 or 𝐷, where the rate of change of the modeled variable changes sign. This was an 376 

acceptable feature for 377 

𝐿𝑒𝑥 outside the range 378 

of reported 𝐿 values, 379 

or when 𝐿𝑒𝑥 was near 380 

the range endpoints. 381 

Most instances of 𝐿𝑒𝑥 382 

were acceptable, but 383 

there were some 384 

exceptions. The most 385 

obvious exception 386 

being the 𝐷2 estimate 387 

for the Tug class, 388 

where 𝐿𝑒𝑥 ~118 m, 389 

with Tug lengths 390 

ranging 20 <𝐿< 180 391 

m. This condition was 392 

associated with a gap 393 

in the Tug class 394 

between ~70 <𝐿<150 395 

m, with tugs of both larger and smaller 𝐿. Tugs with 𝐿 above this gap may be more appropriately 396 

placed into a different class (e.g., Cargo), as they were generally pusher or articulated tug-barge 397 

vessels. Future studies involving vessel classification should carefully consider both vessel type 398 

and function.    399 

3.4 Classification 400 

LR was applied as a tool for predicting the class 𝑐 based on each set of (𝐿, 𝐵, 𝐷) from AIS. Each 401 

class was treated separately, and the 𝑐′ (7) was then the set of all reports not belonging to 𝑐. The 402 

polynomial models (Table 4) for 𝐵 (with 𝐿< 200 m) and 𝐷 (1) for the particular 𝑐 were used to 403 

calculate residuals 𝛾 and 𝛿 for all the AIS reports. The hypothesis being that vessels in 𝑐 will be 404 

distinguished by lower residuals compared to those from 𝑐′, and therefore could be usefully 405 

modeled with LR. Reports in 𝑐 were assigned 𝑦=1, and the rest 𝑦=0. The change in the 406 

distribution of vessel beam at 𝐿~200 m motivated the LR models be developed in 4 cases: Case 1 407 

included all AIS reports (0 < 𝐿< 400 m); case 2 was for 200 < 𝐿< 400 m; cases 3 and 4 were for 408 

0 < 𝐿< 200 m. Cases 1-3 used only 𝛿 as a predictor, whereas case 4 used both 𝛿 and 𝛾 as 409 

predictors. 410 

Figure 4. Same as Figure 3 but for vessel draft. 



Initial attempts to build the LR models from these data frequently yielded 𝑝-values for the 𝜷 411 

coefficients well above 0.05, and were therefore not considered useful. This was attributed to the 412 

unbalanced nature of the data, that is, when the ratio of the number of vessel reports in the two 413 

sets 𝑛𝑐/𝑛𝑐′ was very large or very small. To eliminate this effect, the larger of the two sets were 414 

randomly subsampled (without replacement) so that 𝑛𝑐 = 𝑛𝑐′ and the LR recalculated. 415 

Rebalancing consistently yielded 416 

𝑝<0.05 for the 𝜷 values. Independent 417 

subsampling of the original data was 418 

repeated 200 times, which was 419 

sufficient for the mean coefficient 420 

values, denoted 𝛽̅𝑐, to converge (e.g., 421 

Figures 5, 6). The coefficients of all the 422 

iterations were stored, from which 95% 423 

confidence intervals were computed 424 

directly from the distribution of the 𝛽𝑐. 425 

The probability of a vessel being 426 

correctly identified to be in the “one” 427 

class versus “the rest” was then defined 428 

as when 𝜋(𝑐|𝛿, 𝛾) ≥ 𝜋0(𝛽̅𝑐).  429 

The model was tested using a limited 430 

version of 𝑘-order cross-validation 431 

methods (Aly, 2020; Pala and Atici, 432 

2019). The data was divided into 𝑘=10 433 

sections of equal length. For each class in 434 

each case, the indices within 𝑐 and those 435 

within 𝑐′ were divided separately due to 436 

the imbalance of the data. The 62 mean 437 

coefficients computed from the 𝑘 subsets 438 

were generally close to those computed 439 

using all the data. Relative differences 440 

between the full-data coefficients and the 441 

mean of the 𝑘 data coefficients were 442 

almost all small. For 57 coefficients, the 443 

relative difference was <5%, with the 444 

majority being <1%. The largest 445 

exceptions to this all occurred in Case 4, 446 

where the mean coefficient for 𝐵 was 447 

about twice that obtained in the full-data 448 

case. The second largest deviation was for Fishing vessels, where the coefficient for D differed 449 

from the full-data case by 10%. The relative difference of coefficients for Research vessels’ 450 

Figure 5. Case 1 constant LR coefficient for each iteration 

(grey), the mean value (black) and the cumulative 

average, for each vessel class indicated. 

Figure 6. Same as Fig 5 but for the LR coefficient 

associated with the Draft variable. 



𝐿, 𝐷, 𝐵 were 6%, 7%, and 6%, respectively. There were a small number of instances where the 451 

maximum likelihood coefficient calculation converged to a value very different from those 452 

obtained in almost all other calculations for the same case and class. Coefficient values more 453 

than 10 times the value obtained using all the data were discarded.  454 

 455 

Figure 7. ROC curves and their AUC values for the classes (Table 1) and cases indicated. The diagonal 456 
indicates the random classification case. 457 

For all classes and cases ROC curves (Figure 7) were above the random diagonal, indicating the 458 

results of the classification scheme was better than random. Case 1 (all vessels) had the highest 459 

ROC curves and AUC values for Fishing, Tug, and Passenger classes, all which had an AUC > 460 

0.9. Overall, Case 2 (large vessels) had the best results, with steeply rising curves at low FP, and 461 

AUC values above 0.9. Case 3 yielded the lowest AUC scores for all classes, with Cargo and 462 

Tanker classes being the worst performing with AUC of 0.657 and 0.705, respectively. All other 463 

classes in this case had AUC > 0.8. The inclusion of a second predictor variable (𝛾) in Case 4 464 

raised all AUC scores compared to case 3, with Supply class rising by 0.09. Relatively large 465 

increases also occurred in the Cargo, Recreational, and Research classes. The lowest AUC in 466 

Case 4 was 0.714 for the Tanker class. The regression model developed for Case 1 can be 467 



applied to any AIS transmission, 468 

assuming sufficient statics are 469 

available. Application of the other 470 

Cases would depend on the static 471 

values (Figure 8).  472 

One way to explore the reliability of a 473 

classification scheme is to examine the 474 

differing characteristics of its least- 475 

and most-confident predictions. Here, 476 

the True Positives in Case 1 (all 477 

vessels) were examined. Vessel 478 

reports classified as a TP for a high 𝜋0 479 

were more likely to be correctly 480 

classified, and those satisfying low 𝜋0 481 

– but not moderate or high 𝜋0 – were 482 

more likely to be incorrectly classified. 483 

There were two primary reasons a 484 

vessel report might have been included 485 

in the low confidence group: 1) the 486 

vessel was misclassified in the AIS report, so as expected the algorithm rated it with low 487 

probability of being a TP, and 2) a deficiency in the classification scheme, such as in the 488 

development of the classes or misapplication of the algorithm. Examining the characteristics of 489 

the two groups helped identify limitations of both the data set and the classification scheme.  490 

The two sets of AIS reports were identified such that they exclusively define a TPR > 0.95 or < 491 

0.05 (Figure 7), indicating low and high confidence in their classification, respectively. The 𝜋0 at 492 

which these occurred varied by class. Summing over all classes, there were 487 reports in the 493 

low confidence group, and 210 in the high confidence group. Static variables for these vessels 494 

were then scraped from a third-party vessel traffic website, and the classification obtained was 495 

compared to that provided in each AIS report. In the low confidence group, 53 (12%) 496 

classifications did not match. In the high confidence group, 5 (2%) classification inconsistencies 497 

were found. A null hypothesis that these two ratios are the same was rejected based on both chi-498 

squared and Fischer’s exact test well above the 99% confidence level. This further demonstrated 499 

the method ability to detect misclassified vessels. However, the majority of reports in the low 500 

confidence scheme were not misclassifications but large difference 𝛿 between predicted and 501 

reported draft. 502 

The low confidence group had an average 𝛿/𝐷2 = 0.42, compared to 0.003 for the high 503 

confidence group, indicating vessels in the former group departed from the polynomial estimated 504 

values much more than those in the latter group. The majority of the low confidence group was 505 

comprised of a total of 368 entries from Cargo and Tanker vessels, which, as noted above, can 506 

have a wide variation in draft during their course of operations. The LR algorithm flagged these 507 

with low confidence, and can be used to identify vessels operating near their extreme drafts. 508 

Figure 8. Schematic of vessel classification algorithm for 

different sets of vessel dimensions. 



Future development should account for such normal variations of draft. The low confidence 509 

group also contained 60 Recreational and 36 Tug entries, neither of which undergo significant 510 

changes in draft during normal operations. Four of the draft values reported by the Recreational 511 

ships were roughly a factor of 3 larger than the value obtained from the third-party website, but 512 

with equal 𝐿 values, suggesting these draft entries may have been in feet instead of meters. All 513 

but three of the Recreational reports had 𝐿<60 m, putting them in the area of high draft variation 514 

within their class (Figures 3 and 4). For the Tugs, 18 reported relatively small length (𝐿<50 m), 515 

of which 13 were deeply drafted (6–10 m) pusher tugs that generally operate coupled to much 516 

longer vessels or barges. The remaining 18 Tugs reports were also deeply draft pusher or 517 

articulated tugs reporting 𝐿 >150 m.   518 

 519 

 520 

4. Discussion 521 

Erroneous or missing AIS static values are not unusual. For example, in 2019 about 21% of 522 

vessels with length>30 m operating near large Florida ports did not transmit their draft through 523 

AIS, and about 7.5% did not transmit their beam (Table 3), introducing errors in any analysis, 524 

algorithm, or operation based on the presumption the values are accurate. Here novel schemes 525 

for detecting and potentially correcting vessel beam, draft, and classification have been explored 526 

that rely on the partition of AIS types into 9 vessel classes, though not all vessels fit into the 527 

defined classes, and some vessels may better fit a class different than one indicated by their AIS 528 

type. Examples of the latter were articulated tug-barge vessels that might be more accurately 529 

classified as Tanker or Cargo vessels as their function and design is very different than the more 530 

typical (and smaller) tugs that are used to support the maneuvering of other, larger vessels. The 531 

LR classification scheme in this study demonstrated skill in verifying AIS-transmitted 532 

classification, detecting incorrectly classified vessels, and flagging those with incorrect draft or 533 

operating near an extreme draft.  534 

The cornerstone of the methods presented here was the creation of independent, low-order 535 

polynomial relations between vessel length and the beam and draft for each vessel class. For both 536 

𝐵 and 𝐷, over 60% of the relative differences between predicted (1) and AIS-reported values 537 

were less than 0.1, and over 90% had relative errors < 0.25 (Figures 3 and 4). For many classes, 538 

these differences were due to intra-class variations in hull design, particularly for smaller Tugs 539 

and Recreational vessels. For Cargo and Tanker classes, changing deadweight was also a 540 

contributing factor to these differences. To compensate for these variations, it would be useful to 541 

create bands of values rather than simple polynomial relations. Varying the coefficients in (1) 542 

within their 95% confidence intervals would be one method to quickly develop these ranges. 543 

Using a band of acceptable values for 𝐵 and 𝐷 would also likely result in increased 𝜋0 of the 544 

True Positive rates (Figure 7).  545 



Improvement of the classification scheme might also be achieved by the addition of dynamic 546 

variables such as speed, location, and turning rate, as predictor variables. For instance, it is likely 547 

a petroleum tanker will have lower draft immediately following a port call in Florida, which is 548 

not a significant petroleum producing state. Similarly, Fishing vessels are more likely to visit and 549 

remain within certain offshore areas than, say, large Cargo vessels. These examples of 550 

distinguishing vessel behavior are not sufficient to make a class determination by themselves, but 551 

could be useful in conjunction with other variables.  552 

The ongoing development of corrective schemes for AIS variables suggests that these data can 553 

be treated much like some other large observational data sets, with varying levels of quality 554 

analysis and control (QA/QC). NOAA has an extensive procedure for QA/QC of real-time 555 

oceanographic measurements (Hofmann and Healy, 2017), with older instrument types such as 556 

tide gauges having more robust protocols than newer instruments such as chemical sensors.  557 

Possible levels of QA/QC for AIS are outlined as follows: 558 

Level 0: raw, decoded AIS data, directly readable in the form of text, csv, or similar formats. No 559 

correction applied.  560 

Level 1: Vessels would be identified using their reported MMSI, and possibly their IMO number, 561 

name, and other identifying information (Winkler, 2012). Missing or suspect static variables 562 

would be replaced with values taken from the historical records of the identified vessel. The 563 

existence of such records is assumed, so this would be best applied to vessels of sufficient age to 564 

generate the proper database. This level could also include removal and correction of isolated 565 

anomalous dynamic values such as large spikes in velocity or position. Precautions would need 566 

to be implemented in cases of erroneous MMSI, when the same MMSI is reported for different 567 

vessels, or when a vessel changes its MMSI as sometimes occurs when coming under new 568 

ownership.  569 

Level 2: Interpolative schemes would be used to fill missing static values for vessels without 570 

records sufficient to permit application of Level 1 corrections. The schemes would be developed 571 

using sets of related vessel types. The polynomial relations developed here provide an example, 572 

where vessels were organized into functional classes and the (presumably correct) length and 573 

class were used to estimate beam and draft. It would be instructive to develop these relations on 574 

much larger sets of vessels as it is possible some bias was introduced in the selection of Florida 575 

as a test bed. With a sufficient number of vessels, it may be possible to create interpolative 576 

methods for each AIS type. Other groupings of vessels might yield different results, but 577 

constraints of nautical design necessitate a limited ranges of hull geometries (Figure 2). Multi-578 

hull designs such as catamarans and trimarans would likely need to be treated separately.  579 

Level 3: AI/ML methods would synthesize the full AIS record, including both static and 580 

dynamic variables, of the individual vessel and other vessels, to detect and correct errors and 581 

omissions in AIS reports. Some initial steps towards developing such a set have been taken using 582 

corrected AIS position records (Masek et al., 2021).  Level 3 might also include use of data 583 



beyond the AIS, such as Synthetic Aperture Radar (SAR) and optical imaging from low-orbiting 584 

satellites to determine ship class, size and speed (Purivigraipong, 2018; Riveiro et al., 2018), 585 

stationary mounted cameras, local radar, or similar instruments placed onto aircraft (Eaton et al., 586 

2018). The addition of 𝐵 to the predictor set increased the AUC values of some classes by ~0.1 587 

(Figure 7), suggesting the addition of other predictors could further increase the accuracy of the 588 

classification scheme. The number of useful predictors is likely to be limited by the “curse of 589 

dimensionality” (Geenens, 2011) where the calculation of model parameters (e.g., β) fails to 590 

converge due to a sample space made sparse by the inclusions of too many independent 591 

variables.  592 

The AIS provides essential information for the management and control of maritime operations, 593 

is widely used in retrospective studies of vessel activities, and in the ongoing transformation of 594 

the maritime industry by artificial intelligence and related technologies (Artikis and Zissis, 2021; 595 

de la Peña Zarzuelo et al., 2020; Plaza-Hernández et al., 2020). The methods described here 596 

provide a new method for detecting and potentially updating some static AIS variables, 597 

supporting these efforts.  598 
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Figure Captions 740 

Figure 1.  Map of peninsular Florida. The 5 largest ports are indicated. 741 

Figure 2. (a) Unique-vessel beam vs length, by functional class (Table 1). Dashed lines indicate 742 

Panamax beam (PX) and Post-Panamax (PPX) beam sizes. Number of vessels (𝑁) with both 743 

𝐿, 𝑌>0 and 0< 𝐵 ≤200 m is indicated. (b) Unique-vessel draft vs length, coded by functional 744 

class. Solid lines are quadratic fits for each class. Number of vessels with 𝐿, 𝐷, 𝐵, 𝑌>0 is 745 

indicated. 746 

Figure 3. (a) Polynomial predicted draft (𝐵2) vs AIS (from 2017) reported draft. Black line indicates the 747 
identify; (b) relative difference of estimated and reported beam vs vessel length from AIS.  748 

Figure 4. Same as Figure 3 but for vessel draft. 749 

Figure 5. Case 1 constant LR coefficient for each iteration (grey), the mean value (black) and the 750 
cumulative average, for each vessel class indicated. 751 

Figure 6. Same as Fig 6 but for the LR coefficient associated with the Draft variable. 752 

Figure 7. ROC curves and their AUC values for the classes (Table 1) and cases indicated. The diagonal 753 
indicates the random classification case. 754 
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