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Abstract—We consider the online and nonparametric detec-

tion of abrupt and persistent anomalies, such as a change in

the regular system dynamics at a time instance due to an

anomalous event (e.g., a failure, a malicious activity). Combining

the simplicity of the nonparametric Geometric Entropy Min-

imization (GEM) method with the timely detection capability

of the Cumulative Sum (CUSUM) algorithm we propose a

computationally efficient online anomaly detection method that

is applicable to high-dimensional datasets, and at the same time

achieve a near-optimum average detection delay performance

for a given false alarm constraint. We provide new insights to

both GEM and CUSUM, including new asymptotic analysis for

GEM, which enables soft decisions for outlier detection, and

a novel interpretation of CUSUM in terms of the discrepancy

theory, which helps us generalize it to the nonparametric GEM

statistic. We numerically show, using both simulated and real

datasets, that the proposed nonparametric algorithm attains a

close performance to the clairvoyant parametric CUSUM test.

Keywords—anomaly detection, change detection, k-nearest-

neighbor graph, discrepancy theory, entropy minimization

I. INTRODUCTION

Anomaly detection is an important problem with vari-
ous applications, such as cybersecurity, quality control, fraud
detection, fault detection, and health care [1]. It deals with
identifying patterns that deviate from a nominal behavior.
Although not exactly the same, it is sometimes considered
equivalent to outlier detection, which deals with how well
a given data sample fits to the nominal behavior [2], [3].
Sequential detection methods, on the other hand, considers
also the temporal information in the sequence of data samples
regarding a possible anomaly. In particular, sequential change
detection looks for abrupt and persistent changes [4]. More-
over, sequential methods provide timely detection capabilities.

Parametric methods assume probabilistic models for both
nominal or anomalous states. In practice, it is difficult to know
the anomalous distribution, hence model mismatch limits the
applicability of parametric approaches only to specific types of
anomaly whose probability distribution is well aligned with the
assumed model. To that end, statistical outlier detection deals
only with significant deviations from the nominal distribution.
However, in high-dimensional problems, it is even difficult to
know the nominal distribution. Hence, recently, effective non-
parametric methods for anomaly detection based on minimum
entropy sets are proposed [2], [3]. Nevertheless, these methods
are solely based on outlier detection, and thus cannot use the
temporal information regarding anomaly in the data samples.

In this paper, for timely and accurately detecting abrupt
and persistent anomalies, we develop a nonparametric method
that is simple enough to work with high-dimensional datasets.
Providing key insights to both outlier detection and change
detection we merge the desirable properties of nonparametric
methods and online methods. Specifically, we show asymptotic
links between nonparametric Geometric Entropy Minimization
(GEM) and parametric outlier detection; and also provide
a novel interpretation of the sequential Cumulative Sum
(CUSUM) method using the discrepancy theory, which dates
back to Hermann Weyl’s work in 1916 [5].

In Section II, we formulate the problem and provide rele-
vant background information. Then, in Section III, we present
our proposed anomaly detection method, and in Section IV
evaluate its performance through numerical experiments. Fi-
nally, Section V concludes the paper.

II. PROBLEM FORMULATION AND BACKGROUND

We monitor a system online by getting sequential obser-
vations X

t

= {X1, X2, . . . , Xt

} of d-dimensional independent
vectors X

t

in time. In this paper, we model an anomaly as
persistent outliers in the observations, and aim to accurately
detect such anomalies in a timely fashion using a practical non-
parametric approach applicable to high-dimensional datasets
(e.g., big data problems).

A. Change Detection

Consider an abrupt and persistent change in the probability
distribution of the observations at an unknown point in time.
Let f0 denote the nominal probability distribution of X

t

before
any change, and f denote the actual distribution of X

t

.We
formulate the problem as a composite binary hypothesis test
as

H0 : f = f0, 8t
H1 : f = f0, t < ⌧, and f 6= f0, t � ⌧,

(1)

where ⌧ denotes the unknown change time. As seen in the
formulation, in the change detection problem, H0 (i.e., nominal
distribution) is assumed true at the beginning, and the objective
is to statistically detect the potential switching of the true
distribution to an anomalous distribution. Hence, the change
detection problem is fundamentally different than the standard
binary hypothesis testing problem, in which

H0 : f = f0, H1 : f 6= f0, (2)



and the objective is to find the true hypothesis (H0 or H1) from
the beginning.

Standard hypothesis testing (either fixed-sample-size or se-
quential [6]) for anomaly detection (see (2)) outputs a decision:
nominal (� = H0) or anomalous (� = H1), whereas in change
detection (see (1)) testing continues until the output decision
is H1, i.e., until an anomaly is detected [4]. Accordingly, the
objective in the former is to maximize the detection probability
P(� = H1|H1) while satisfying a false alarm (i.e., false
positive) constraint P(� = H1|H0)  ↵, whereas the objective
in the latter is to minimize the average detection delay while
again satisfying a false alarm constraint. Hence, the term
quickest detection is also used [4].

The minimax performance criterion [7]

inf

T

sup

⌧

ess sup
X

⌧

E
⌧

[(T � ⌧)+|X
⌧

]

subject to E1[T ] � �,
(3)

is commonly used to formulate the change detection problem.
In (3), “ess sup” denotes essential supremum, a concept in
measure theory that is in practice equivalent to supremum;
(·)+ = max{·, 0}; E

⌧

is the expectation with respect to the
change time; and accordingly E1 is the expectation when there
is no change at all. The minimax performance criterion in (3)
minimizes the worst-case average detection delay subject to a
false alarm constraint, represented by a lower bound � on the
expected alarm time when there is never a change.

It is known that the widely used cumulative sum (CUSUM)
algorithm [8], is optimum with respect to (3) when both the
nominal distribution f0 and the anomalous distribution f1, to
which f switches at time ⌧ , are completely known [4]. The
CUSUM procedure is given by

T
c

= min{t : max

1jt

St

j

� h
c

},

St

j

=

tX

i=j

log

f1(Xi

)

f0(Xi

)

,
(4)

where T
c

is the stopping time, St

j

is the running log-likelihood
ratio from time j to time t, and h

c

is a threshold selected
to satisfy the false alarm constraint in (3) with equality, i.e.,
E1[T ] = �. Operationally, CUSUM stops the first time the
evidence against H0 is sufficiently large, achieving quickest
detection among its competitors satisfying the same false alarm
constraint. However, CUSUM is a parametric method which
requires the knowledge of f0 and f1 up to the parameters,
limiting its use in high-dimensional problems where d � 2.
In generalized CUSUM, which estimates the parameters of f0
and f1 using maximum likelihood estimation, only asymptotic
optimality is achievable [4]. To tackle high-dimensional prob-
lems we resort to nonparametric methods, such as GEM, which
is discussed next.

B. Outlier Detection via GEM

Parametric change detection methods, in particular
CUSUM, enable timely detection of certain anomaly types in
which the anomalous distribution is known, as well as the
nominal (i.e., baseline) distribution (e.g., change in the mean
or variance of a Gaussian distribution). Outlier detection deals
with the general problem of detecting unknown anomaly types

(see (1) and (2)) by considering only the likelihood under the
nominal distribution. For instance, a data point is declared as
an outlier if it lies outside the most compact set of data points
under the nominal distribution, called the minimum volume set.

The minimum volume set of level ↵ is given by

⌦

↵

= argmin

A

Z

A
dx subject to

Z

A
f0(x)dx � 1� ↵, (5)

where x is a data point, i.e., a realization of the random
variable X

t

, A is the acceptance region for H0 in which a data
point is deemed nominal, and ↵ is the significance level, i.e.,
constraint on the false alarm probability. In (5), ⌦

↵

minimizes
the Lebesgue measure (i.e., volume) in Rd among the subsets
of data points satisfying the same false alarm constraint ↵ to
minimize the interference with anomalous data points, i.e., to
minimize P(� = H0|H1) and thus to maximize the detection
probability P(� = H1|H1). Indeed, the detector based on the
minimum volume set has a strong optimality property: it is the
uniformly most powerful test when the nominal distribution f0
is Lebesgue continuous and has no flat spots over its support
set, and the actual distribution f is a linear mixture of f0 and
the uniform distribution [2]. It is also known that the minimum
volume set ⌦

↵

coincides with the minimum entropy set which
minimizes the Rényi entropy while satisfying the same false
alarm constraint [2].

In high-dimensional datasets (d � 2), even if f0 is
known, it is very computationally expensive (if not impos-
sible) to determine ⌦

↵

. Hence, in the literature, there are
various methods for learning minimum volume sets [9]. One
of them, called Geometric Entropy Minimization (GEM), is
shown to be very effective with high-dimensional datasets
while asymptotically achieving the performance of minimum
volume set [2]. Specifically, from a training set XN of N
data points distributed according to f0, it first forms a k-
nearest-neighbor (kNN) Euclidean graph G = (

¯XN

K

, E) with
K vertices ¯XN

K

2 XN and kK edges

E = {e
i(l) : i = 1, . . . ,K; l = 1, . . . , k},

where the edge length |e
i(l)| is the Euclidean distance between

the ith data point and its lth nearest neighbor in the graph, and
the vertices ¯XN

K

are chosen by minimizing the total weighted
edge length

L
k

(XN

K

) =

KX

i=1

kX

l=1

|e
i(l)|� , (6)

over all possible K-point subsets of XN , where � > 0 is
the weight. Then, with a new data point X

t

, it recomputes
the kNN graph described above over the extended set XN [
{X

t

}, resulting in the updated vertices ¯XN+1
K

2 XN [ {X
t

}.
If X

t

2 ¯XN+1
K

, the new data point X
t

is classified as nominal;
otherwise anomalous.

In [2], using the asymptotic theory of Euclidean graphs
¯XN

K

is shown to converge to the minimum volume set (and
accordingly the minimum entropy set) ⌦

↵

as

lim

K,N!1
K/N ! 1� ↵.

Since the original GEM algorithm, which, for each X
t

, com-
putes ¯XN+1

K

over all possible K-point subsets of XN [ {X
t

},
has exponential computational complexity, a simpler variant



based on bipartite kNN graph (BP-GEM) is proposed in
[3]. BP-GEM significantly decreases the complexity of GEM
from O(dK2

�
N

K

�
) to O(dN (8+3d)/(4+2d)

) while maintaining
the theoretical guarantees of GEM [3]. Specifically, BP-GEM
randomly partitions the training data set XN into two sets
XN1 and XN2 , where N1 + N2 = N , and finds the vertices
¯XN1
K

2 XN1 by minimizing

L
k

(XN1
K

,XN2
) =

KX

i=1

kX

l=k�s+1

|e
i(l)|� , (7)

over all possible K-point subsets of XN1 , where |e
i(l)| is

the Euclidean distance from point i in XN1
K

to its lth nearest
neighbor in XN2 , 1  s  k is a fixed number introduced for
convenience, and 0 < � < d is the weight. This initial graph
with vertices ¯XN1

K

is computed only once at the beginning.
Then, with the inclusion of each new data point X

t

, we
do not need to redetermine the graph vertices ¯XN1+1

K

over
XN1 [ {X

t

} every time, since for each i in ¯XN1
K

the nearest
neighbors {i(l)} are selected from the separate set XN2 , and
thus the total edge length

P
k

l=k�s+1 |ei(l)|� does not change,
as opposed to the original GEM. Instead, we only need to
compute the total edge length

P
k

l=k�s+1 |eXt

(l)|� for the new
point X

t

, and choose the K points with smallest total edge
lengths from ¯XN1

K

[ {X
t

} as the new graph vertices ¯XN1+1
K

.

III. THE PROPOSED ONLINE DISCREPANCY TEST (ODIT)

Anomaly detection solely based on outlier detection suffers
from the fact that an outlier, especially one that is close to
being nominal, does not necessarily correspond to an anomaly.
For instance, in BP-GEM, a data point whose total edge
length is slightly larger than the largest one in ¯XN1

K

is deemed
anomalous despite the small evidence to do so, i.e., it would
be decided nominal if its total edge length was a little smaller.
This hard-thresholding mechanism does not provide a good
link between an outlier and an anomaly. Instead, we propose
to accumulate the evidence supporting anomaly in each data
point (whether decided as an outlier or not), similarly to the
accumulation of likelihood evidence in change detection. As a
result, combining the simplicity of outlier detection with the
power of sequential decision making, our proposed anomaly
detector (i) computes the easy-to-compute outlier evidence,
given by the total edge length, for each new data point; and
(ii) waits for new data by accumulating the evidence from
each data point until a confident anomaly alarm can be raised
instead of making a hard decision based on a single data point
with little evidence.

A. Analysis of BP-GEM for Outlier Detection

The proposed detector is motivated by the theoretical
foundations explained below.

Proposition 1 (Test statistic of BP-GEM). The BP-GEM
algorithm proposed in [3] actually treats the hypothesis testing
problem

H0 : X
t

2 ⌦

↵

, H1 : X
t

62 ⌦

↵

, (8)

with the decision function

� =

⇢
H0 if D

t

 0

H1 if D
t

> 0,
(9)

D
t

=

kX

l=k�s+1

|e
X

t

(l)|� �
kX

l=k�s+1

|e
X(K)(l)|

� , (10)

lim

N1,N2!1
D

t

monotonic⇠ log

f0(x↵

)

f0(Xt

)

, (11)

and sign
✓

lim

N1,N2!1
D

t

◆
= sign

✓
log

f0(x↵

)

f0(Xt

)

◆
, (12)

where x
↵

is a boundary point of ⌦

↵

(see (5)), N1 and N2

are the size of two partitions in the training set, and the test
statistic D

t

is the difference between the total edge lengths of
the new point X

t

and X(K), the Kth point in ¯XN1
K

, which has
the largest total edge length in ¯XN1

K

.

Proof: The original decision rule of BP-GEM (given as
choose H0 if X

t

2 ¯XN1+1
K

and choose H1 otherwise) can
be restated in terms of a test statistic. To see this, note that
X

t

2 ¯XN1+1
K

when the new point replaces the Kth point
in the previous best set of vertices ¯XN1

K

, i.e., its total edge
length is smaller than that of the Kth point, as shown in (10).
The asymptotic properties in (11) and (12) follow from the
asymptotic optimality of BP-GEM. It is known [3] that the
H0-region of (9) converges to the minimum volume set ⌦

↵

,
whose decision rule can be stated as H0 if f0(Xt

) � f0(x↵

),
i.e., log f0(x↵

)
f0(Xt

)  0, and H1 otherwise, hence the sign property
in (12). Assume that, as N2 !1, also k !1 such that the
total edge length L

k

(X
t

) of a point X
t

remains a constant. In
that case, L

k

(X
t1) < L

k

(X
t2) for all X

t1 and X
t2 such that

f0(Xt1) > f0(Xt2). Since

D
t

= L
k

(X
t

)� L
k

(X(K)), (13)

we have the monotonicity property stated in (11). Note also
that X(K) ! x

↵

as N1,K !1 such that K/N1 = 1�↵.

Proposal 1 shows the structural resemblance of D
t

to the
log-likelihood ratio between the boundary point x

↵

and X
t

.
To see the physical relationship consider the case where f0 is
from the exponential family, i.e., f0 = e��(X,✓) where ✓ is the
parameter vector and �(X, ✓) is a distance term causing the
exponential decay in the probability density function. In this
case, log f0(x↵

)
f0(Xt

) = �(X
t

, ✓)��(x
↵

, ✓) is a distance metric that
is similar to D

t

as shown by (13). They also asymptotically
share a very similar structure (see Proposal 1).

This theoretical similarity between D
t

and the log-
likelihood ratio log

f0(x↵

)
f0(Xt

) motivates us to use the nonpara-
metric BP-GEM approach in online anomaly detection, in a
similar fashion the parametric CUSUM algorithm uses log-
likelihood ratio (see (4)).

B. Online Nonparametric Anomaly Detection

Instead of classifying each point by hard-thresholding D
t

as in (9) and treating each outlier as an anomaly, we model an
anomaly as persistent outliers in the observations and treat D

t

as a positive/negative evidence for anomaly. For timely and
accurate detection, we propose to accumulate such anomaly
evidence in time, i.e., use also the history, as opposed to



the original GEM approach (see (9)). Specifically, due to the
independence of data points in time, we sum D

t

to obtain
the running evidence �

t

=

P
t

i=1 Di

, similar to the running
log-likelihood ratio in CUSUM, given by (4).

The similarity between �

t

and S
t

=

P
t

i=1 log
f1(Xi

)
f0(Xi

) due
to Proposition 1 motivates us to develop an online anomaly
detector using the nonparametric test statistic �

t

. To that end,
we first introduce a novel interpretation of CUSUM, which
enables the generalization of the CUSUM procedure to our
nonparametric test statistic.

Theorem 1 (Discrepancy and CUSUM). The CUSUM proce-
dure, given by (4), can be written as

T
c

= min{t : g(`
t

) � h
c

},

`
t

=


log

f1(X1)

f0(X1)
. . . log

f1(Xt

)

f0(Xt

)

�
,

g(`
t

) = max

1n1n2t

n2X

i=n1

`i
t

,

(14)

where g(·) is a discrepancy function defined for a number
sequence, similarly to the discrepancy norm defined in [10],
and `i

t

is the ith element of the log-likelihood ratio vector `
t

.

Proof: Note that in (4)

max

1jt

St

j

= max

1jt

tX

i=j

log

f1(Xi

)

f0(Xi

)

= max

1jt

tX

i=j

`i
t

,

which is similar but not identical to g(`
t

) since n2 in (14) is not
necessarily equal to the current time t. Actually, max1jt

St

j

is the accumulated log-likelihood ratio since the time the
minimum value of S

t

took place until time t, i.e., S
t

�S
t

min

,
whereas g(`

t

) is the difference between the maximum and
minimum values of S

t

, i.e., S
t

max

� S
t

min

, as shown in Fig.
1. However, note that the original procedure, given by (4),
stops the first time max1jt

St

j

exceeds a threshold h
c

, which
always occurs at the maximum point after the minimum occurs.
That is, at the stopping time max1jt

St

j

= g(`
t

), i.e., the
stopping times obtained through (4) and (14) are identical.

The utility of Theorem 1 is that it expresses the CUSUM
procedure in terms of a general discrepancy metric which is
applicable to any number sequence. Specifically, according to
Theorem 1, CUSUM stops when the discrepancy, measured
by g(`

t

), of the observations with respect to f0 is large
enough. On the other hand, the original CUSUM procedure
is completely based on the log-likelihood ratio, and thus not
readily applicable to the ODIT statistic �

t

, which is similar,
but not the same as the running log-likelihood ratio S

t

.

Our discrepancy function g(·) is motivated by the dis-
crepancy theory [5], and defined similarly to the discrepancy
norm in [10]. The function in [10] measures the maximum
bidirectional change (i.e., increase or decrease) in a vector,
whereas our function measures the maximum increase in a
sequence/vector.

Before presenting the proposed ODIT algorithm, we re-
call the CUSUM formulation that recursively updates its test

0 2 4 6 8 10 12 14 16 18 20 22
t
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S
t

g(`t) max
15j5t

St
j

Fig. 1. The CUSUM statistics max1jt S
t
j and g(`t) from the original

formulation (4) and the alternative formulation (14), respectively.

statistic [4],

T
c

= min{t : ¯S
t

� h
c

},

¯S
t

= max

⇢
¯S
t�1 + log

f1(Xt

)

f0(Xt

)

, 0

�
, ¯S0 = 0.

(15)

In computing the discrepancy function, since we are only
interested in the increase from the minimum value in the
past, as shown in Fig. 1, in the proposed algorithm we clip
the minimum value always at zero as in (15), which yields
the following stopping rule and the easy-to-compute recursive
update rule for the ODIT statistic

T
d

= min{t : ¯�
t

� h},
¯

�

t

= max{ ¯�
t�1 +D

t

, 0}, ¯

�0 = 0.
(16)

The proposed ODIT anomaly detector is summarized in
Algorithm 1.

Algorithm 1 The proposed anomaly detector: ODIT
1: Initialize:

¯

� = 0, t 1

2: Partition training set into XN1 and XN2

3: Determine ¯XN1
K

as in (7)
4: while

¯

� < h do

5: Get new data X
t

and compute D
t

as in (10)
6: ¯

� = max{ ¯�+D
t

, 0}
7: t t+ 1

8: end while

9: Declare anomaly

IV. NUMERICAL RESULTS

In this section, we provide numerical results to compare
the proposed nonparametric ODIT detector with the parametric
clairvoyant CUSUM detector and the generalized CUSUM
detector, which estimates the model parameters. Following the
simulations in [2] and [3], we first test the scenario in which the
nominal distribution f0 is a 2-dimensional Gaussian with zero
mean and diagonal covariance with standard deviation � =
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Fig. 2. Simulated data with a Gaussian nominal distribution f0 and an
anomalous distribution f1 which is a mixture of nominal and uniform distribu-
tions. Average detection delay vs. false alarm probability performances of the
proposed nonparametric ODIT detector, the parametric clairvoyant CUSUM
detector, which knows both f0 and f1 exactly, and the generalized CUSUM
detector, which exactly knows f0, but estimates the uniform distribution upper
bound as 0.9 instead of the true value 1 in f1.

0.1; and the anomalous distribution f1 is a mixture of f0 and 2-
dimensional uniform distribution on [0, 1]2: f = 0.8f0+0.2U .
The training set consists of N = 10000 points with partitions
N1 = 1000 and N2 = 9000. The test set contains 500 points
with anomaly time at 100. Thus, after t = 100, we see an
anomalous point on average every five time instance. We set
↵ = 0.05, K = ↵N1, k = 1, and s = 1. As seen in
Fig. 2, the proposed nonparametric detector well approximates
the parametric optimum CUSUM detector, which knows f0
and f1 exactly. It achieves near-optimum performance while
being computationally simple and free of assumptions on the
nominal and anomalous probability distributions. Furthermore,
the proposed detector significantly outperforms the generalized
CUSUM (G-CUSUM), which is used in practice as it esti-
mates the unknown parameters using the maximum likelihood
approach. Note the significant performance gap even with a
small error in estimating the anomalous distribution.

We also test our proposed algorithm on the “Heterogeneity
Human Activity Recognition Dataset” [11] obtained from
the UCI Machine Learning Repository [12]. This dataset
contains accelerometer and gyroscope data from smartphones
and smartwatches about 6 activities: biking, sitting, standing,
walking, stair up, and stair down. We used the smartwatch
accelerometer data, which contains around 3.5 million data
points with 5 numeric features. Focusing on the activity
transitions we tested the online detection performance of our
algorithm in terms of average detection delay vs. false alarm
probability, and compared it to that of G-CUSUM which
fits multivariate Gaussian models to f0 and f1 by estimating
the parameters from some training data using the maximum
likelihood approach.

V. CONCLUSION

We developed a computationally efficient nonparametric
method for timely detection of abrupt and persistent anomalies.
The proposed algorithm combines the GEM outlier detection
approach with the CUSUM sequential change method. New
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Fig. 3. Performance comparison with the Heterogeneity Human Activity
Recognition Dataset. Average detection delay vs. false alarm probability
performances of the proposed nonparametric ODIT detector and the parametric
generalized CUSUM detector.

insights into GEM and CUSUM were provided to effectively
combine them. The introduced relation between CUSUM and
the discrepancy theory enables extensions of the CUSUM
procedure to new applications, as we showed for nonpara-
metric anomaly detection. Similarly, the relation of GEM
to parametric outlier detection enabled us to use the simple
nonparametric outlier detection approach for timely detection
of statistical changes. Numerical results on both simulated
and real datasets justified the effectiveness of the proposed
algorithm.
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