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Essentials
• Federated learning enables multi-institutional training of AI models on medical imaging 

data without direct data sharing, overcoming key privacy barriers while maintaining model 
performance.

• Despite privacy benefits, federated learning remains vulnerable to information leakage 
through gradient updates; privacy-preserving strategies such as differential privacy and 
homomorphic encryption reduce this risk but introduce accuracy and efficiency trade-offs.

• Uncertainty quantification in federated learning enhances model trustworthiness yet 
remains underutilized due to challenges posed by data heterogeneity and computational 
complexity.

Summary
This review article provides an in-depth analysis of the latest advancements in federated 
learning, privacy preservation, and uncertainty quantification in medical imaging. It also 
highlights current challenges and explores potential opportunities for improvement in these 
areas.

Abbreviations

AI: Artificial Intelligence
ML: Machine Learning
IID:  Independent and Identically Distributed
PFL:  Personalized Federated Learning
PPFL: Privacy Preserving Federated Learning
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Abstract
Artificial Intelligence (AI) has demonstrated strong potential in automating medical imaging tasks, 
with potential applications across disease diagnosis, prognosis, treatment planning, and post-
treatment surveillance. However, privacy concerns surrounding patient data remain a major 
barrier to the widespread adoption of AI in clinical practice, as large and diverse training datasets 
are essential for developing accurate, robust, and generalizable AI models. Federated Learning 
offers a privacy-preserving solution by enabling collaborative model training across institutions 
without sharing sensitive data. Instead, model parameters, such as model weights, are 
exchanged between participating sites. Despite its potential, federated learning is still in its early 
stages of development and faces several challenges. Notably, sensitive information can still be 
inferred from the shared model parameters. A d d i t i o n a l l y ,  p o s t - d e p l o y m e n t  d a t a  
d i s t r i b u t i o n  s h i f t s  c a n  d e g r a d e  m o d e l  p e r f o r m a n c e ,  m a k i n g  u n c e r t a i n t y  
q u a n t i f i c a t i o n  e s s e n t i a l . In  federa ted  learn ing ,  th is  task  is particularly 
challenging due to data heterogeneity across participating sites. This review provides a 
comprehensive overview of federated learning, privacy-preserving federated learning, and 
uncertainty quantification in federated learning. Key limitations in current  methodologies are 
identified, and future research directions are proposed to enhance data privacy and 
trustworthiness in medical imaging applications.
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1 Introduction
Advances in artificial intelligence (AI), driven by deep learning and the availability of large datasets 
and computational resources, continue to transform medical imaging. AI models trained on 
radiological data, such as mammograms, CT scans, and MRIs, are poised to become invaluable 
tools in both clinical and research settings1–3. However, curating large, annotated, domain-
specific datasets remains challenging, due to privacy regulations and other factors. Unlike 
conventional AI model development methods that require pooling data at a single location, 
federated learning enables decentralized model development without sharing data4,5. It allows 
for large-scale model training by sharing model gradient updates between sites rather than the 
training data. This enables multiple sites to act as clients and train a global model on the server, 
which is then shared with all sites.

Federated learning has the potential to address many challenges related to data sharing for 
AI model training in medical imaging6. However, it also presents unique challenges. First, data 
heterogeneity across different sites often violates the independent and identically distributed (IID) 
assumption, leading to issues such as poor model convergence, biased outcomes, and reduced 
generalization. These non-IID issues can stem from variations in imaging protocols, patient 
demographics, and disease prevalence across sites. Second, some studies have shown that 
private data can be extracted from the gradient updates communicated between federated 
learning sites7. Methods such as differential privacy8 and homomorphic encryption9 have been 
proposed to enhance communication security; however, there may be an inherent trade-off 
between privacy preservation and model performance10. The third challenge is uncertainty 
quantification, which involves measuring the AI’s confidence in its predictions11. This is crucial 
for the trustworthiness and reliability of AI in clinical settings11. Almost all AI models based on 
deep neural networks require output calibration for accurate uncertainty quantification12. Due to 
the likelihood of non-IID data and potential class imbalance in datasets at client sites, traditional 
uncertainty quantification methods must be modified for federated learning models13. Federated 
learning, with strong privacy preservation and uncertainty quantification, has the potential to 
revolutionize medical imaging through development of generalizable, robust, and trustworthy AI 
models using large-scale multi-institutional datasets.

This work reviews state-of-the-art methods in federated learning, privacy-preserving 
federated learning (PPFL), and uncertainty quantification, outlining the potential of these 
advancements to transform medical imaging. The paper is organized as follows: Sections 2, 3, 
and 4 review federated learning, PPFL, and uncertainty quantification in federated learning, 
respectively. Section 5 covers the real-world applications of federated learning in medical imaging 
and summarizes the current challenges and opportunities. Figure 1 presents the organization of 
this review paper and Figure 2 presents the summary of the topics covered in this review. Readers 
are encouraged to refer to Supplementary material (section 7) for more detailed technical 
aspects of the various federated learning topics discussed in this paper. A GitHub repository with 
links to papers reviewed in this work is provided here: Awesome List. The primary contributions 
of this work include:

• A review of the current state-of-the-art federated learning methods, from the past five 
years, for learning from distributed data while addressing non-IID datasets, privacy-
preservation requirements, and uncertainty quantification challenges.

• Exploration of five real-world use cases of federated learning in medical imaging and insights 
gained from these success stories. We also present current challenges in federated 
learning, PPFL, and uncertainty quantification related to medical imaging, along with 
potential opportunities for future research.
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2 Federated Learning
Federated learning was originally proposed to train AI models on edge devices without exposing 
private data14. This led to a paradigm shift in how machine learning (ML) models could be trained 
on sensitive and private data in distributed settings. The original federated learning algorithm, 
FedAvg, trains local models on client data and sends gradient information to a central server to 
create a global model that, theoretically, can outperform all local models14. This section focuses 
on federated learning algorithms and presents state-of-the-art advancements. A summary of the 
topics is shown in Figure 3.

2.1 Federated Learning Algorithms - Characterization and Types
Federated learning can be classified as centralized or decentralized, depending on whether a 
central server is used to aggregate updates and construct the global model. Centralized 
federated learning is the more common approach, where a server orchestrates the learning 
process by collecting and combining client updates. In contrast, decentralized federated learning 
allows clients to communicate directly, which can be advantageous when a central server is 
impractical or undesirable due to privacy or connectivity constraints. Recently, personalized 
federated learning (PFL) has gained attention as an enhancement of traditional centralized 
federated learning15. PFL addresses the inherent data heterogeneity among clients, such as 
variations in data distributions (non-IID data), computational resources, and specific local 
requirements. Instead of creating a single global model, PFL focuses on developing models 
tailored to individual clients while still leveraging shared knowledge across federated learning 
sites. PFL models are generally trained within a centralized federated learning framework. Given 
their unique approach to personalization and adaptation in heterogeneous environments, the PFL 
algorithms reviewed in this paper are presented in a separate section. Table 1 summarizes all 
federated learning algorithms discussed.

2.2 Centralized Federated Learning
As illustrated in Figure 3A, centralized federated learning requires a dedicated central server for 
parameter aggregation and constructing the federated model. It is the most common form of 
federated learning implemented for various ML tasks. These algorithms offer technical 
advancements for (1) learning from distributed, heterogeneous, and non-IID data, (2) optimizing 
learning for both global and local models to avoid catastrophic forgetting, and (3) stabilizing 
training across
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federated runs, locally and globally, to ensure model convergence. Notable centralized federated 
learning algorithms in recent years include FedProX16, FedBN17, FedGen18, Federated Online 
Laplace Approximation (FOLA)19, Train Convexify Train (TCT)20, Federated Cross-Correlation 
and Continual Learning (FCCL)21, and FedFA22. A technical summary of each algorithm can be 
found in supplement S1.

2.3 Decentralized Federated Learning
Decentralized federated learning implementations do not rely a central server to coordinate 
learning, as shown in Figure 3B23–25. Depending on the application, decentralized federated 
learning may enhance privacy and security while increasing robustness and fault tolerance by 
eliminating single points of failure. It also improves scalability by distributing workloads across 
the network. Decentralized federated learning methods such as Swarm Learning23, ProxyFL24, 
and Fog-FL25 offer alternative approaches to conducting federated learning experiments when 
a centralized server is not practical. Additional information about these decentralized methods 
can be found in supplement S2.

2.4 Personalized Federated Learning (PFL) - Addressing Client Data 
Heterogeneity

In multi-institutional collaborations, patient demographics often vary widely across sites, a 
challenge amplified by geographic separation. These demographic differences can lead to 
substantial variation in datasets used to train a federated learning model across sites26. In some 
cases, this can prevent model convergence or lead to underperformance on local data. As shown 
in Figure 3C, PFL develops tailored models for clients to address the data heterogeneity across 
sites while leveraging shared learning within the federated learning network15. Some PFL 
methods, like pFedBayes26, FedPop27, and Self-Aware PFL28, use probabilistic techniques to 
mitigate the effects of high data heterogeneity. Other methods, such as FedAP, use batch 
normalization layers to enhance performance. Detailed information on PFL algorithms can be 
found in supplement S3.
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3 Privacy-Preserving Federated Learning (PPFL)
Ensuring secure processing of protected and identifiable information is crucial in the medical 
field, where governing regulations strictly prohibit sharing patient data to prevent privacy 
breaches. Federated learning addresses this by keeping data localized at each site. However, 
privacy risks persist, as gradient updates exchanged between clients and the server can 
inadvertently reveal information about training data, leading to privacy leaks1. In this section, we 
present several topics related to PPFL, as depicted in Figure 4 and Table 2. Additional PPFL 
methods are discussed in detail in supplement S4.

3.1 Differential Privacy
One of the most popular methods for PPFL is differential privacy, which introduces noise into the 
gradients to prevent private information leakage (Figure 4A)8. It provides mathematical 
guarantees of privacy preservation but potentially at the cost of model accuracy and 
convergence10. Noising before aggregation federated learning (nbAFL), proposed by Wei et al., 
ensures differential privacy by adding artificial noise to the model parameters on the client side 
before aggregation, reducing the risk of privacy breaches29. To optimize the trade-off between 
privacy and model performance, nbAFL employs a K-random scheduling technique, where K 
clients are randomly selected for each aggregation round, making it harder for attackers to 
extract useful information from the updates. The optimal value of K must be carefully determined 
to balance  privacy and model convergence, a concept known as privacy budget allocation.

3.2 Homomorphic Encryption 
As shown in Figure 4B, homomorphic encryption allows mathematical operations to be 
performed directly on encrypted data, producing encrypted results that, when decrypted, match 
the results as if the operations had been applied to the original plaintext data30,31. This enables 
secure data sharing with third parties for processing, without exposing the underlying plaintext 
data. S o m e w h a t  homomorphic encryption is a sub-type of homomorphic encryption that 
permits a limited number of arithmetic operations and is generally more efficient32. Somewhat 
homomorphically encrypted federated learning was used to train models for brain tumor 
segmentation from MRIs and predict biomarkers from histopathology slides in colorectal 
cancer33. These models achieved performance comparable to standard federated learning 
models while providing additional privacy guarantees, demonstrating that encryption does not 
necessarily compromise model accuracy33. N o t a b l y ,  these methods encrypted only the 
vulnerable parts of the federated learning pipeline, resulting in less than a 5% increase in training 
time and computational cost.
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4 Uncertainty Quantification in Federated Learning
Uncertainty quantification in deep learning refers to measuring how confident a model is in its 
predictions. This is particularly important in medical settings, where both prediction accuracy 
and reliability are critical for informed decision-making34. Uncertainty quantification is vital for 
fostering trust, reliability, and user acceptance of an AI model11,34. It plays a critical role in 
monitoring model performance post deployment and serves as an early warning system for 
potential performance degradation, enabling timely human intervention. Additionally, uncertainty 
quantification can inform decisions on whether to use personalized or global models, assist in 
detecting out-of-distribution samples, and support active learning during model training. 
However, in federated learning, uncertainty quantification faces unique challenges due to the 
non-IID nature of data across participating sites, which often exhibit differing distributions, class 
imbalances, and other site-specific issues. This section reviews various uncertainty quantification 
methods specifically designed to address these complexities. Figure 5 and Table 3 provide an 
overview of uncertainty quantification methods in federated learning, with additional information 
in supplement S5.

Uncertainty quantification methods can actively enhance federated learning performance in 
several ways. First, uncertainty-aware client selection can prioritize clients with high-confidence 
data, improving model convergence. Second, local uncertainty estimates can inform weighting 
during aggregation, mitigating the impact of low-quality or noisy updates. Third, uncertainty 
quantification can enable robust deployment by flagging out-of-distribution inputs and guiding 
fallback mechanisms, such as human review. Finally, in personalized FL, uncertainty estimates 
can help balance global knowledge with local specialization, improving both generalizability and 
site-specific performance.

4.1 Uncertainty Quantification using Model Ensembling
Model ensembling is a widely used uncertainty quantification method in federated learning, 
leveraging its distributed nature by treating multiple clients as an ensemble of models (Figure 
5A)13. Three key ensembling approaches are ensemble of local models,  ensemble of global 
models, and ensemble based on multiple coordinators13. The ensemble of local models 
prioritizes privacy and simplicity by treating each client’s model as an independent member, 
though it diverges from the collaborative nature of federated learning. The ensemble of global 
models preserves collaboration but increases computational and communication overhead due 
to repeated model training with different random seeds. The ensemble based on multiple 
coordinators improves scalability by distributing clients into subgroups with their coordinators but 
introduces coordination complexity and the risk of learning fragmentation. Fed-ensemble35 further 
expands on these three approaches to address associated limitations. More information about 
ensembling is provided in supplement S5.

4.2 Uncertainty Quantification using Conformal Prediction
Conformal prediction is a statistical framework that provides a reliable confidence measure for 
predictions made by ML models (Figure 5B)36. Conformal prediction defines a nonconformity 
measure to assess how different a new example is from previously seen data, generating prediction 
regions likely to contain the true label or value. Conformal prediction is particularly beneficial in 
federated learning; however, data heterogeneity among clients violates the assumption of 
exchangeability, which is fundamental to traditional conformal prediction methods. To address 
this, Lu et al. introduced the concept of partial exchangeability and developed the federated 
conformal prediction framework. This framework which retains rigorous theoretical guarantees 

Page 7 of 31

820 Jorie Blvd., Suite 200, Oak Brook, IL, 60523, 630-481-1071, rad-ai@rsna.org

Radiology: Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



and demonstrates strong empirical performance across computer vision and medical imaging 
datasets, making it a practical solution for uncertainty quantification in heterogeneous federated 
learning environments37. More details are provided in supplement S5.

4.3 Uncertainty Quantification using Bayesian Federated Learning
In Bayesian federated learning, shown in Figure 5D, each client learns a posterior probability 
distribution function (PDF) over its parameters38,39. The learned PDF is communicated by the 
clients to
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the server to aggregate the local PDFs and learn a global PDF that can serve all the clients. The 
posterior PDF can be used for uncertainty quantification in the model’s output. Various 
approximation methods for approximating the posterior PDF, like MC-dropout and Stochastic 
Weight Averaging Gaussians (SWAG), have also been proposed13.

4.4 Uncertainty Quantification and Model Output Calibration
Uncertainty quantification methods assess and communicate how confident a model is in its 
predictions, which is crucial for reliable deployment and decision-making. While these methods 
directly quantify uncertainty in model outputs, model calibration corrects a model’s tendency to 
be overconfident, particularly due to the Softmax function, thus aligning predicted probabilities 
with actual performance11. By calibrating the Softmax output, a more accurate assessment of 
the model’s confidence is achieved. Luo e t  a l  recent ly  in t roduced the Classifier 
Calibration with Virtual Representations (CCVR) algorithm, which calibrates a global model to 
improve performance on non-IID data in heterogeneous settings40. The authors found that post-
training calibration significantly improves classification accuracy across various federated 
learning algorithms and datasets40. Another recently proposed method, Federated Calibration 
(FedCal), performs local and global calibration of models41. Additional information on calibration 
methods for federated learning can be found in supplement S5.

While not a standalone uncertainty quantification method, model calibration is an important post-
processing technique that aligns predicted confidence scores (e.g., softmax outputs) with 
empirical accuracy. By correcting for over- or under-confidence, particularly in the presence of 
non-IID data, calibration enhances the trustworthiness of model predictions. However, unlike 
methods such as Bayesian inference or conformal prediction, calibration does not directly 
estimate epistemic or aleatoric uncertainty.

5 Federated Learning in Medical Imaging
With growing research in the field, real-world applications of federated learning in medical 
imaging are beginning to demonstrate its clinical potential. This section presents federated 
learning implementation tools, real-world clinical case studies, and the future outlook of federated 
learning in medical imaging, including challenges and opportunities.

5.1 Planning a Medical Imaging Federated Learning Project
Implementing a federated learning project for medical imaging involves several key steps to ensure 
success and compliance with privacy standards set by participating institutions and government 
regulations. Success can be measured by validating a model that outperforms all local models.

The implementation process begins by defining the specific medical imaging problem, such 
as disease classification, pixel-level segmentation of organs, or the identification of malignant 
masses in radiological scans. The next step involves selecting the participating institutions, such 
as hospitals or imaging labs, and determining which site will act as the central server. Site 
selection is based on ability to collect and pre-process necessary training data needed, train the 
model, and share updates with the server site over the internet. After identifying collaborators, 
an appropriate federated learning software framework, such as NVIDIA FLARE, is selected and 
customized to meet the project’s specific needs. This customization may include implementing 
privacy-preserving techniques and uncertainty quantification algorithms, as well as configuring 
site-specific software for data loading and resultant storage. The ML model architecture, inputs, 
and outputs are also determined at this stage before deploying the federated learning software 
framework at both the server and client sites.

Before model training begins, each site must prepare its data according to standardized 
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preprocessing and labeling steps agreed upon beforehand. The federated training process 
commences once the environment is fully set up, with both central server and client configurations 
in place. During this phase, each client trains the model locally and sends updates

Page 10 of 31

820 Jorie Blvd., Suite 200, Oak Brook, IL, 60523, 630-481-1071, rad-ai@rsna.org

Radiology: Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



to the central server, which aggregates these updates and redistributes the updated model for 
further training. This iterative process continues until the model converges. If implemented, 
uncertainty quantification guides the training process.

After training, the model is evaluated both locally at each site and globally across all sites to 
assess its performance. Upon achieving satisfactory results, the model is deployed for clinical 
use or further research, with ongoing monitoring to ensure its effectiveness. The uncertainty 
quantification data can guide the model selection process for deployment, allow users to monitor 
the system performance, and trigger a manual review of the model output if necessary. The entire 
process is thoroughly documented, and reports are prepared to share findings with the research 
community. Finally, the model is maintained and periodically updated with new data or improved 
algorithms, ensuring its relevance and accuracy over time, while collaboration between 
participating sites continues to drive ongoing learning and improvement.

5.2 Federated Learning Implementation Tools
To streamline the federated learning model training, validation, and deployment process, several 
open-source frameworks and software development kits have been developed. NVIDIA 
Federated Learning Application Runtime Environment (FLARE) is a well-known open-source 
software development kit42. NVIDIA-FLARE supports various federated learning algorithms, 
workflows, and privacy-preserving techniques, including differential privacy and homomorphic 
encryption. OpenFL is another open-source Python library that operates using a static network 
topology, where clients connect to a central aggregating server via encrypted channels43. The 
workflow is determined by a federation plan agreed upon by all sites before implementation. 
Originally designed for medical imaging, OpenFL can be adapted for other applications. Fed-
BioMed is another open-source framework tailored for biomedical applications of federated 
learning, offering tools and libraries to manage distributed training, handle heterogeneous data, 
and ensure privacy and security in biomedical research44. Argonne Privacy-Preserving 
Framework (APPFL) is an open-source Python package that provides tools to implement, test, 
and validate various aspects of PPFL experiments in simulation settings45.

5.3 Medical Imaging Federated Learning Studies
• Federated Tumor Segmentation (FeTS) for Brain Tumors: FeTS-1.0 was the first large-

scale real-world federated learning effort in medical imaging, aiming to identify the optimal 
weight aggregation approach to train a consensus model across multiple geographically 
distinct institutions while retaining data locally46,47. Presented as a challenge, FeTS 
evaluated the generalizability of a federated model trained on brain tumor segmentation to 
unseen, institution-specific data, showcasing the potential of federated learning in real-world 
medical settings. Building on this, the FeTS-2.0 challenge focused on out-of-sample 
generalizability for glioblastoma detection and orchestrated the largest real-world medical 
federated learning deployment in history, with 71 sites across 6 continents. This effort led to 
the creation of the largest glioblastoma dataset to date, encompassing 6,314 patients. 
Leveraging this federated learning model, delineation accuracy improved by 33% for 
surgically targetable tumors and 23% for the full tumor extent compared to a publicly trained 
model. This challenge demonstrated the potential of federated learning to enhance model 
performance in healthcare and paved the way for further research. A key insight was that 
data quality issues often became apparent only after training, as they were revealed by 
comparing the model’s performance against a publicly trained model. It was also observed 
that simply adding more data does not always lead to significant improvements if data 
quality is insufficient.
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The project employed centralized federated learning using the FedAvg algorithm14 and 
was built on the OpenFL framework43.

• Federated Learning for Predicting COVID-19 Outcomes: Dayan et al. used federated 
learning to train a model on COVID-19 data from 20 different institutions worldwide without 
sharing data48. The Electronic Medical Record CXR AI Model (EXAM) was developed to 
predict the future oxygen needs of patients with COVID-19. The model achieved an average 
area under the receiver operating characteristic curve (AUC) of over 0.92 in predicting outcomes. 
The federated model provided a 16% improvement in the AUC and 38% improvement in 
generalizability over models trained at individual institutions. The study incorporated data 
from 4 continents and was validated on three independent sites to ensure the robust model 
performance. The EXAM framework utilized centralized federated learning with the FedAvg 
algorithm as its aggregation method14. The study also implemented differential privacy in 
their  setup, showing that enhanced privacy can be ensured while maintaining performance. 
This study was one of the largest real-world applications of federated learning, and 
showcasing its potential to enable large-scale medical AI model training. One limitation 
highlighted was that the decentralized nature of the data made further analysis beyond the  
federated training results challenging. Nonetheless, the authors emphasized that the ability 
of federated learning to deliver high-performing models to institutions with limited data 
resources is invaluable for advancing ML in clinical applications.

• ODELIA for Breast Cancer: The Open Consortium for Decentralized Medical Artificial 
Intelligence (ODELIA) is an EU-funded research initiative launched on January 1, 2023, 
aiming to transform healthcare AI through Swarm Learning49. Swarm learning enables 
collaborative model training without sharing patient data, addressing data privacy concerns 
in medical research. Over five years, ODELIA plans to develop an open-source swarm 
learning framework and apply it to create an AI algorithm for detecting breast cancer in 
MRI scans, utilizing a vast, distributed database49. This approach is expected to enhance 
AI development speed, performance, and generalizability, ultimately improving patient care 
across Europe. By implementing swarm learning, ODELIA seeks to overcome challenges 
in data collection for healthcare AI, particularly in cancer screening, where ethical and legal 
obstacles often impede data sharing. The consortium comprises twelve academic and 
industry partners from across Europe, including institutes from Austria, Germany, Spain, 
Greece, Netherlands, Belgium, Switzerland, and the University of Cambridge (United 
Kingdom). This framework will streamline the process of conducting decentralized FL.

• Real-World Federated Learning in RACOON Researchers within the German 
Radiological Cooperative Network (RACOON), a nationwide initiative involving 38 
hospitals, conducted a real-world federated learning experiment and published a detailed 
guide for developing and deploying federated learning infrastructure50. This guide outlines 
key steps, challenges, and current solutions for successfully implementing federated 
learning in a radiological setting. The authors deployed their infrastructure across 6 
hospitals to train a segmentation model for lung pathology detection using a centralized 
federated learning approach. The authors compared their approach to simpler alternatives, 
including local model training and ensembling, to justify the added complexity of federated 
learning. The guide also covers organizational structure, legal requirements, experimental 
design, and evaluation strategies for setting up federated learning workflows.

• Real-World Federated Learning for Breast Density Classification Roth et. al. 
demonstrated that federated learning can outperform traditional deep learning methods in 
real-world settings51. Their study involved training a model for breast density classification 
using data
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from 7 clinical institutions. Results showed an average improvement of 6.3% over locally 
trained models and a 45.8% relative gain in generalizability when evaluated on external 
test data. This work provides empirical evidence of federated learning’s effectiveness in 
improving model generalizability, particularly in settings with limited data.

5.4 Challenges and Opportunities
We presented an overview of federated learning, PPFL, and uncertainty quantification from both 
technological and algorithmic perspectives. Additionally, we outlined the key steps for 
implementing a federated learning project and reviewed five case studies demonstrating its 
application to real-world medical imaging tasks. Despite substantial progress in recent years, 
federated learning remains in its early stages. Several challenges must be addressed for 
federated learning to become a standard approach to ML model development in medical 
imaging. These challenges present opportunities for researchers to further explore and improve 
the state of federated learning in this field.

1. Administrative Challenges: Before implementing a federated learning project, engaging 
stakeholders from all participating institutions is essential. These stakeholders typically 
include researchers, the medical imaging team, information technology and cybersecurity 
experts, contract and agreement management teams, and hospital administrators. 
Engaging these groups ensures that all aspects of the project, from technical 
implementation to legal and ethical considerations, are addressed. Ethical approvals from 
relevant Institutional Review Boards or ethics committees must be obtained to ensure 
compliance with regulatory standards, particularly concerning patient data privacy and 
security. Additionally, formal agreements about “weight sharing” between institutions must 
be established. These agreements should outline whether model weights will be shared in 
“plain” or “encrypted” formats, addressing concerns related to data security and compliance 
with privacy laws such as HIPAA or GDPR. These agreements should also specify the 
responsibilities of each institution, including data governance, data transmission protocols, 
and contingency plans in case of data breaches. Addressing these issues 
comprehensively before the federated learning project begins is crucial for ensuring 
smooth collaboration and maintaining trust among the involved parties.

2. Requirement for Annotated Datasets: It is important to recognize that federated learning 
does not eliminate the need for annotated data. Each participating site must still invest 
substantial resources in creating and annotating datasets for training local models. The 
federated learning community should build upon and extend ongoing work in self-
supervised learning, active learning, continual learning, and transfer learning to federated 
environments. One promising area of research involves the use of generative AI models to 
create diverse, clinically relevant datasets. However, despite their potential, there is 
currently limited evidence supporting the clinical utility of AI-generated images. This 
highlights the need for further research to validate their effectiveness in training federated 
models.

3. Privacy-Performance Trade-offs: Another critical challenge in federated learning is the 
inherent tradeoff between privacy and model performance29. Further research is needed 
to efficiently allocate the privacy budget in a way that enhances privacy protections without 
compromising model effectiveness. Exploring alternative noise types and noise injection 
methods offers a promising direction for improving the effectiveness of differential privacy. 
Additionally,  encryption methods, including homomorphic encryption and somewhat 
homomorphic encryption, must be adapted to federated learning settings to minimize the 
performance gap between encrypted and unencrypted models. At the same time, 
communication efficiency between the server and clients remains a key consideration in 
evaluating the overall effectiveness of federated learning algorithms.

Page 13 of 31

820 Jorie Blvd., Suite 200, Oak Brook, IL, 60523, 630-481-1071, rad-ai@rsna.org

Radiology: Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4. Personalization vs. Generalization in PFL: PFL offers the advantage of tailoring models 
to the specific needs of individual clients, which can lead to improved performance on local 
data. However, this personalization can introduce challenges, including overfitting and 
reduced generalizability, factors that federated learning typically aims to preserve. 
Incorporating uncertainty information about model weights calculated during federated runs 
may help PFL models optimize learning and enhance generalization. Uncertainty 
quantification-guided PFL has the potential to produce more generalizable, personalized 
models that effectively capture federated knowledge while performing well on local data. 
Moreover, conformal prediction-based uncertainty quantification methods, though still in 
their early stages of development, show promise for further improving the generalizability 
and personalization of PFL models.

5. Computational Requirements for uncertainty quantification in federated learning: 
Computational efficiency remains an unresolved challenge in uncertainty quantification for 
federated models, particularly with ensembling and Bayesian approaches. Model 
ensembling requires training multiple models with different initialization seeds, making it 
both time- and resource-intensive. Similarly, Bayesian federated learning requires training 
local models with additional parameters to represent PDFs over model weights, further 
increasing computational burden. Developing uncertainty quantification methods that are 
computationally efficient and scalable would be facilitate the widespread adoption of 
uncertainty quantification in federated learning.

6. Post-Deployment Performance Monitoring: Post-deployment performance monitoring 
using uncertainty quantification methods to identify out-of-distribution and noisy data is a 
crucial yet relatively unexplored area of research. Uncertainty quantification enables 
monitoring of model performance, allowing for a human-in-the-loop approach to diagnose 
and address the causes of model under-performance. This process not only helps resolve 
immediate issues but also contributes to future model improvement by incorporating the 
flagged data into subsequent training cycles. As previously discussed, there is 
considerable opportunity to refine classical uncertainty quantification methods and 
optimize them for the unique challenges of federated learning.

6 Conclusion
Federated learning has the potential to substantially improve medical imaging workflows in both  
research and clinical settings. Centralized, decentralized, and personalized federated learning 
approaches are being developed to tackle a range of healthcare challenges. By enabling 
collaborative model training across institutions without sharing sensitive patient data, federated 
learning addresses critical privacy and security concerns while leveraging diverse datasets to 
enhance model performance and generalizability. Enhanced privacy-preserving techniques , 
such as differential privacy, homomorphic encryption, and other hybrid approaches, further 
strengthen data security. Ongoing research  incorporating uncertainty quantification in federated 
learning aims to support the development of more trustworthy AI models. Continued interdisciplinary 
efforts and technological advancements in this field are expected to further streamline medical 
imaging workflows, support precision medicine initiatives, and ultimately improve healthcare 
delivery and patient outcomes worldwide.
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50. Bujotzek, M. R., Akü nal, Ü ., Denner, S., Neher, P., Zenk, M., Frodl, E., Jaiswal, A., Kim, M., 
Krekiehn, N. R., Nickel, M. et al. (2025). Real-world federated learning in radiology: hurdles 
to overcome and benefits to gain. Journal of the American Medical Informatics Association 
32, 193–205. doi:10.1093/jamia/ocae259.

51. Roth, H. R., Chang, K., Singh, P., Neumark, N., Li, W., Gupta, V., Gupta, S., Qu, L., Ihsani,
A., Bizzo, B. C., Wen, Y., Buch, V., Shah, M., Kitamura, F. C., Mendoncca, M. R. F., Lavor,
V., Harouni, A. E., Compas, C. B., Tetreault, J., Dogra, P., Cheng, Y., Erdal, S., White, R. D., 
Hashemian, B., Schultz, T. J., Zhang, M., McCarthy, A., Yun, B. M., Sharaf, E., Hoebel,

K. V., Patel, J. B., Chen, B., Ko, S., Leibovitz, E., Pisano, E. D., Coombs, L. P., Xu, D., 
Dreyer, K. J., Dayan, I., Naidu, R. C., Flores, M. G., Rubin, D. L., and Kalpathy-Cramer, J. 
(2020). Federated learning for breast density classification: A real-world implementation. 
In:  DART/DCL@MICCAI.  URL: https://api.semanticscholar.org/CorpusID:221507926. 
Doi: 10.1007/978-3-030-60548-3_18

52. Liu, L., Jiang, X., Zheng, F., Chen, H., Qi, G.-J., Huang, H., and Shao, L. (2021). A Bayesian 
Federated Learning Framework with Online Laplace Approximation. IEEE transactions 
on pattern analysis and machine intelligence PP. URL: https://doi.org/10.1109/TPAMI. 
2023.3322743.

53. Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig, H., Zhang, R., and Zhou, Y. (2019). 
A Hybrid Approach to Privacy-Preserving Federated Learning. AISec’19 New York, NY, 
USA: Association for Computing Machinery. ISBN 9781450368339 ( 1–11). doi:10.1145/ 
3338501.3357370.

54. Xu, R., Baracaldo, N., Zhou, Y., Anwar, A., Kadhe, S., and Ludwig, H. (2022). DeTrust-FL: 
Privacy-Preserving Federated Learning in Decentralized Trust Setting. In: 2022 IEEE 15th 
International Conference on Cloud Computing (CLOUD). IEEE ( 417–426). URL: https:
//doi.org/10.1109/CLOUD55607.2022.00065.

55. Qi, T., Wu, F., Wu, C., He, L., Huang, Y., and Xie, X. (2023). Differentially Private 
Knowledge Transfer for Federated Learning. Nature Communications 14, 3785. 
doi:10.1038/ s41467-023-38794-x.
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Table 1: List and Characteristics of Federated Learning (FL) Algorithms.

Algorithm Central
Server

Local 
Forget- 
ting

Summary

FedAvg 14  X Train local models across various clients and then average the gradient up-
dates at the central server to update the global mode; first proposed method 
of FL.

FedProx 16   X Excels in heterogeneous settings; generalization of the FedAvg algorithm;
allows for partial updates to be sent to the server instead of simply dropping 
them from a federated round; adds proximal term that prevents any one 
client from having too much of an impact on the global model.

FedBN 17  X Addresses the issue of non-IID data by leveraging batch normalization; fol-
lows a similar procedure to Fed-Avg but assumes local models have batch 
norm layers and excludes their parameters from the averaging step.

FedGen 18    X Learns a generator model on the server to ensemble user models’ predic-
tions, creating augmented samples that encapsulate consensual knowledge 
from user models; generate augmented samples that are shared with users 
to regularize local model training, leading to better accuracy and faster 
convergence.

FOLA 52   Bayesian federated learning framework utilizing online Laplace approxima-
tion to address local catastrophic forgetting and data heterogeneity; 
maximizes the posteriors of the server and clients simultaneously to reduce 
aggregation error and mitigate local forgetting.

Swarm 
Learning 23

X  Model parameters are shared via a swarm network, and the model is built 
independently on private data at the individual sites; only pre-authorized 
clients are allowed to execute transactions; on-boarding new clients can be 
done dynamically.

TCT 20   Train-Convexify-Train: Learn features with an off-the-shelf method (i.e., Fe-
davg) and then optimize a convexified problem obtained using the model’s 
empirical neural tangent kernel approximation; involves two stages where 
the first stage learns useful features from the data, and the second stage 
learns to use these features to generate a well-performing model.

FedAP 15  X Learns similarities between clients by calculating distances between batch
normalization layer statistics obtained from a pre-trained model; these 
similarities are used to aggregate client models; each client preserves its 
batch normalization layers to maintain personalized features; the server 
aggregates client model parameters weighted by client similarities in a 
personalized manner to generate a unique final model for each client.

pFedBays 26   X Weight uncertainty is introduced in client and server neural networks; to
achieve personalization, each client updates its local distribution parameters 
by balancing its construction error over private data.

FCCL 21   Federated cross-correlational and continual learning uses unlabeled public
data to address heterogeneity across models and non-IID data, enhancing 
model generalizability; constructs a cross-correlation matrix on model 
outputs to encourage class invariance and diversity; employs knowledge 
distillation, utilizing both the updated global model and the trained local 
model to balance inter-domain and intra-domain knowledge to mitigate local 
forgetting.

Self-FL 28   Self-aware personalized FL method that uses intra-client and inter-client un-
certainty estimation to balance the training of its local personal model and 
global model.

Fedpop 27  X Each client has a local model composed of fixed population parameters that
are shared across clients, as well as random effects that explain 
heterogeneity in the local data.
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FedFA 22  X Feature anchors are used to align features and calibrate classifiers across
clients simultaneously; this enables client models to be updated in a shared 
feature space with consistent classifiers during local training.

ProxyFL 24  X Clients maintain two models, a private model that is never shared and a
publicly shared proxy model that is designed to preserve patient privacy; 
proxy models allow for efficient information exchange among clients without 
needing a centralized server; clients can have different model architectures.

FogML 25 X X Fog computing nodes reside on the local area networks of each site; fog
nodes can pre-process data and aggregate updates from the locally trained 
models before transmitting, reducing data traffic over sending raw data.

Note.—IID = independent and identically distributed

Page 23 of 31

820 Jorie Blvd., Suite 200, Oak Brook, IL, 60523, 630-481-1071, rad-ai@rsna.org

Radiology: Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 2: List of PPFL Algorithms having Differential Privacy (DP), Homomorphic Encryption (HE).
Algorithm DP HE Summary
Hybrid
Approach 53

    Combining DP with secure multiparty computation enables this method to reduce 
the growth of noise injection as the number of parties increases without 
sacrificing privacy; the trust parameter allows for maintaining a set level of 
trust.

NbAFL 29  X Noising before aggregation FL (NbAFL) Uses K-random scheduling to opti-
mize the privacy and accuracy trade-off by introducing artificial noise into the 
parameters of each client before aggregation.

DeTrust-FL 54 X X Provides secure aggregation of model updates in a decentralized trust set-
ting; implements a decentralized functional encryption scheme where clients 
collaboratively generate decryption key fragments based on an agreed 
participation matrix.

SHEFL 33       Somewhat homomorphically encrypted FL (SHEFL); only communicating en-
crypted weights; all model updates are conducted in an encrypted space.

PrivateKT 55   X     Private knowledge transfer method that uses a small subset of public data to
transfer knowledge with local DP guarantee; selects public data points based 
on informativeness rather than randomly to maximize the knowledge quality.

Multi- 
RoundSecAgg 56

  X  Provides privacy guarantees over multiple training rounds; develops a 
structured user section strategy that guarantees the long-term privacy of 
each use.

LDS-FL 57 X X Maintain the performance of a private model preserved through parameter
replacement with multi-user participation to reduce the efficiency of privacy 
attacks.

*Note DP: differential Privacy, FL: Federated Learning
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Table 3 : Uncertainty quantification Methods in federated learning.

Algorithm CP Dist 
Pred

Bayes Cal Summary

CCVR 40 X X X  Classifier calibration with Virtual Representation (CCVR) Found a
greater bias in representations learned in the deeper layers of a
model trained with FL; they show that the classifier contains the
greatest bias toward local client data and that classification perfor-
mance can be greatly improved with post-training classifier calibra-
tion

Fed- X X X X Extends ensembling methods to FL; characterizes uncertainty in
ensemble 35 predictions by using the variance in the predictions as a measure

of knowledge uncertainty.
DP-  X X X Differentially Private Federated Average Quantile Estimation (DP-
fedCP 58 fedCP); the method is designed to construct personalized CP sets

in an FL scenario.
FCP 37  X X X Federated CP, a framework for extending CP to FL that addresses

the non-IID nature of data in FL.
FedPPD 38 X  X X Framework for FL with uncertainty, where, in every round, each client

infers the posterior distribution over its parameters and the posterior
predictive distribution (PPD); PPD is sent to the server.

FedBNN 59 X X  X FL framework based on training a customized local Bayesian model
for each client.

FedCal 41 X X X  Performs local and global calibration of models. FedCAL uses client-
specific parameters for local calibration to effectively correct out-
put misalignment without sacrificing prediction accuracy. Values are
then aggregated via weight averaging to minimize global calibration
error

Note.—CP: Conformal Prediction, Dist Pred: Distilled Prediction, Bayes: Bayesian, Cal: Calibration
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7 Figure Legends
• Figure 1 -Organization of the review paper. The figure outlines the structure of the paper, beginning with 

an introduction to federated learning (FL) in medical imaging. It progresses through the classification of 
FL algorithms into centralized, decentralized, and personalized (PFL) categories, followed by discussions on 
privacy-preserving methods and uncertainty quantification (UQ). The review concludes with applications of FL 
in medical imaging, including real-world use cases, challenges, and opportunities. This visual representation 
highlights the interconnected topics covered in the review and provides readers with a clear roadmap for 
understanding the paper’s flow and content.

• Figure 2 - An overview of Federated Learning (FL),Privacy Preserving Federated Learning (PPFL), and 
uncertainty quantification (UQ) is presented. Combining FL with strong privacy preservation and uncertainty 
quantification methods can help the medical imaging community develop large-scale Mult institutional AI 
models that are truly generalizable, robust, and trustworthy.

• Figure 3 - An overview of  federated learning (FL) algorithm types is presented. (A) In centralized FL, sites 
train a local model and pass the learned information to a central server to generate the global model, the global 
model is then passed to the local sites for further training. (B) Decentralized FL removes the need for a central 
server allowing for direct communication between sites. (C) Personalized FL leverages a central server while 
making a specific model for each site. Having a personalized model at each site is ideal in FL deployments 
with high data heterogeneity.

• Figure 4 - A summary of privacy-preserving FL (PPFL) methods is presented. (A) Differential Privacy (DP) 
involves the  addition of artificial noise into other gradient information before it is communicated, hindering 
the ability of an attacker to extract useful information. (B) Homomorphic Encryption (HE) allows for 
mathematical operations to be performed on encrypted cyphertexts, and then once decrypted the results are 
as if the math was performed on plaintext. HE is useful in situations where the central server cannot be trusted. 
(C) Various other methods of PPFL include hybrid approaches of DP and HE, knowledge transfer, secure 
aggregation framework with multi-round privacy, loss differential strategies, and decentralized trust. More 
information about these other PPFL approaches is described in supplement S4.

• Figure 5 - A summary of uncertainty quantification (UQ) methods in Federated Learning (FL is presented. 
(A) Model ensembling refers to the process of training various models; the final result is the average of their 
predictions. (B) Conformal Prediction (CP) is a method of UQ that provides a set of possible predictions, 
where the more uncertain the model is the more possible predictions it will provide. (C) Model calibration is 
a post-processing reliability enhancement technique that adjusts predicted confidence scores to better reflect 
true correctness likelihood. While not a direct uncertainty quantification method, it improves the 
trustworthiness of model outputs by mitigating overconfidence, especially in misclassified predictions, and 
aligns predicted probabilities with actual observed frequencies. (D) Bayesian FL is another method of UQ 
that tracks the variance of the model during training and at inference time. The variance will go up as the 
model becomes more uncertain providing a measure of model uncertainty.
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privacy-preserving methods and uncertainty quantification (UQ). The review concludes with applications of 
FL in medical imaging, including real-world use cases, challenges, and opportunities. This visual 

representation highlights the interconnected topics covered in the review and provides readers with a clear 
roadmap for understanding the paper’s flow and content. 
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• Figure 2 - An overview of FL, PPFL, and UQ is presented. Combining FL with strong privacy preservation 
and uncertainty quantification methods can help the medical imaging community develop large-scale Mult 

institutional AI models that are truly generalizable, robust, and trustworthy. 

465x287mm (109 x 109 DPI) 

Page 28 of 31

820 Jorie Blvd., Suite 200, Oak Brook, IL, 60523, 630-481-1071, rad-ai@rsna.org

Radiology: Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

• Figure 3 - An overview of FL algorithm types is presented. (A) In centralized FL, sites train a local model 
and pass the learned information to a central server to generate the global model, the global model is then 

passed to the local sites for further training. (B) Decentralized FL removes the need for a central server 
allowing for direct communication between sites. (C) Personalized FL leverages a central server while 

making a specific model for each site. Having a personalized model at each site is ideal in FL deployments 
with high data heterogeneity. 
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• Figure 4 - A summary of privacy-preserving FL (PPFL) methods is presented. (A) Differential Privacy (DP) 
works by adding artificial noise into other gradient information before it is communicated, this hinders the 

ability of an attacker to extract useful information. (B) Homomorphic Encryption (HE) allows for 
mathematical operations to be performed on encrypted cyphertexts, and then once decrypted the results are 

as if the math was performed on plaintext. HE is useful in situations where the central server cannot be 
trusted. (C) Various other methods of PPFL include hybrid approaches of DP and HE, knowledge transfer, 

secure aggregation framework with multi-round privacy, loss differential strategies, and decentralized trust. 
More information about these other PPFL approaches is described in supplement S4. 
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• Figure 5 - A summary of UQ methods in FL is presented. (A) Model ensembling is where various models 
are trained and the final result is the average of their predictions. (B) Conformal Prediction (CP) is a method 
of UQ that provides a set of possible predictions, where the more uncertain the model is the more possible 
predictions it will provide. (C) Model calibration is a post-processing UQ method that serves to correct the 

issue of overconfidence in model prediction particularly when the model makes an incorrect prediction. This 
allows for more trustworthy confidence measures in the model’s predictions. (D) Bayesian FL is another 

method of UQ that tracks the variance of the model during training and at inference time. The variance will 
go up as the model becomes more uncertain providing a measure of model uncertainty. 
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