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Abstract: Secure vehicular communication is a critical factor for secure traffic management. Effective
security in intelligent transportation systems (ITS) requires effective and timely intrusion detection
systems (IDS). In this paper, we consider false data injection attacks and distributed denial-of-
service (DDoS) attacks, especially the stealthy DDoS attacks, targeting integrity and availability,
respectively, in vehicular ad-hoc networks (VANET). Novel machine learning techniques for intrusion
detection and mitigation based on centralized communications through roadside units (RSU) are
proposed for the considered attacks. The performance of the proposed methods is evaluated using
a traffic simulator and a real traffic dataset. Comparisons with the state-of-the-art solutions clearly
demonstrate the superior detection and localization performance of the proposed methods by 78% in
the best case and 27% in the worst case, while achieving the same level of false alarm probability.

Keywords: vehicular ad-hoc networks; statistical anomaly detection; machine learning; false data
injection attack; DDoS attack; road side unit

1. Introduction

Improving transportation safety is one of the main research areas for intelligent trans-
portation systems (ITS) [1]. An important facilitator for secure and reliable traffic flow is
data dissemination through Vehicular Ad-Hoc Network (VANET), including vehicle-to-
vehicle (V2V) communications and vehicle-to-infrastructure (V2I) communications. VANET
is a promising technology that enables communications between driverless autonomous
vehicles, which are expected to dominate future traffic, as well as traditional vehicles
controlled by a driver [2,3]. VANET applications can be classified into two types, traffic
safety applications and traffic management applications. Route planning applications for
drivers are an example of traffic management applications. The safety-related applications
are exemplified by road condition applications and accident information systems.

There are two possible communication methods for VANET: (i) 5.9 GHz dedicated
short-range communication (DSRC) and (ii) cellular-based vehicular communication [4].
With fast advancing 5G technologies for connected and automated vehicles, the industry
is more inclined to support cellular-based communication technologies, named cellular
vehicle to everything (C-V2X) [5]. Recently, Europe and the US both announced to advance
their technologies for cellular-based VANET. Although cellular network models are more
decentralized, still such C-V2X communication requires RSU or some sort of base station
near the roads as an infrastructure component in order to collect and process traffic and
vehicular data [6].

In VANET, different types of data, such as position information, road conditions and
emergency messages, are disseminated. The availability and integrity of such data are the
two essential aspects of VANET security. Distributed roadside units (RSUs) have a critical
role in VANET as a static infrastructure over the roads for centralized communication.
RSUs provide high connectivity and safety in traffic with periodic and aperiodic message
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dissemination. However, VANET communication, especially the centralized RSU unit, is
highly vulnerable to cyberattacks. Considering the potential life-threatening outcomes in
traffic, cyberattacks on VANET need to be quickly and accurately detected and mitigated.

The security of VANET is extensively studied in the literature [7,8]. However, the main
security solutions to the RSU-based VANET communication have a lack of generalization to
different data types, attack models, and scenarios. Recent security models in the literature
mainly assume specific data structures for false data injection attacks and specific attack
strategies for DDoS attacks. To this end, in this paper, we propose a centralized RSU-based
anomaly detection and mitigation method for cyberattacks targeting both data availability
and integrity without a specific data structure or an attack strategy.

1.1. False Data Injection Attacks Targeting Integrity

Falsified message content may cause the drivers to take wrong actions entailing
devastating and life-threatening results for vehicular traffic. Autonomous vehicles are
exposed to even greater risk due to false data injection (FDI) attacks, as their automatic
decisions may rely more on the received VANET messages. For example, the position is
one of the most important pieces of information in VANET; when a vehicle sends wrong
positional information, then a nearby autonomous vehicle may accelerate according to the
received falsified message. An effective intrusion detection system (IDS) should effectively
deal with FDI attacks, in which an attacker sends bogus information to the network in
order to change the vehicle behavior in traffic. Once an intruder injects bogus data into the
network, it should be detected and mitigated timely to prevent a major problem, such as
an accident or traffic congestion.

There are several detection approaches for different FDI attack models. Trust-based
security mechanisms and behavior-based security mechanisms are two common signature-
based detection approaches for FDI attacks in the literature. However, they are mostly
not computationally efficient and cannot detect new attack patterns that do not conform
to the known signatures [9,10]. In this work, we propose an anomaly detection method
that can quickly detect FDI attacks, including previously unseen ones, as opposed to the
signature-based methods. Our method is implemented on RSU, and it monitors the data
stream received from each vehicle within its communication range. We do not use any
revocation list or voting list scheme. Once our method detects an anomalous vehicle, it
blocks the data transfer from that vehicle and informs the other vehicles.

1.2. DDoS Attacks Targeting Availability

Availability of communications is one of the main objectives of ITS. Denial-of-service
(DoS) attacks target the availability of network service, e.g., by sending high volumes
(flooding) of data packets to the service provider. Once a DoS attack is launched successfully
on VANET, e.g., on RSU, the system operation shuts down such that no one can get regular
service. The unavailability of the VANET service due to a DoS attack may cause significant
damage to vehicular traffic. Compared to the FDI attack, it is easier to initiate a DoS attack
for attackers as no data manipulation is needed; however, the FDI attack poses a bigger
threat since wrong data are usually more detrimental than no data. In practice, to make the
mitigation more difficult, attackers synchronously launch a DoS attack from multiple sites,
which is called a Distributed DoS (DDoS) attack. The proliferation of Internet-of-Things
(IoT) devices, in particular autonomous vehicles, facilitates a new type of stealthy DDoS
attack, called low-rate DDoS [11,12], which can easily bypass traditional IDSs such as data
traffic filters and firewalls while still causing significant disruption in the targeted service
due to its highly distributed and synchronous nature.

It is quite challenging to timely detect and mitigate stealthy DDoS attacks compared
to the standard brute-force DDoS attacks because the increase in the individual data rates
from multiple parties with respect to their nominal baselines can be very low such that
traditional data filtering methods cannot detect them. Yet, the aggregate increase in the data
traffic received by the targeted RSU from multiple attackers can be tremendous, thus the
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RSU gets overwhelmed and stops serving legitimate users. There are three main enabling
factors that make such stealthy DDoS attacks relevant in VANET:

Increasing number of connected vehicles: In the near future, connected vehicles will be
widespread, which will, in turn, increase the attack surface for DDoS attacks. Similar to the
Internet of Things (IoT), or as a part of it, this trend is called the Internet of Vehicles (IoV).
The growing attack surface will enable effective DDoS attacks to require fewer increases in
data rate (i.e., less attack signature) and to be more stealthy in nature over time.

Public V2I communications: Since V2I communication is open to everyone, attackers
can utilize many other IoT devices that pretend to be vehicles to spoof the RSU. Such
non-vehicle attacking devices can be on vehicles or static within the communication range
of RSUs. The possibility to use IoT devices for attacking RSU greatly extends the attack
surface, making stealthy DDoS a big threat for VANET.

Sybil attack: Furthermore, through Sybil attack, the attackers do not even need to
utilize many devices (vehicle or non-vehicle) for an effective stealthy attack. In Sybil attack,
a single vehicle pretends to be multiple vehicles by creating fake identities. Hence, a single
vehicle can transmit a huge amount of data packets to the RSU, appearing as coming from
different vehicles at low transmission rates. This efficient attack strategy can generate
stealthy DDoS attacks by using only a fraction of the number of vehicles/devices that are
normally needed.

In this paper, we propose a powerful multivariate method for the timely detection and
mitigation of stealthy DDoS attacks on RSU.

1.3. Contributions

In this paper, we propose a novel anomaly-based detection and mitigation technique
to address FDI attacks and flooding-based (stealthy or brute-force) DDoS attacks targeting
VANET, in particular RSU. Our contributions can be summarized as follows.

• A novel machine learning detector for RSU is proposed for FDI and DDoS attacks.
• The asymptotic false alarm rate of the proposed detector is analyzed, and a closed-form

expression for the detection threshold is derived based on this analysis.
• Based on the detection method, an anomaly localization and accordingly attack miti-

gation method is proposed for FDI and DDoS attacks for VANET.
• Performance of the proposed detection and mitigation methods are extensively evalu-

ated using state-of-the-art traffic simulators and a real traffic dataset. To the best of our
knowledge, this is the first work to use real traffic data in the cybersecurity literature
for VANET.

The rest of the paper is organized as follows. Related works are discussed in Section 2.
The traffic and attack models for the considered attack types are given in Section 3. The
proposed anomaly detection and mitigation methods are presented in Section 4. Numerical
results are provided in Section 5. Finally, the paper is concluded in Section 6. Throughout
the paper, lowercase and uppercase bold letters are used to denote vectors and matrices,
respectively.

2. Related Work
2.1. False Data Injection Attacks

The injection of fake messages is a high threat to ITS/VANET security [13]. Several
key features differentiate VANET and ITS security from other network security topics, such
as high mobility, dynamic characteristics, and life-threatening conditions. One popular
type of FDI attack is misbehavior detection, where data are compared with the behavior of
vehicles. Many misbehavior detection models for VANET are proposed in the literature,
considering either the trust-centric or data-centric strategy for enhancing the security of
VANETs [14–16]. However, these models mostly rely on the data content, which makes
them not generalizable. Trust-centric models are based on voting or scoring schemes in
which the reliability of a node broadcasting a message is voted on by the other nodes
receiving the message. Once the cumulative voting score exceeds a level against the node, it
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is declared as an intruder, and its message dissemination is blocked [17–19]. A data-centric
approach evaluates the driver’s behavior with respect to shared messages. In [20], an
example data-centric detection model is proposed for emergency messages.

There are several misbehavior detection mechanisms for VANET based on statistical
and machine learning (ML) approaches. Authors in [21] proposed a decentralized misbe-
havior detection mechanism using a context-reference model with Kalman and Hample
filters to extract the consistency of messages with the behavior of vehicles. A statistical
misbehavior detection model using entropy-based classification is proposed in [22]. The
authors of [23] proposed a trust-based misbehavior detection model integrated with en-
tropy modeling and reinforcement learning. In [24,25], intrusion detection mechanisms
are proposed against multiple attack types, including FDI and packet drop attacks, using
vehicle reputation scores collected by RSUs. In [26], the authors proposed a statistical
anomaly detection technique considering only the data content instead of the trust score or
revocation list to detect anomalous nodes that inject falsified data into VANET. This paper
uses the Greenshield traffic model assuming close vehicles have similar flow, speed, and
density values. In decentralized traffic, each vehicle calculates its value and compares it
with average received values until the average value is below the predefined threshold.
After that, a t-test is applied to these values to determine if the received message comes
from an intruder or not. Recently, a new security mechanism for VANET has been proposed
in [27] with a novel detection and classification mechanism using a hidden generalized
mixture transition distribution model. In this work, the detector collects the data of each
vehicle in feature tables, and the classifier processes the extracted knowledge.

Anomaly detection mechanisms based on ML provide suitable results for security
mechanisms in general. Recently, several ML-based IDS models have been studied for
ITS/VANET [28–30]. In [28,31], the authors study a trust-based cyberattack detection
model for false position, timing, and Sybil attacks. A security model based on a plausibility
check is studied using ML in [29], where the authors considered supervised kNN and
SVM algorithms for detecting anomalies on feature vectors by experimenting with the
VaReMi dataset [32]. An improved version of this work, by introducing new plausibility
check methods, is presented in [33]. Although this is not a centralized detection model,
it still requires some information from RSU or a trustworthy source for calculating the
plausibility feature vector. A cooperative misbehavior detection model is proposed in [30]
for detecting emergency message and position falsification attacks. In [34–36], the authors
studied supervised learning models for detecting false position attacks in VANET. A new
research direction studies false data injection attacks using time-series ML models, such as
LSTM or GRU [37,38].

2.2. Denial-of-Service Attacks

DoS attacks may cause catastrophic effects on vehicular traffic since the decisions of
vehicles may critically depend on the communications between the vehicles and the infras-
tructure [39]. There are several solution methods proposed for DoS attacks in the literature.
Early studies mainly target the DoS attacks considering a single attack source [40,41]. A
packet delivery ratio-based jamming attack detection model for VANET was presented
in [42] for two traffic scenarios. However, these methods are not suitable for detecting
stealthy DDoS attacks as they directly compare the observed packet rate to a threshold.

Several trust-based defense mechanisms for DDoS attacks in VANET [43–45] rely on
the trust score of neighboring vehicles. These studies propose fixed and learning-based
trust mechanisms for different VANET scenarios. An unsupervised detection method based
on the k-means clustering algorithm was proposed in [46] for jamming attacks in RF-based
vehicular communication. Another work [47] on jamming attacks for platooning vehicles in
VANET studies a hybrid detection model with a statistical approach. This detection model
focuses only on platooning vehicles to detect jamming attacks and does not apply to other
DDoS attacks. The authors of [48] proposed a DDoS detection model for VANET, where
they use a multivariant stream analysis (MVSA) approach. Since this IDS follows a window-
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based approach, the size of time windows limits its timely detection performance. Recently,
many supervised ML models have been studied for different DDoS attack models for
VANET [49–52]. In [53], we proposed an anomaly-based IDS for mitigating DDoS attacks
in VANET, which is significantly enhanced with theoretical and experimental results, and
extended to FDI attacks in this paper.

There are some other security mechanisms proposed for other attack types. Black hole
attack or packet drop attack, in which packets are deliberately dropped at a compromised
node, is another type of DoS attack studied in the VANET literature. For instance, Ref. [54]
proposed an SVM-based detection method for clustered VANET. In Sybil attack, an attacker
identifies itself as multiple nodes. For example, in [55], the authors considered detecting
Sybil attacks using strength analysis for received signals with statistical position verification.

2.3. Comparisons

Our work has several novelties compared to the existing methods in the literature.
First, the existing IDS models consider several attack strategies that only target one security
objective, e.g., IDS, for data integrity. Our proposed security model addresses two distinct
attack types, FDI and DDoS.

Regarding the FDI attacks, the studies discussed up to now consider network-level
IDSs, which are not suitable for detecting collaborative FDI attacks with multiple attackers.
Our proposed anomaly-based IDS at RSU classifies each vehicle as malicious or benign, and
it is robust to collaborative FDI attacks. Once detected, such an attack is easily mitigated
by dropping packets from attackers without interrupting benign communications. Since
our proposed model is a statistical IDS, it is not restricted to any message format and data
content. After it detects the FDI attack, it also identifies the specific data type under attack,
such as speed, position, or emergency message.

Regrading the DDoS attack, our proposed method is advantageous compared to the
existing works in several ways: (i) it does not consider any specific data model for DDoS
attacks, (ii) it successfully detects highly distributed DoS attacks from many attackers, and
(iii) it can handle both stealthy and traditional brute-force DDoS attacks. In stealthy DDoS,
as demonstrated recently on the Internet [56], while slightly increasing the data rate from
one source does not affect the regular performance of the receiver node, attacking from
multiple sources, even with slightly increasing the transmitted data rate, can cumulatively
overwhelm the receiver node.

Recent ML-based methods are based on sample-by-sample outlier detection and do
not continuously update their statistics for detecting anomalies, as opposed to our proposed
sequential detection method. The sample-by-sample outlier detection approach is prone
to frequent false alarms due to nominal outliers [57], while sequential methods can avoid
nominal outliers and detect only the persistent outliers as anomalous [58].

3. System Model
3.1. VANET Model

A general two-way traffic flow is considered, as shown in Figure 1. However, the
proposed IDSs are not restricted to a specific road type; they can perform well in different
scenarios such as one-way traffic, two-way traffic, urban area, highway area etc. Vehicle-
to-vehicle (V2V) and vehicle-to-RSU (V2I) communications based on broadcasting take
place in the considered VANET model to disseminate beacon messages. In general, such
messages may have various content. In this work, we consider that each vehicle regularly
broadcasts messages in the (ID, speed, position, direction) format.

All messages are protected with cryptographic algorithms, but such details are out of
the scope of this paper. We assume that different pseudonyms are assigned by a central
authority to each vehicle for providing authenticity and identification. Thus, the ID of
each vehicle is always known by the RSUs. Collected messages can be used for different
purposes, but they are mostly used for informing other vehicles on the road. For instance,
an RSU calculates the average speed and the density of the road using the received beacon
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messages from the vehicles in its range, and conveys these calculated messages to the
other RSUs to inform the vehicles that are not in range. RSUs play a central role in the
security of VANET. Hence, we propose a statistical IDS that runs at each RSU. Although
the beacon messages are already encrypted for secure communications, the integrity, i.e.,
correctness, of message content, as well as the availability of VANET communications,
should be maintained.

Road	Side	Unit

Figure 1. Traffic model for the nominal case where all vehicles broadcast messages and RSU collects
these messages.

3.2. Attack Model

In this work, we consider two types of attacks in VANET.

3.2.1. False Data Injection Attacks

Creating a completely false message or changing some parameters of a message may
have a crucial impact on the traffic. Although today’s traffic is not yet dominated by fully
autonomous vehicles, in the near future, it is expected that the majority of vehicles will
decide by themselves without human interaction. In such a scenario, disseminating correct
messages to other vehicles is a top priority for VANET. For example, a malicious vehicle
conveying false messages about its position and speed may cause other vehicles to take
wrong actions, such as decreasing speed or changing lanes. Even without any malicious
intent, faulty sensors in a vehicle may result in false messages. The proposed RSU-based
statistical IDS can quickly detect FDI attacks and accurately identify the false data type and
its source vehicle.

3.2.2. Distributed Denial-of-Service Attacks

In the considered DDoS attack, the number of messages per unit time, i.e., data rate,
such as packets/sec., from multiple sources (vehicles or other devices pretending to be
vehicles) increases synchronously (No strict synchronization is needed to perform a DDoS
attack). Unless quickly detected and mitigated, such flooding of messages may easily
overwhelm the attacked RSUs to make the VANET communications unavailable. It is
significantly more challenging to detect and mitigate stealthy DDoS attacks than traditional
brute-force DDoS attacks. The aggregate data rate received by the RSU is still high enough
to take it down; however, the increase in individual data rates of attacking nodes is low
such that they easily remain undetected by traditional IDS, such as data filters and firewalls.
Despite its relatively small increase in individual data rates, the greatness in the number of
attacking nodes is what makes a stealthy DDoS attack threatening.

The proposed statistical IDS monitors the data rate. Thus, it is not restricted to the
data format defined above. In the following sections, we show that the proposed IDS can
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effectively handle both stealthy and brute-force DDoS attacks, as opposed to traditional
data filtering methods.

4. Proposed Intrusion Detection and Mitigation Systems

In general, anomaly-basedbased IDS works by comparing the observed data instances
with the statistical model of nominal operation learned from training data and possibly
also with the anomalous statistical model learned from training data as well. Anomaly-
based IDS can be categorized considering three aspects: availability of training data,
parameterization of statistical model, and sequential decision making.

In terms of the availability of training data, anomaly-based IDS can be categorized
into groups, semi-supervised and supervised. If there is only nominal training data, IDS
aims to detect significant deviations from the learned nominal statistical model, which is
called the semi-supervised setting. Whereas, in the supervised setting, IDS also builds a
statistical model for the considered attacks using available data instances from previous
attack cases and compares the goodness-of-fit (e.g., likelihood) of the observed data under
the nominal and attack models.

In terms of model parameterization, there are also two types, parametric and non-
parametric methods. While parametric methods try to fit certain parametric probability
distributions (e.g., Gaussian, Poisson, etc.) to the data, non-parametric methods try to learn
statistical patterns from the data without assuming certain probability distributions (e.g.,
distance-based and histogram-based methods).

Finally, in terms of sequential decision-making, we also have two groups: sample-
by-sample outlier detection methods and sequential anomaly detection methods. Outlier
detection methods decide for each observed data instance as either nominal or anomalous.
However, sequential methods update a decision statistic using each observed data instance
and decide when there is enough statistical evidence for an anomaly. Mathematically, the
objective of sequential methods is to minimize the expected number of data instances used
to detect anomalies while satisfying a constraint on false alarm rate.

4.1. Challenges in VANET for an IDS

Implementing an anomaly-based IDS in VANET is a challenging task due to several
reasons. Three major challenges in VANET for an IDS can be summarized as follows.

(C1) Unknown attack patterns: As opposed to the traditional computer networks and the
Internet, the possible attack patterns (i.e., signatures) are mostly unknown in the
emerging field of ITS/VANET security. Hence, conventional signature-based IDS,
which can only detect the known attack signatures, and supervised anomaly-based
IDS are, in general, not suitable for VANET.

(C2) Disparate data types: Since anomalies occur relative to the context defined by the entire
data dimensions, they should ideally be jointly monitored through multivariate analy-
sis. However, due to the disparate data types conveyed in messages, the multivariate
probability distribution of the message content is quite complicated. For instance,
speed data are numerical, direction is angular, and position is numerical/angular. As
a result, parametric anomaly detection methods, which try to fit tractable probability
distributions to the training data, are not feasible here.

(C3) Timely and minimally invasive mitigation: Considering the life-threatening and economic
concerns of a failure in VANET communications, cyberattacks should be quickly
mitigated in a minimally invasive manner. The identification of malicious users
should also be accurate such that legitimate users continue receiving regular service.
It is known that sequential methods are much more effective in timely detection than
sample-by-sample outlier detection methods [59].

To address the challenges above, we propose a statistical IDS based on a semi-
supervised, non-parametric, and sequential anomaly detection technique.
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4.2. Proposed Detection and Mitigation Method for FDI attack

In this section, we explain the proposed intrusion detection and mitigation method
for FDI attacks. The proposed method is an online intrusion detection system and can
work in real-time, similar to a sequential anomaly detection algorithm [60]. Thanks to
its semi-supervised, non-parametric, and sequential methodology, the proposed method
addresses the challenges (C1)–(C3) well in Section 4.1, respectively.

In the proposed IDS, each RSU runs a separate detector for each vehicle that it re-
ceives messages from. In particular, an RSU starts to monitor a vehicle when the vehicle
enters its range until either the vehicle exits the range or an anomaly in the message
content is detected.

Consider that each data instance xi ∈ Rd is a d-dimensional real-valued vector repre-
senting the observed d data dimensions {x1

i , . . . , xd
i } depending on the application. While

we consider (ID, speed, position, direction) as the data dimensions, the proposed detection
and mitigation methods are not restricted to this particular setup. The data instances are
inspected by an infrastructure unit (RSU) in a centralized fashion for detecting falsified
data attacks. We do not have any assumption on the probability distributions of data
dimensions, e.g., they can be correlated or even follow disparate distributions. It is only
assumed that each data dimension can be normalized to [0, 1] by using the minimum and
maximum values, which is needed to deal with the heterogeneity among data dimensions.

In the training phase, first the nominal training data XN = {x1, . . . , xN} are randomly
partitioned into two sets, XN1 and XN2 , where N1 + N2 = N, for computational and
theoretical purposes. Typically, N2 is selected greater than N1 as explained in Theorem 1.
The nominal training data XN is obtained through historical observations in the range
of RSU. Then, for each data point in XN1 , k nearest neighbors (kNN) in XN2 in terms of
Euclidean distance are found. For each point i in XN1 the total distance Li is computed as

Li =
k

∑
j=k−s+1

eγ
ij, (1)

where eij is the Euclidean distance from point i in XN1 to its jth nearest neighbor in XN2 .
The weight γ > 0 and the number of considered neighbors s, which is a number between 1
and k, are introduced to increase the flexibility of the method.

Next, for a significance level α, for which a typical choice is 0.05, the (1− α)th percentile
L(M) of {Li : i = 1, . . . , N1} values are found, where M = bN1(1− α)c, and b·c is the floor
operator. The L(M) value is later used as a baseline in the test to evaluate the anomaly
evidence in the test instances. Depending on the VANET structure, if the range of RSU is
composed of heterogeneous road segments with different speed and direction baselines,
then multiple training sets and, accordingly, multiple L(M) values can be obtained for such
road segments. During the training phase, an Euclidean kNN graph is actually formed
between (1− α)% of the points in XN1 with the smallest Li values and their neighbors in
XN2 , as illustrated in Figure 2. As we will show next, in the test phase, we actually evaluate
how far/close a test instance is in becoming a vertex in this graph if it were to be included
in XN1 . From another perspective, (1− α)% of the points with the smallest Li values in XN1

is an estimate of the “minimum volume set" which is the most compact set that has at least
1− α probability [61], and in the test phase, we measure how far/close a test instance is to
be included in this most compact set.

In the test phase, to evaluate the anomaly evidence in a newly observed instance xt
at time t, we compute how small/big the total distance Lt of xt compared to the baseline
L(M), which corresponds to a boundary point in the most compact set of nominal points.
Specifically, at each time t, we compute the total distance Lt with respect to the nominal
training set XN2 , as in (1), and the anomaly evidence

Dt = (Lt)
d − (L(M))

d. (2)
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Note that the anomaly evidence provided by Dt can be positive or negative. Unlike
the sample-by-sample outlier detection methods, the proposed IDS does not decide for each
instance but rather accumulates the anomaly evidence over time by updating its decision
statistic as

st = max{st−1 + Dt, 0}, s0 = 0. (3)

It decides for an anomaly only when enough evidence is accumulated in the decision
statistic, i.e., at time

T = min{t : st ≥ h}, (4)

similar to the CUSUM algorithm [58]. Note that the proposed IDS in (1)–(4) is a novel
data-driven algorithm, as opposed to the parametric (model-based) CUSUM algorithm.

Figure 2. Proposed detection procedure with N1 = 5, N2 = 10, M = 4, k = 2, s = 1, γ = 1.
(L1)

d − (L(M))
d and (L2)

d − (L(M))
d are used to update the test statistic st and raise athen alarm at

time T, as shown in (1)–(4). Training and test points are generated from a bivariate normal distribution
with independent components, 0.5 mean and 0.1 standard deviation.

The detection threshold h manifests a trade-off between minimizing the detection
delay and the false alarm rate. For example, higher h decreases the false alarm rate at the
expense of a larger average detection delay, and vice versa for lower h. Next, we show how
to set h to satisfy a desired false alarm rate.

Theorem 1. As the training set grows (N2 → ∞), with k = s = γ = 1, to asymptotically ensure
that the false alarm rate is less than or equal to the desired level β, the threshold h can be chosen
as follows

h =
− log β

ω0
. (5)

In (5), ω0 > 0 is given by

ω0 = vd − θ − 1
φ
W
(
−φθe−φθ

)
,

θ =
vd

evd Ld
(M)

,

where W(·) is the Lambert-W function, vd = πd/2

Γ(d/2+1) is the constant for the d-dimensional

Lebesgue measure (i.e., vdLd
(M)

is the d-dimensional volume of the hyperball with radius L(M)), and
φ is the upper bound for Dt.

Proof. See Appendix A.
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Although the expression for h looks complicated, all the terms in (5) can be easily
computed. Particularly, vd is directly given by the dimensionality d, L(M) comes from
the training phase, φ is also found in training, and finally, there is a built-in Lambert-W
function in popular programming languages, such as Python and Matlab. Hence, given
the training data, ω0 can be easily computed, and based on Theorem 1, threshold h can be
chosen to asymptotically achieve the desired false alarm rate.

In the non-asymptotic practical region, where the number of training instances, N2,
is finite, the threshold h can still be approximately set using (5). The quality of this
approximation depends on the amount of training data. With more training data, (5) will be
a better approximation. Further, with more training data, a smaller threshold can be used to
achieve the desired false alarm rate β as L(M), φ, θ will shrink and, in turn, ω0 will grow. A
smaller threshold means a smaller detection delay. Hence more training data increases the
performance of the proposed IDS, as expected. If the desired levels of the average detection
delay and false alarm rate cannot be achieved with the current training set, it indicates
a need for more training data. The proposed IDS uses training data to discover nominal
data patterns; thus, for urban roads with complex patterns, typically more training data are
needed compared to a suburban road with simple patterns.

The selection of other parameters also indirectly affects this fundamental trade-off of
quick and accurate detection. Particularly, for a bigger/smaller number of neighbors k, the
proposed IDS becomes more/less robust to noise (i.e., nominal outliers) but at the same
time less/more sensitive to anomalies. In turn, bigger/smaller k result in lower/higher
false alarm rate and longer/shorter average detection delay. The parameter s is auxiliary
to k, and yields similar effects in the algorithm. The significance level α does not play a
central role, as opposed to the outlier detection methods, in which α directly controls the
essential trade-off between the detection probability (i.e., true positive rate) and false alarm
probability (i.e., false positive rate). In the proposed IDS, the effect of the α choice can be
compensated by the decision threshold h, which is the ultimate parameter that directly
controls the balance in detection performance. Hence, in practice, first, a typical value, such
as 0.05, is selected for α, and then h is chosen to satisfy a desired false alarm rate, as shown
in Theorem 1.

Detecting an attack is, in general, not the final task for successful mitigation. Each
message from vehicles needs to be analyzed for general traffic management systems. A
powerful IDS should not ignore the data traffic from anomalous vehicles as a whole; it
should identify the anomalous data dimension as soon as possible in order to not allow the
attacker to deteriorate the decisions of the control center for specific message dimensions.
For instance, the attacker may only report the wrong speed information and the other data
contents, e.g., direction and position may still be valuable for RSU. Another motivation for
an in-depth mitigation strategy is to inform other RSUs about what data content is under
attack so that they can be prepared beforehand. Without a mitigation strategy, after the
detection, RSU will not only disregard the entire data traffic from anomalous vehicles but
also will not know what specific content of the messages is under attack. To this end, we
next propose a statistical anomaly localization technique for the proposed IDS to identify
the anomalous data dimensions where an attacker injects falsified data.

In (4), detection occurs due to an increase in the decision statistic st, given by (3),
which is caused by recent positive anomaly evidence(s) Dt, given by (2). Moreover, positive
Dt happens due to the total distance Lt being greater than the baseline L(M). From (1),
we know that Lt is the sum of s Euclidean distances of data instance xt to its {k − s +
1, . . . , k}th nearest neighbors. Since, for γ = 2, each Euclidean distance to a neighbor is
the sum of squared distances in the d data dimensions, Lt can be written in the following
alternative form

Lt =
d

∑
n=1

`n
t where `n

t =
k

∑
j=k−s+1

(xn
t − yn

j )
2, (6)
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and xn
t and yn

j are the nth dimensions of the data instance xt and its jth nearest neighbor
yj. Note that `n

t denotes the contribution of dimension n to the total distance Lt. Thus,
after detection, we can investigate each dimension’s contribution to the attack alarm by
analyzing some recent `n

t right before the detection time T. We determine the number
of recent `n

t values contributing to the alarm by first identifying the last time instance
q = max{t < T : st = 0} when the decision statistic st was zero and then started increasing,
which can be seen as an estimate for the attack onset time. Then, the average contribution
from each dimension n to the attack alarm is computed as

¯̀n = (T − q)−1
T

∑
t=q+1

`n
t , (7)

where T is the detection time, given by (4). Finally, each dimension n is identified as
attacking if its average contribution is sufficiently high, i.e., ¯̀n ≥ λ. The threshold λ
controls the trade-off between false positive and true positive rates. It is typically selected
to satisfy a constraint on the false positive rate [62].

The proposed attack detection and localization technique is summarized in Algorithm 1.

Algorithm 1 Proposed detection and localization algorithm

1: Inititalization: s0 ← 0, t← 0
2: Training phase:
3: Partition training set XN into XN1 and XN2
4: Compute Li for each xi εXN1 as in (1)
5: Find L(M) by selecting the Mth smallest Li
6: Test phase:
7: while st < h do
8: t← t + 1
9: Get new data xt and compute Dt = (Lt)d − (L(M))

d

10: st = max{st−1 + Dt, 0}
11: end while
12: Attack detected at time T = t
13: Estimate attack start time as q = max{t < T : st = 0}
14: for n = 1, . . . , d do
15: Compute ¯̀n as in (7)
16: if ¯̀n ≥ λ then
17: Declare dimension n as under attack
18: end if
19: end for

4.3. Proposed Detection and Mitigation Method for DDoS

A straightforward approach to DDoS detection is by comparing the incoming message
rate (i.e., the number of messages per unit time) from each vehicle with a threshold.
Although this method can stop brute-force attacks in which attackers transmit a burst of
data messages at a high rate, it would not be effective against stealthy DDoS attacks in which
multiple attackers transmit messages at a slightly-higher-than-nominal rate synchronously,
yet together they overwhelm the RSU. Admittedly, the straightforward approach that
compares the total data rate from all vehicles with a threshold can easily detect any DDoS
attack (either brute-force or stealthy); however, it cannot identify the attackers to stop
the attack.

We propose a multivariate statistical IDS that jointly monitor vehicles using Algorithm 1
for detecting and mitigating both stealthy and brute-force DDoS attacks. While univariate
methods will fail to detect the malicious vehicles’ close-to-nominal data rates in stealthy
DDoS, our proposed multivariate approach can easily detect them as simultaneous small
increases from multiple vehicles cause a considerable increase in kNN distance with respect
to the nominal training data.
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Since the number of vehicles in the range of an RSU varies over time, for joint moni-
toring of data traffic, we consider total message rates in a number of predetermined road
segments as the input data to the proposed algorithm, xt = [x1

t , . . . , xd
t ], where xn

t is the
message rate from road segment n at time interval t. (see Figure 3). Detecting DDoS
attacks is not the only goal of an effective IDS; it should also mitigate the detected attack to
protect the VANET. Especially for stealthy DDoS attacks, identifying the attacking nodes
is a challenging task that must follow detection. Otherwise, after the detection, RSU will
either disregard the entire data traffic or wait with no further action until the excessive
incoming data paralyzes it. In either case, the DDoS attack would be successful in making
the RSU service unavailable. Our proposed attack mitigation strategy will be activated
after a DDoS attack is detected to identify the anomalous road segment whose data will be
blocked. Since the proposed algorithm is sequential in nature, it can dynamically detect
and mitigate DDoS attacks due to moving vehicles in real-time. The proposed IDS for
mitigating DDoS attacks is summarized in Figure 4.

1													2										3															 n d

Road	Side	Unit

Road	Segments

Figure 3. DDoS attack model where red cars are attackers and thick red lines denote the increased
data rates.

Train IDS using past (msg.rate 1,. . .,msg.rate d)

data for the d road segments in Algorithm 1.

Test the observed message rates from d road segments

Attack
detected?No

Yes

Localize the attack using Algorithm 1.

and inform the other RSUs and vehicles about the attack.

Ignore the messages from the identified road segments,

at each time instance using Algorithm 1.

Figure 4. Flowchart of the proposed IDS for DDoS attacks.

4.4. Computational Complexity

This section analyzes the computational complexity of the proposed sequential anomaly
detection module. In the training phase, computing LM, kth nearest neighbor among XN2

data points for each XN1 data point, requires O(N1N2d) time complexity. Moreover, the
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space complexity of the training phase is O(N2d) since N2 data instances need to be saved
for the testing phase.

While the training phase can be offline, the testing phase performs real-time anomaly
detection. Therefore, the complexity of online testing is critical due to scalability. In the
online test phase, the expensive part is to compute the kth nearest neighbor distance of d
dimensional test point to all N2 points. The time and space complexity of the proposed
method in the online test phase is O(N2d).

5. Performance Evaluation

In this section, we evaluate the performance of the proposed IDSs using a real dataset
for an FDI attack and simulated data for a DDoS attack.

5.1. Detection Results for FDI Attack
5.1.1. Experiment Setup

We use the Warrigal dataset, which was collected by the University of Sydney in an
industrial area over a period of three months with 1 Hz resolution [63]. Each message in
the dataset consists of position, speed, and direction information. Position information is
given in three dimensions, easting, northing, and altitude in meters. Speed and direction
values are provided in meters/second and degrees, respectively. The histograms of the
training data for position (easting), speed, and direction are shown in Figure 5. Due to the
heterogeneity, it is not tractable to estimate the joint distribution for parametric methods.
Since our IDS runs at an RSU, we consider only a portion of available data, which are
collected from a few km road range, where RSU is assumed to be located at the center.

Figure 5. The heterogeneous probability distributions of message content in the Warrigal dataset.
Histograms are obtained from the training set.

In order to generate the FDI attack scenarios, we separately injected anomalous data
to each dimension generated from a uniform distribution. In each scenario, anomalous
data are injected into one of the data dimensions of a randomly selected set of vehicles
(i.e., attacking vehicles). For instance, an attacking vehicle only falsifies its position while
broadcasting to the VANET. Falsifying multiple message dimensions is also possible,
but since detecting such a case would be easier, we only considered attacks on single
data contained in our experiments. Based on the nominal rates in the Warrigal dataset,
anomaly rates for position and direction are selected as 30% and 40% of the nominal values,
respectively. These anomaly rates reflect the attackers’ objective of disrupting integrity
with wrong information while remaining undetected as much as possible. Similarly to in
speed, after anomaly injection, the falsified values of attacking vehicles go up to 22 m/s
(50 mph), which is still in the nominal range of training data, as shown in Figure 5. Note
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that even slight falsification in speed, position, and direction from multiple vehicles can
cause trouble in RSU’s traffic management, as well as other vehicles’ decisions. To create a
challenging scenario for detection and localization, in each test, the anomaly is inserted in
one of the message dimensions for only 20 s.

5.1.2. Results

We compare the performance of proposed IDS on FDI attacks with state-of-the-art
sequential and voting-based methods in the literature.

We start with comparing the quick and accurate detection performance of the proposed
IDS with an idealized version of the state-of-the sequential detector, G-CUSUM, which
fits a probability distribution to nominal data and somehow exactly knows the attack
magnitudes in the anomalous data. In practice, it is not tractable for G-CUSUM to know
the actual attack magnitudes. Since the data distribution for each dimension in Figure 5 is
close to a mixture of two Gaussian distributions, G-CUSUM assumes a Gaussian Mixture
Model (GMM) type of probability distribution for both nominal and anomaly data. Three
FDI attack scenarios are investigated for anomalies in the speed, position, and direction
data, the results of which are given in Figure 6. The data-driven nature of the proposed
IDS enables much quicker detection while satisfying the same false alarm rates compared
to G-CUSUM. The proposed IDS learns the nominal baseline from data and detects the
deviations from this baseline, whereas G-CUSUM suffers from the mismatches between
the assumed and actual probability distributions for the nominal and anomalous data.

Figure 6. Comparison in terms of quick and accurate detection between the proposed detector and
an idealized version of the state-of-the-art sequential detector (G-CUSUM), which exactly knows the
attack magnitudes under different FDI attack scenarios: speed anomaly (top left), position (easting)
anomaly (top right), direction anomaly (bottom).

Since voting-based IDS is a popular choice in the literature, we next compare the
proposed IDS with a number of voting-based IDSs, namely HBID [26], ELIDV [24], and
DCMD [20]. These systems run on each vehicle where each received message content is
examined with a voting scheme. The main performance difference between such models
and the proposed IDS is that while the detection accuracy for these systems decreases
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with an increasing number of anomalous vehicles due to the inherent rules of voting,
the proposed IDS is not affected since each vehicle is monitored at the RSU. This fact is
illustrated in Figure 7 in terms of true positive rate and false positive rate considering the
anomalous speed scenario. The proposed detector achieves 100% detection (true positive
rate) and 0% false alarm (false positive rate) within 12 s in the considered FDI attacks,
regardless of the number of attackers. Whereas the performance of voting schemes quickly
degrades after the percentage of attackers in the entire vehicle population reaches a certain
threshold.

Figure 7. Comparison considering FDI attack in speed values between the proposed detector and
several voting-based detectors from the literature.

5.2. Detection Results for DDoS Attack
5.2.1. Experiment Setup

In this section, we evaluate the performance of the proposed IDS for stealthy DDoS
attacks targeting the availability of VANET communications. As shown in Figure 3, we
split an RSU range into a number of road segments with equal lengths. The total number
of received messages from a road segment in a time interval (message rate) gives the data
dimension from that road segment, which mainly depends on the number of vehicles and
the speed of the vehicles. For example, if traffic flow decreases, leading to a rise in the
number of vehicles on the road, the message rate from the road segments increases.

For the simulation study, we use three frameworks together: OMNET++ [64], SUMO [65],
and Veins [66]. OMNET++, which is a general network simulator, creates a VANET
environment. Simulation of Urban Mobility (SUMO) and Veins are the two supportive
frameworks, where SUMO provides a mobility model for VANET and Veins creates an
interface between SUMO and OMNET++. While vehicles are moving on the roads in
SUMO, they are identified as a mobile node in OMNET++ by the help of Veins. We based
our simulations on the IEEE 802.11p vehicular communication protocol [67], but since our
model does not specify any communication protocol, our DDoS detection algorithm can be
used with other protocols as well.

We simulate a realistic scenario with SUMO by using a real road map, which is a small
section of Fowler Ave. next to the University of South Florida (USF) campus in Tampa,
Florida (See Figure 8). The selected road section is partitioned into 20 segments with 50 m
of width for each road segment. In order to have a realistic dataset, there is no restriction
on vehicular movements; all vehicles follow their randomly generated routes, i.e., they
can join or leave the main road at any intersection. The average number of vehicles in the
simulation area is 250.

With the given simulation parameters in Table 1, 4 h of traffic is observed for learning
the training baseline, and 33.3 h of traffic is observed for test purposes. After saving all the
log files, data rates for each road segment are calculated on MATLAB, and 600 test trials
of 200-s duration are obtained. We generated anomaly data in MATLAB from a uniform
distribution for two different DDoS attack scenarios. We consider 0.3 times mean increase
for the first scenario and 1.5 times mean increase for the second scenario with respect to the
corresponding nominal baseline. Anomalies are inserted on top of the nominal data in 2 of
the 20 road segments from the 181st s to the 200th s.
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Figure 8. Simulation map showing Fowler Ave.

Table 1. Simulation Parameters.

Simulation Area 9000 × 5000 m2

Simulation Time (Each Trial) 200 s

Number of Trials 600

Average Number of Vehicle 250

Traffic Generation Random

Route Generation Random

Network Protocol IEEE 802.11p

Beacon Rate 1 s

Network Interface OMNET++

Network Mobility Framework Veins

Traffic Generator SUMO

Map Fowler Av. Tampa, FL

5.2.2. Results

We compare the proposed IDS with the state-of-the-art sequential G-CUSUM detector,
e.g., [68], and the data filtering method, e.g., [41]. G-CUSUM assumes a probability
distribution for nominal and anomalous data, whereas the data filtering approach looks for
an increase in the total data rate received by RSU without performing any statistical analysis.
In Figures 9 and 10, it is seen that the observations from the two road segments to which
the anomaly is added follow different distributions. While the distribution of one road
segment is similar to a negative binomial (Figure 9), which is indeed a Poisson distribution
with conjugate prior (i.e., Gamma distribution) on the rate parameter, the distribution of
other road segments is similar to Gaussian (Figure 10). Hence, we examine two idealized
versions of G-CUSUM, which fit negative binomial and Gaussian distributions for each
road segment and somehow exactly know the attack magnitudes of 30% and 150%.

For both attack scenarios with 30% and 150% average mean increase from the nominal
mean rate, Figures 11 and 12 show that the proposed IDS outperforms the G-CUSUM
approach and the data filtering approach in terms of quick, accurate detection. In particular,
the proposed IDS achieves a much smaller average detection delay while satisfying the
same false alarm rates (e.g., for 0.01 false alarm rate, approximately 1/2 times and 1/5 times
in Figures 11 and 12). Moreover, the G-CUSUM and data filtering approaches have certain
practical disadvantages compared to the proposed IDS. The data filtering method can only
detect such low-rate stealthy attacks by monitoring the total number of packets received
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by the RSU since the individual data rates from road segments still appear to be harmless
to the network. As a result, it is not tractable for the data filtering method to localize and
mitigate the attack. For G-CUSUM, indeed, there is no way to exactly know the actual attack
magnitudes. In practice, a number of parallel tests with different assumptions for the attack
magnitude can be applied; however, even for the best test that alarms first, the mismatch
between the assumed anomaly distribution and the actual distribution would cause signifi-
cant performance degradation. As shown in Figures 11 and 12, even the ideal G-CUSUM,
which exactly knows the attack magnitude, suffers from deviations in the observed data
from the assumed probability distributions. Furthermore, G-CUSUM inevitably follows a
univariate approach by assuming independence between road segments [69] since it does
not know which road segments will include anomalies. The multivariate nature of the
proposed detector also facilitates its superior performance.

Figure 9. Histogram of number of packets for a road segment. The first histogram represents the
distribution of nominal data, whereas the second and third represent attack cases with an average
increase that is 0.3 and 1.5 times the baseline, respectively. Nominal and attack distributions are close
to a negative binomial distribution with extended tails under attacks.

Figure 10. Histogram of number of packets for a road segment. The first histogram represents the
distribution of nominal data, whereas the second and third represent attack cases an average increase
that is 0.3 and 1.5 times the baseline, respectively. Nominal and attack distributions are close to a
normal distribution with extended tails under attacks.
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Figure 11. Comparison in terms of quick and accurate detection for an average DDoS attack magni-
tude of 0.3 times the nominal mean data rate between the proposed method, two idealized G-CUSUM
variants that know the exact attack magnitude, and the data filtering method.

Figure 12. Comparison in terms of quick and accurate detection for an average DDoS attack magni-
tude of 1.5 times the nominal mean data rate between the proposed method, two idealized G-CUSUM
variants which know the exact attack magnitude, and the data filtering method.

5.3. Localization Results

We next evaluate the attack localization performance of the proposed IDS using the
receiver operating characteristic (ROC) curves, which present the achieved true positive
rates while the algorithm satisfies different levels of false positive constraints. First, we
consider the identification of attacking vehicles in the FDI attack scenario (anomalous
speed case). Since, in this case, the proposed detector is applied to each vehicle, and
the messages include the vehicle ID, there is no need for a separate vehicle identification
mechanism after detection. Specifically, once the proposed IDS alarms a vehicle, this vehicle
is automatically identified as attacking. In the anomalous speed scenario, by selecting
the detection threshold as h = 2 in all test trials, the proposed IDS achieves zero false
alarms for non-attacking vehicles and 100% correct detection of attacking vehicles with a
maximum delay of 12 s (Figure 13). We next consider the identification of anomalous data
dimension using the localization strategy given in (6) and summarized by Algorithm 1.
Figure 13 displays the perfect detection of the anomalous speed data while satisfying zero
false alarms in all test trials.

Finally, the identification of road segments in the DDoS attack scenario using Algorithm 1
is considered. As demonstrated by Figure 13, the proposed IDS successfully identifies the
anomalous road segments with a high correct detection rate (e.g., 94%) while satisfying a
small false alarm rate (e.g., 5%).
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Figure 13. ROC curves for the proposed IDS’s anomaly localization performance: identification
of anomalous vehicles in FDI attack to speed data (top left), identification of anomalous data
in FDI attack to speed data (top right), and identification of anomalous road segments in DDoS
attack (bottom).

6. Conclusions

We proposed a statistical non-parametric intrusion detection system (IDS) for the
online detection of false data injection (FDI) attacks and distributed denial-of-service
(DDoS) attacks. The proposed system runs roadside unit (RSU) monitoring to broadcasted
messages from the vehicles in its range. To be specific, in the FDI attack case, we considered
the (ID, speed, position, direction) message format; however, the proposed IDS is based on a
generic anomaly detection algorithm, and thus easily extends to other data types. Similarly,
the IDS proposed for DDoS attacks is applicable to any data type and communication
protocol as it monitors the data rates (i.e., number of packets in unit time) from a number
of road segments. An attack localization procedure was also proposed to follow up on
an alarm raised by the detection procedure. As the final stage in attack mitigation, RSU
drops the identified messages from identified vehicles for FDI attacks and from identified
road segments for DDoS attacks. The detection and localization performances of the
proposed IDS are evaluated in the FDI and stealthy DDoS cases using a real traffic dataset
called the Warrigal dataset, and state-of-the-art traffic simulators, respectively. To the
best of our knowledge, this work is the first to use a real dataset in VANET cybersecurity.
The experimental results demonstrated the superior performance of the proposed IDS in
terms of quick and accurate detection and localization compared to state-of-the-art voting
schemes, parametric sequential change detection algorithm, and the data filtering method.
In future work, we plan to extend the proposed IDS to other attack types and specifically
designed sporadic attacks, which aim to avoid detection by sequential detectors such as
our proposed detector. Since our sequential detector looks for continuous anomalies that
would cause decision statistics to rise and trigger an alarm, carefully staged short-duration
frequent attacks may bypass our detector by preventing the decision statistic from reaching
the detection threshold. While such sporadic attacks cannot be as impactful as continuous
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attacks within the same duration, they may eventually damage the targeted system if they
remain undetected.
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Appendix A

The proof of Theorem 1 is based on an upper bound, FAR ≤ e−ω0h, for the false alarm
rate of CUSUM-like algorithms with independent increments [58], such as the proposed
IDS. Here, ω0 ≥ 0 is the solution to E[eω0Dt ] = 1. Given a false alarm constraint β, the
threshold h can be set using β = e−ω0h to ensure that FAR ≤ β. Hence, we get the equation
h =

− log β
ω0

, where we need to find ω0 from E[eω0Dt ] = 1.
We first derive the asymptotic distribution of the anomaly evidence Dt in the absence

of anomalies. Its cumulative distribution function is given by

P(Dt ≤ y) = P((Lt)
d ≤ (L(M))

d + y).

It is sufficient to find the probability distribution of (Lt)d, the dth power of the kNN
distance at time t. Independent d-dimensional instances {xt} form a Poisson point process
over time. The nearest neighbor (k = 1) distribution for a Poisson point process is given by

P(Lt ≤ r) = 1− exp(−Λ(b(xt, r)))

where Λ(b(xt, r)) is the arrival intensity (i.e., Poisson rate measure) in the d-dimensional
hypersphere b(xt, r) centered at xt with radius r [70]. Asymptotically, for a large number of
training instances as N2 → ∞, under the null (nominal) hypothesis, the nearest neighbor
distance Lt of xt takes small values, defining an infinitesimal hyperball with homogeneous
intensity λ = 1 around xt. Since for a homogeneous Poisson process the intensity is written
as Λ(b(xt, r)) = λ|b(xt, r)| [70], where |b(xt, r)| = πd/2

Γ(d/2+1) rd = vdrd is the Lebesgue
measure (i.e., d-dimensional volume) of the hyperball b(xt, r), we rewrite the nearest
neighbor distribution as

P(Lt ≤ r) = 1− exp
(
−vdrd

)
,

where vd = πd/2

Γ(d/2+1) is the constant for the d-dimensional Lebesgue measure.

http://its.acfr.usyd.edu.au/datasets-2/warrigal/
http://its.acfr.usyd.edu.au/datasets-2/warrigal/
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Now, applying a change in variables we can write the probability density of (Lt)d and
Dt as

f(Lt)d(y) =
∂

∂y
[1− exp(−vdy)],

= vd exp(−vdy),

fDt(y) = vd exp(−vd(Lt)
d) exp(−vdy) (A1)

Using the probability density derived in (A1), E[eω0Dt ] = 1 can be written as

1 =
∫ φ

−(L(M))
d

eω0yvde−vd(Lt)
d
e−vdydy,

evd(L(M))
d

vd
=
∫ φ

−(L(M))
d

e(ω0−vd)ydy,

=
e(ω0−vd)y

ω0 − vd

∣∣∣∣∣
φ

−(L(M))
d

,

=
e(ω0−vd)φ − e(ω0−vd)(−(L(M))

d)

ω0 − vd
, (A2)

where −(L(M))
d and φ are the lower and upper bounds for Dt = (Lt)d − (L(M))

d. The
upper bound φ is obtained from the training set.

As N2 → ∞, since the dth power of (1− α)th percentile of nearest neighbor distances
in the training set goes to zero, i.e., (L(M))

d → 0, we have

e(ω0−vd)φ =
evd(L(M))

d

vd
(ω0 − vd) + 1.

We next rearrange the terms to obtain the form of eφx = a0(x + θ) where x = ω0 − vd,

a0 = e
vd(L(M))

d

vd
, and θ = vd

e
vd(L(M))

d . The solution for x is given by the Lambert-W function [71]

as x = −θ − 1
φW(−φe−φθ/a0), hence

ω0 = vd − θ − 1
φ
W
(
−φθe−φθ

)
.
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