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Abstract

Anomaly detection in surveillance videos is attracting an increasing amount of
attention. Despite the competitive performance of recent methods, they lack
theoretical performance analysis, particularly due to the complex deep neural
network architectures used in decision making. Additionally, online decision
making is an important but mostly neglected factor in this domain. Much
of the existing methods that claim to be online, depend on batch or offline
processing in practice. Motivated by these research gaps, we propose an online
anomaly detection method in surveillance videos with asymptotic bounds on
the false alarm rate, which in turn provides a clear procedure for selecting
a proper decision threshold that satisfies the desired false alarm rate. Our
proposed algorithm consists of a multi-objective deep learning module along with
a statistical anomaly detection module, and its effectiveness is demonstrated
on several publicly available data sets where we outperform the state-of-the-art
algorithms. All codes are available at https://github.com/kevaldoshi17/

Prediction-based-Video-Anomaly-Detection-.

Keywords: computer vision; video surveillance; anomaly detection; asymptotic
performance analysis; deep learning; online detection

1. Introduction

The rapid advancements in the technology of closed-circuit television (CCTV)
cameras and their underlying infrastructural components such as network, stor-
age, and processing hardware have led to a sheer number of surveillance cameras
implemented all over the world, and estimated to go beyond 1 billion globally,5

by the end of the year 2021 [1]. Video surveillance is an essential tool used
in law enforcement, transportation, environmental monitoring, etc. mainly for
improving security and public safety. For example, it has become an inseparable
part of crime deterrence and investigation, traffic violation detection, and traffic
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management. However, considering the massive amounts of videos generated in10

real-time, manual video analysis by human operator becomes inefficient, expen-
sive, and nearly impossible, which in turn makes a great demand for automated
and intelligent methods for analyzing and retrieving important information from
videos, in order to maximize the benefits of CCTV.

One of the most important, challenging and time-critical tasks in automated15

video surveillance is the detection of abnormal events such as traffic accidents and
violations, crimes, and natural disasters. Hence, video anomaly detection has
become an important research problem in the recent years. Anomaly detection
in general is a vast, crucial, and challenging research topic, which deals with the
identification of data instances deviating from nominal patterns. It has a wide20

range of applications, e.g., in medical health care[2], cyber-security [3], hardware
security [4], aviation [5], and spacecraft monitoring [6].

Given the important role that video anomaly detection can play in ensuring
safety, security and sometimes prevention of potential catastrophes, one of the
main outcomes of a video anomaly detection system is the real-time decision25

making capability. Events such as traffic accidents, robbery, and fire in remote
places require immediate counteractions to be taken in a timely manner, which
can be facilitated by the real-time detection of anomalous events. Despite its
importance, a very limited body of research has focused on online and real-time
detection methods. Moreover, some of the methods that claim to be online30

heavily depend on batch processing of long video segments. For example, [7]
performs a normalization step which requires the entire video.

A vast majority of the recent state-of-the-art video anomaly detection methods
depend on complex neural network architectures [8]. Although deep neural
networks provide superior performance on various machine learning and computer35

vision tasks, such as object detection [9], image classification [10], playing games
[11], image synthesis[12], etc., where sufficiently large and inclusive data sets
are available to train on, there is also a significant debate on their shortcomings
in terms of interpretability, analyzability, and reliability of their decisions [13].
For example, [14, 15] propose using a nearest neighbor-based approach together40

with deep neural network structures to achieve robustness, interpretability for
the decisions made by the model, and as defense against adversarial attack.
Additionally, to the best of the our knowledge, none of the neural network-based
video anomaly detection methods has been analyzed in terms of performance
guarantees. On the other hand, statistical and nearest neighbor-based methods45

remain popular due to their appealing characteristics such as being amenable to
performance analysis, computational efficiency, and robustness [16, 17].

Motivated by the aforementioned domain challenges and research gaps, we
propose a hybrid use of neural networks and statistical k nearest neighbor (kNN)
decision approach for finding anomalies in video in an online fashion. In summary,50

our contributions in this paper are as follows:

• We propose a novel framework composed of deep learning-based feature
extraction from video frames, and a statistical sequential anomaly detection
algorithm.
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• We derive an asymptotic bound on the false alarm rate of our detection55

algorithm, and propose a technique for selecting a proper threshold which
satisfies the desired false alarm rate.

• We extensively evaluate our proposed framework on publicly available
video anomaly detection data sets.

The remainder of the paper is organized as: Related Work (Section 2),60

Proposed Method (Section 3), Experiments (Section 4), and Conclusion (Section
5).

2. Related Work

Semi-supervised detection of anomalies in videos, also known as outlier detec-
tion, is a commonly adopted learning technique due to the inherent limitations65

in availability of annotated and anomalous instances. This category of learning
methods deals with learning a notion of normality from nominal training videos,
and attempts to detect deviations from the learned normality notion. [18, 19].
There are also several supervised detection methods, which train on both nominal
and anomalous videos. The main drawback of such methods is the difficulty in70

finding frame-level labeled, representative, and inclusive anomaly instances. To
this end, [8] proposes using a deep multiple instance learning (MIL) approach to
train on video-level annotated videos, in a weakly supervised manner. Although
training on anomalous videos would enhance the detection capability on similar
anomaly events, supervised methods typically suffer from unknown and novel75

anomaly types.
One of the key components of the video anomaly detection algorithms is the

extraction of meaningful features, which can capture the difference between the
nominal and anomalous events within the video. The selection of feature types
has a significant impact on the identifiability of types of anomalous events in80

the video sequences. Many early video anomaly detection techniques and some
recent ones focused on the trajectory features [20], which limits their applicability
to the detection of the anomalies related to the trajectory patterns, and moving
objects. For instance, [21] studied detection of abnormal vehicle trajectories
such as illegal U-turn. [22] extracts human skeleton trajectory patterns, and85

hence is limited to only the detection of abnormalities in human behavior.
Motion and appearance features are another class of widely used features in

this domain. [23] extracts motion direction and magnitudes, to detect spatio-
temporal anomalies. Histogram of optical flow [24, 25], and histogram of oriented
gradients [26] are some other commonly used hand-crafted feature extraction90

techniques used in the literature. Sparse coding based methods [27] are also
applied in detection of video anomalies. They learn a dictionary of normal
sparse events, and attempt to detect anomalies based on the reconstructability
of video from the dictionary atoms. [28] uses sparse reconstruction to learn joint
trajectory representations of multiple objects.95

In contrary to the hand-crafted feature extraction, are the neural network
based feature learning methods. [29] learns the appearance and motion features
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by deep neural networks. [30] utilizes Convolutional Neural Networks (CNN),
and Convolutional Long Short Term Memory (CLSTM) to learn appearance
and motion features, respectively. Neural network based approaches have been100

recently dominating the literature. For example, [31] trains Generative Ad-
versarial Network (GAN) on normal video frames, to generate internal scene
representations (appearance and motion), based on a given frame and its optical
flow, and detects deviation of the GAN output from the normal data, by AlexNet
[10]. [32] trains a GAN-like adversarial network, in which a reconstruction105

component learns to reconstruct the normal test frames, and attempts to train
a discriminator by gradually injecting anomalies to it, while concurrently the
discriminator (detector) learns to detect the anomalies injected by the recon-
structor. In [33, 34], a transfer learning based approach is used for continual
learning for anomaly detection in surveillance videos from a few samples.110

3. Proposed Method
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Figure 1: Proposed MONAD framework. At each time t, neural network-based feature
extraction module provides motion (MSE), location (center coordinates and area of bounding
box), and appearance (class probabilities) features to the statistical anomaly detection module,
which automatically sets its decision threshold to satisfy a false alarm constraint and makes
online decisions.

3.1. Motivation

Anomaly detection in surveillance videos is defined as the identification of
unusual events which do not conform to the expectation. We base our study
on two important requirements that a successful video anomaly detector should115

satisfy: (i) extract meaningful features which can be utilized to distinguish
nominal and anomalous data; and (ii) provide a decision making strategy which
can be easily tuned to satisfy a given false alarm rate. While existing works
partially fulfills the first requirement by defining various constraints on spatial
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and temporal video features, they typically neglect providing an analytical and120

amenable decision strategy. Motivated by this shortcoming, we propose a unified
framework called Multi-Objective Neural Anomaly Detector (MONAD1). Like
monads provide a unified functional model for programming, our proposed
MONAD unifies deep learning-based feature extraction and analytical anomaly
detection by incorporating two modules, as shown in Figure 1. The first module125

consists of a Generative Adversarial Network (GAN) based future frame predictor
and a lightweight object detector (YOLOv3) to extract meaningful features. The
second module consists of a nonparametric statistical algorithm which uses the
extracted features for online anomaly detection. To the best of our knowledge,
this is the first work to present theoretical performance analysis for a deep130

learning-based video anomaly detection method. Our MONAD framework is
described in detail in the following sections.

3.2. Feature Selection

Most existing works focus on a certain aspect of the video such as optical
flow, gradient loss or intensity loss. This in turn restrains the existing algorithms135

to a certain form of anomalous event which is manifested in the considered video
aspect. However, in general, the type of anomaly is broad and unknown while
training the algorithm. For example, an anomalous event can be justified on
the basis of appearance (a person carrying a gun), motion (two people fighting)
or location (a person walking on the roadway). To account for all such cases,140

we create a feature vector F it for each object i in frame Xt at time t, where F it
is given by [w1Fmotion, w2Flocation, w3Fappearance]. The weights w1, w2, w3 are
used to adjust the relative importance of each feature category.

3.3. Frame Prediction

A heuristic approach for detecting anomalies in videos is by predicting the145

future video frame X̂t using previous video frames {X1, X2, . . . , Xt−1}, and then
comparing it to Xt through mean squared error (MSE). Instead of deciding
directly on MSE, we use MSE of video frame prediction to obtain motion features
(Section 3.5). GANs are known to be successful in generating realistic images
and videos. However, regular GANs might face the vanishing gradient problem150

during learning as they hypothesize the discriminator as a classifier with the
sigmoid cross entropy loss function. To overcome this problem, we use a modified
version of GAN called Least Square GAN (LS-GAN) [35]. The GAN architecture
comprises of a generator network G and a discriminator network D, where the
function of G is to generate frames that would be difficult-to-classify by D.155

Ideally, once G is well trained, D cannot predict better than chance. Similar to
[7], we employ a U-Net [36] based network for G and a patch discriminator for
D.

1Monad is a philosophical term for infinitesimal unit, and also a functional programming
term for minimal structure.
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For training the generator G, we follow [7], and combine the constraints on
intensity, gradient difference, optical flow, and adversarial training to get the
following objective function

LG = γintLint(X̂,X) + γgdLgd(X̂,X)+

γofLof (X̂,X) + γadvLadv(X̂,X)
(1)

where γint, γgd, γof , γadv ≥ 0 are the corresponding weights for the losses.

Intensity loss is the l1 or l2 distance between the predicted frame X̂ and
the actual frame X, which is used to maintain similarity between pixels in the
RGB space, and given by

Lint(X̂,X) =
∥∥∥X̂ −X∥∥∥2

. (2)

Gradient difference loss is used to sharpen the image prediction and is
given by

Lgd(X̂,X) =
∑
i,j

∥∥∥|X̂i,j − X̂i−1,j | − |Xi,j −Xi−1,j |
∥∥∥

1

+
∥∥∥|X̂i,j − X̂i,j−1| − |Xi,j −Xi,j−1|

∥∥∥
1

(3)

where (i, j) denotes the spatial index of a video frame.160

Optical flow loss is used to improve the coherence of motion in the predicted
frame, and is given by

Lof (X̂t+1, Xt+1, Xt) =
∥∥∥f(X̂t+1, Xt)− f(Xt+1, Xt)

∥∥∥
1

(4)

where f is a pretrained CNN-based function called Flownet, and is used to
estimate the optical flow.

Adversarial generator loss is minimized to confuse D as much as possible
such that it cannot discriminate the generated predictions, and is given by

Ladv(X̂) =
∑
i,j

1

2
LMSE(D(X̂i,j), 1) (5)

where D(X̂i,j) = 1 denotes “real” decision by D for patch (i, j), D(X̂i,j) = 0
denotes “fake” decision, and LMSE is the mean squared error function.

3.4. Object Detection165

We propose to detect objects using a real-time object detection system such
as You Only Look Once (YOLO) [37] to obtain location and appearance features
(Section 3.5). The advantage of YOLO is that it is capable of processing higher
frames per second on a GPU while providing the same or even better accuracy as
compared to the other state-of-the-art models such as SSD and ResNet. Speed is170

a critical factor for online anomaly detection, so we currently prefer YOLOv3 in
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Figure 2: Example video frames from the UCSD Ped2 dataset showing the extraction of
bounding box center (location) feature in nominal training data (top row) and test data
(bottom row). Columns from left to right correspond to the first, 30th, 150th, and the last
frame in all training videos (top row), and in a test video (bottom row). In the test video, the
unusual path of golf cart, shown with red dots, together with the class probability and high
prediction error (MSE) due to unusual speed of cart statistically contribute to the anomaly
decision. Best viewed in color.

our implementations. For each detected object in image Xt, we get a bounding
box (location) along with the class probabilities (appearance). As shown in Fig.
2, we monitor the center of the bounding boxes to track paths different objects
might take in the training videos. Instead of simply using the entire bounding175

box, we monitor the center of the box and its area to obtain location features.
This not only reduces the complexity, but also effectively avoids false positives in
case the bounding box is not tight. In a testing video, objects diverging from the
nominal paths and class probabilities will help us detect anomalies, as explained
in Section 3.6.180

3.5. Feature Vector

Finally, for each object i detected in a frame, we construct a feature vector
as:

F it =



w1MSE(Xt, X̂t)
w2Centerx
w2Centery
w2Area
w3p(C1)
w3p(C2)

...
w3p(Cn)


, (6)

where MSE(Xt, X̂t) is the prediction error from the GAN-based frame predic-
tor (Section 3.3); Centerx, Centery, Area denote the coordinates of the center
of the bounding box and the area of the bounding box (Section 3.4); and
p(C1), . . . , p(Cn) are the class probabilities for the detected object (Section 3.4).185

Hence, at any given time t, with n denoting the number of possible classes, the
dimensionality of F it is given by m = n+ 4.
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3.6. Anomaly Detection

Our goal here is to detect anomalies in streaming videos with minimal detec-
tion delays while satisfying a desired false alarm rate. We can safely hypothesize190

that any anomalous event would persist for an unknown period of time. This
makes the problem suitable for a sequential anomaly detection framework [38].
However, since we have no prior knowledge about the anomalous event that might
occur in a video, parametric algorithms which require probabilistic model and
data for both nominal and anomaly cannot be used directly. Next, we explain the195

training and testing of our proposed nonparametric sequential anomaly detection
algorithm.

Training: First, given a set of N training videos V , {vi : i = 1, 2, . . . , N}
consisting of P frames in total, we leverage the deep learning module of our
proposed detector to extract M feature vectors FM = {F i} for M detected200

objects in total such that M ≥ P . We assume that the training data does not
include any anomalies. These M vectors correspond to M points in the nominal
data space, distributed according to an unknown complex probability distribu-
tion. Following a data-driven approach we would like to learn a nonparametric
description of the nominal data distribution. Due to its attractive traits, such205

as analyzability, interpretability, and computational efficiency [16, 17], we use k
nearest neighbor (kNN) distance, which captures the local interactions between
nominal data points, to figure out a nominal data pattern. Given the infor-
mativeness of extracted motion, location, and appearance features, anomalous
instances are expected to lie further away from the nominal manifold defined by210

FM . Consequently, the kNN distance of anomalous instances with respect to
the nominal data points in FM will be statistically higher as compared to the
nominal data points. The training procedure of our detector is given as follows:

1. Randomly partition the nominal dataset FM into two sets FM1 and FM2

such that M = M1 +M2.215

2. Then for each point Fi in FM1 , we compute the kNN distance di with
respect to the points in set FM2 .

3. For a significance level α, e.g., 0.05, the (1 − α)th percentile dα of kNN
distances {d1, . . . , dM1

} is used as a baseline statistic for computing the
anomaly evidence of test instances.220

4. The maximum value of kNN distances {d1, . . . , dM1
} is used as an upper

bound (φ) for δt, given by Eq. (7), which is then used for selecting a
threshold h, as explained in Section 3.7.

Testing: During the testing phase, for each object i detected at time t,
the deep learning module constructs the feature vector F it and computes the
kNN (Euclidean) distance dit with respect to the training instances in FM2 . The
proposed sequential anomaly detection system then computes the instantaneous
frame-level anomaly evidence δt:

δt = (max
i
{dit})m − dmα , (7)
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where m is the dimensionality of feature vector F it . Finally, following a CUSUM-
like procedure [38] we update the running decision statistic st as

st = max{st−1 + δt, 0}, s0 = 0. (8)

For nominal data, δt typically gets negative values, hence the decision statistic st
hovers around zero; whereas for anomalous data δt is expected to take positive225

values, and successive positive values of δt will make st grow. We decide that
a video frame is anomalous if the decision statistic st exceeds the threshold h.
After st exceeds h, we perform some fine tuning to better label video frames as
nominal or anomalous. Specifically, we find the frame st started to grow, i.e.,
the last time st = 0 before detection, say τstart. Then, we also determine the230

frame st stops increasing and keeps decreasing for n, e.g., 5, consecutive frames,
say τend. Finally, we label the frames between τstart and τend as anomalous, and
continue testing for new anomalies with frame τend + 1 by resetting sτend = 0.

3.7. Threshold Selection

If the test statistic crosses the threshold when there is no anomaly, this event235

is called a false alarm. Existing works consider the decision threshold as a design
parameter, and do not provide any analytical procedure for choosing its value.
For an anomaly detection algorithm to be implemented in a practical setting,
a clear procedure is necessary for selecting the decision threshold such that it
satisfies a desired false alarm rate. The reliability of an algorithm in terms of240

false alarm rate is crucial for minimizing human involvement. To provide such a
performance guarantee for the false alarm rate, we derive an asymptotic upper
bound on the average false alarm rate of the proposed algorithm.

Theorem 1. The false alarm rate of the proposed algorithm is asymptotically
(as M2 →∞) upper bounded by

FAR ≤ e−ω0h, (9)

where h is the decision threshold, and ω0 > 0 is given by

ω0 = vm − θ −
1

φ
W
(
−φθe−φθ

)
, (10)

θ =
vm

evmd
m
α
.

In (10), W(·) is the Lambert-W function, vm = πm/2

Γ(m/2+1) is the constant for the

m-dimensional Lebesgue measure (i.e., vmd
m
α is the m-dimensional volume of245

the hyperball with radius dα), and φ is the upper bound for δt.

Proof. See Appendix.
Although the expression for ω0 looks complicated, all the terms in (10) can be

easily computed. Particularly, vm is directly given by the dimensionality m, dα
comes from the training phase, φ is also found in training, and finally there is a
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built-in Lambert-W function in popular programming languages such as Python
and Matlab. Hence, given the training data, ω0 can be easily computed, and
based on Theorem 1, the threshold h can be chosen to asymptotically achieve
the desired false alarm period as follows

h =
− log(FAR)

ω0
. (11)

4. Experiments

4.1. Datasets

We evaluate our proposed method on three publicly available video anomaly250

data sets, namely the CUHK avenue dataset [39], the UCSD pedestrian dataset
[40], and the ShanghaiTech [41] campus dataset. Each data set presents its
own set of challenges and unique characteristics such as types of anomaly, video
quality, background location, etc. Hence, we treat each dataset independently
and present individual results for each of them. Here, we briefly introduce each255

dataset that are used in our experiments.
UCSD: The UCSD pedestrian data set is composed of two parts, namely Ped1

and Ped2. Following the work of [19, 42], we exclude Ped1 from our experiments
due to its significantly lower resolution of 158 x 238 and a lack of consistency in
the reported results as some recent works reported their performance only on a260

subset of the entire data set. Hence, we present our results on the UCSD Ped2
dataset which consists of 16 training and 12 test videos, each with a resolution of
240 x 360. All the anomalous events are caused due to vehicles such as bicycles,
skateboarders and wheelchairs crossing pedestrian areas.

Avenue: The CUHK avenue dataset consists of 16 training and 21 test videos265

with a frame resolution of 360 x 640. The anomalous behaviour is represented
by people throwing objects, loitering and running.

ShanghaiTech: The ShanghaiTech Campus dataset is one of the largest
and most challenging datasets available for anomaly detection in videos. It
consists of 330 training and 107 test videos from 13 different scenes, which sets270

it apart from the other available datasets. The resolution for each video frame is
480 x 856.

4.2. Comparison with Existing Methods

We compare our proposed algorithm in Table 1 with state-of-the-art deep
learning-based methods, as well as methods based on hand-crafted features:275

MPPCA [43], MPPC + SFA [40], Del et al. [44], Conv-AE [45], ConvLSTM-AE
[30], Growing Gas [46], Stacked RNN [41], Deep Generic [42], GANs [47], Liu et
al. [7]. A popular metric used for comparison in anomaly detection literature is
the Area under the Receiver Operating Characteristic (AuROC) curve. Higher
AuROC values indicate better performance for an anomaly detection system.280

For performance evaluation, following the existing works [48, 19, 7], we consider
frame level AuROC.
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4.3. Implementation Details

In the prediction pipeline, the U-NET based generator and the patch dis-
criminator are implemented in Tensorflow. Each frame is resized to 256 x 256285

and normalized to [-1,1]. The window size t is set to 4. Similar to [7], we use
the Adam optimizer for training and set the learning rate to 0.0001 and 0.00001
for the generator and discriminator, respectively. The object detector used
is YOLOv3 which is based on the Darknet architecture and is pretrained on
the MS-COCO dataset. During training, we extract the bounds which have a290

confidence level greater than 0.6, and for testing we consider confidence levels
greater than or equal to 0.4. The weights w1, w2 and w3 are set to 1, 0.4 and
0.9 respectively. The sequential anomaly detection algorithm is implemented in
Python.

4.4. Impact of Sequential Anomaly Detection295

To demonstrate the importance of sequential anomaly detection in videos,
we implement a nonsequential version of our algorithm by applying a threshold
to the instantaneous anomaly evidence δt, given in (7), which is similar to
the approach employed by many recent works [7, 8, 19]. As Figure 3 shows,
instantaneous anomaly evidence is more prone to false alarms than the sequential300

MONAD statistic since it only considers the noisy evidence available at the
current time to decide. Whereas, the proposed sequential statistic handles noisy
evidence by integrating recent evidence over time.

Figure 3: The advantage of sequential anomaly detection over single-shot detection in terms of
controlling false alarms.
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Methodology CUHK Avenue UCSD Ped 2 ShanghaiTech
MPPCA [43] - 69.3 -

MPPC + SFA [40] - 61.3 -
Del et al. [44] 78.3 - -
Conv-AE [45] 80.0 85.0 60.9

ConvLSTM-AE [30] 77.0 88.1 -
Growing Gas [46] - 93.5 -
Stacked RNN [41] 81.7 92.2 68.0
Deep Generic [42] - 92.2 -

GANs [31] - 88.4 -
Liu et al. [7] 85.1 95.4 72.8

Ours 86.4 97.2 70.9

Table 1: AuROC result comparison on three datasets.

4.5. Results

We compare our results to a wide range of methods in Table 1. Recently,305

[19] showed significant gains over the rest of the methods. However, their
methodology of computing the AuROC gives them an unfair advantage as they
calculate the AuROC for each video in a dataset, and then average them as the
AuROC of the dataset, as opposed to the other works which concatenate all the
videos first and then determine the AuROC as the dataset’s score.310

As shown in Table 1 we are able to outperform the existing results in
the avenue and UCSD dataset, and achieve competitive performance in the
ShanghaiTech dataset. We should note here that our reported result in the
ShanghaiTech dataset is based on online decision making without seeing future
video frames. A common technique used by several recent works [7, 19] is to315

normalize the computed statistic for each test video independently, including the
ShanghaiTech dataset. However, this methodology cannot be implemented in an
online (real-time) system as it requires prior knowledge about the minimum and
maximum values the statistic might take.

Hence, we also compare our online method with the online version of state-320

of-the-art method [7]. In that version, the minimum and maximum values of
decision statistic is obtained from the training data and used for all videos in
the test data to normalize the decision statistic, instead of the minimum and
maximum values in each test video separately. AuROC value, which is the
most common performance metric in the literature, considers the entire range325

(0, 1) of false alarm rates. However, in practice, false alarm rate must satisfy an
acceptable level (e.g., up to 10%). In Figure 4, on the UCSD and ShanghaiTech
data sets, we compare our algorithm with the online version of [7] within a
practical range of false alarm in terms of the ROC curve (true positive rate
vs. false positive rate). As clearly seen in the figures, the proposed MONAD330

algorithm achieves much higher true alarm rates than [7] in both datasets while
satisfying practical false alarm rates.

Finally, in Figure 5, we analyze the bound for false alarm rate derived in
Theorem 1. For the clarity of visualization, the figure shows the logarithm of
false alarm period, which is the inverse of the false alarm rate. In this case,335
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Figure 4: The ROC curves of the proposed MONAD algorithm and the online version of Liu
et al. [7] for a practical range of false alarm rate in the UCSD Ped 2 (left) and ShanghaiTech
(right) data sets.
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Figure 5: Actual false alarm periods vs. derived lower bounds for the UCSD Ped.2 (top left),
ShanghaiTech (top right), and Avenue (bottom) data sets.
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the upper bound on false alarm rate becomes a lower bound on the false alarm
period. The experimental results corroborate the theoretical bound and the
procedure presented in Section 3.7 for obtaining the decision threshold h.

4.6. Computational Complexity

In this section we analyze the computational complexity of the sequential340

anomaly detection module, as well as the average running time of the deep
learning module.

Sequential Anomaly Detection: The training phase of the proposed
anomaly detection algorithm requires computation of kNN distances for each
point in FM1 to each point in FM2 . Therefore, the time complexity of training345

phase is given by O(M1M2m). The space complexity of the training phase is
O(M2m) since M2 data instances need to be saved for the testing phase. In the
testing phase, since we compute the kNN distances of a single point to all data
points in FM2 , the time complexity is O(M2m).

Deep Learning Module: The average running time for the GAN-based350

video frame prediction is 22 frames per second. The YOLO object detector
requires about 12 milliseconds to process a single image. This translates to about
83.33 frames per second. The running time can be further improved by using
a faster object detector such as YOLOv3-Tiny or a better GPU system. All
tests are performed on NVIDIA GeForce RTX 2070 with 8 GB RAM and Intel355

i7-8700k CPU.

5. Conclusion

For video anomaly detection, we presented an online algorithm, called
MONAD, which consists of a deep learning-based feature extraction module and
a statistical decision making module. The first module is a novel feature extrac-360

tion technique that combines GAN-based frame prediction and a lightweight
object detector. The second module is a sequential anomaly detector, which
enables performance analysis. The asymptotic false alarm rate of MONAD
is analyzed, and a practical procedure is provided for selecting its detection
threshold to satisfy a desired false alarm rate. Through real data experiments,365

MONAD is shown to outperform the state-of-the-art methods, and yield false
alarm rates consistent with the derived asymptotic bounds. For future work, we
plan to focus on the importance of timely detection in video [49] by proposing a
new metric based on the average delay and precision.
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Appendix A. Proof of Theorem 1

In [38][page 177], for CUSUM-like algorithms with independent increments,
such as MONAD with independent δt, a lower bound on the average false alarm
period is given as follows

E∞[T ] ≥ eω0h,

where h is the detection threshold, and ω0 ≥ 0 is the solution to E[eω0δt ] = 1.
To analyze the false alarm period, we need to consider the nominal case.375

In that case, since there is no anomalous object at each time t, the selection
of object with maximum kNN distance in δt = (maxi{dit})m − dmα does not
necessarily depend on the previous selections due to lack of an anomaly which
could correlate the selections. Hence, in the nominal case, it is safe to assume
that δt is independent over time.380

We firstly derive the asymptotic distribution of the frame-level anomaly
evidence δt in the absence of anomalies. Its cumulative distribution function is
given by

P (δt ≤ y) = P ((max
i
{dit})m ≤ dmα + y).

It is sufficient to find the probability distribution of (max
i
{dit})m, the mth power

of the maximum kNN distance among objects detected at time t. As discussed
above, choosing the object with maximum distance in the absence of anomaly
yields independent m-dimensional instances {Ft} over time, which form a Poisson
point process. The nearest neighbor (k = 1) distribution for a Poisson point
process is given by

P (max
i
{dit} ≤ r) = 1− exp(−Λ(b(Ft, r)))

where Λ(b(Ft, r)) is the arrival intensity (i.e., Poisson rate measure) in the
m-dimensional hypersphere b(Ft, r) centered at Ft with radius r [50]. Asymp-
totically, for a large number of training instances as M2 →∞, under the null
(nominal) hypothesis, the nearest neighbor distance maxi{dit} of Ft takes small
values, defining an infinitesimal hyperball with homogeneous intensity λ = 1
around Ft. Since for a homogeneous Poisson process the intensity is written

as Λ(b(Ft, r)) = λ|b(Ft, r)| [50], where |b(Ft, r)| = πm/2

Γ(m/2+1)r
m = vmr

m is the

Lebesgue measure (i.e., m-dimensional volume) of the hyperball b(Ft, r), we
rewrite the nearest neighbor distribution as

P (max
i
{dit} ≤ r) = 1− exp (−vmrm) ,

where vm = πm/2

Γ(m/2+1) is the constant for the m-dimensional Lebesgue measure.

Now, applying a change of variables we can write the probability density of
(maxi{dit})m and δt as

f(maxi{dit})m(y) =
∂

∂y
[1− exp (−vmy)] , (A.1)

= vm exp(−vmy), (A.2)

fδt(y) = vm exp(−vmdmα ) exp(−vmy) (A.3)
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Using the probability density derived in (A.3), E[eω0δt ] = 1 can be written as

1 =

∫ φ

−dmα
eω0yvme

−vmdmα e−vmydy, (A.4)

evmd
m
α

vm
=

∫ φ

−dmα
e(ω0−vm)ydy, (A.5)

=
e(ω0−vm)y

ω0 − vm

∣∣∣∣∣
φ

−dmα

, (A.6)

=
e(ω0−vm)φ − e(ω0−vm)(−dmα )

ω0 − vm
, (A.7)

where −dmα and φ are the lower and upper bounds for δt = (maxi{dit})m − dmα .
The upper bound φ is obtained from the training set.

As M2 →∞, since the mth power of (1−α)th percentile of nearest neighbor
distances in training set goes to zero, i.e., dmα → 0, we have

e(ω0−vm)φ =
evmd

m
α

vm
(ω0 − vm) + 1. (A.8)

We next rearrange the terms to obtain the form of eφx = a0(x + θ) where

x = ω0 − vm, a0 = evmd
m
α

vm
, and θ = vm

evmd
m
α

. The solution for x is given by the

Lambert-W function [51] as x = −θ − 1
φW(−φe−φθ/a0), hence

ω0 = vm − θ −
1

φ
W
(
−φθe−φθ

)
. (A.9)

Finally, since the false alarm rate (i.e., frequency) is the inverse of false alarm
period E∞[T ], we have

FAR ≤ e−ω0h,

where h is the detection threshold, and ω0 is given above.
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