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Abstract—The increasing number of electric vehicles (EVs)
introduces a high intensity charging load to the power system.
The distribution systems are not well prepared to cope with this
high variance load. To handle such EV charging load, utility
companies need a predictive maintenance approach for the distri-
bution transformers. We propose a deep reinforcement learning
(RL) based policy to timely replace the distribution transformers
by similar or higher capacity ones under a budgetary constraint
of selecting at most one transformer for replacement per time
step. Our policy outperforms the myopic policies which replace
transformers based on load, age, and failure in terms of both
economic cost and power outage.

I. INTRODUCTION

Electric vehicles (EVs) use the energy stored in a battery
instead of burning fuel. Thus, it needs to be plugged into an
electric outlet rather than refueling at a gas station. Advance-
ments in battery and EV technology is rapidly accelerating
the electrification of transportation. Automobile manufacturers
are introducing new popular EV models, which indicates that
EVs will become mainstream in the near future. In fact, the
number of EVs on the road by the end of 2020 is expected to
be 10 million, up from just a million in 2015 [1]. Bloomberg
New Energy Finance (BNEF) predicts the annual passenger
EV sales to reach 10 million in 2025, 28 million in 2030, and
56 million by 2040 in its 2019 report [2].

The automobile industry is excelling towards fast and
convenient charging of EVs at home [3]. Because of the
convenience and low cost, most EV drivers do more than 80%
of their charging at home [4]. This recent trend requires the
electricity distribution system to be capable of handling high
demand peak loads. It is known that EV charging consumes
more electricity than any other load in a household. Thus,
the capacity of the user end distribution transformers, the
major equipment of the distribution network, to accommodate
EV charging needs to be assessed. While distribution system
maintenance and upgrade is a critical task for the electricity
utility companies, EV inclusion makes it more important and
challenging. Hence, predictive maintenance for the distribu-
tion transformers has become an essential topic for the utility
companies nowadays.

A. Related Work

Majority of the EV charging research focuses on the smart
charging method, which aims to optimize the start time and the
charging rate for each time interval [5], [6]. The article [7]
provides detailed predictions for EV load, which quantifies
consumer energy usage and driving patterns. Several works
propose a demand-side management approach for mitigating
the impact of EV charging on distribution transformers, e.g.,
[8]. [9] presents an assessment of the transformer residual
life. In [10], a method is provided for ranking a number of
transformers for replacement based on age and load. However,
none of the existing works uses the predicted future EV load in
selecting the transformers for replacement. Agent-based mod-
eling has been used for simulating complex systems including
home energy management [11], transportation systems [12],
and climate change [13]. In this work, it lets us simulate
the future impact of EV penetration to the distribution power
system.

B. Contributions

We consider the existing load and future EV charging
load for estimating aging and failure probabilities for the
transformers. In particular, we provide daily aging and failure
probability calculations for small 25 kVA distribution trans-
formers. Our contributions can be summarized as follows:

• A realistic simulation tool is developed for transformer
aging, failure and fuse blow events considering increas-
ing EV load, as well as regular household loads;

• A Markov Decision Process (MDP) formulation is pre-
sented to optimize the transformer replacement policy;

• A deep reinforcement learning (RL) algorithm based on
the MDP formulation is provided to learn an effective
and practical predictive maintenance policy for trans-
former replacement considering realistic physical (e.g.,
budgetary, human resources) constraints;

• The performance of the deep RL policy is evaluated by
comparing with straightforward myopic policies.

The remainder of the paper is organized as follows. Section
II gives background information about the impact of EV
charging on distribution transformers. Section III formulates
the MDP problem. Then, a deep RL algorithm based on the
MDP formulation is provided in Section IV. Simulation results978-1-7281-6127-3/20/$31.00 ©2020 IEEE



for a distribution transformer network are presented in Section
V, and the paper is concluded in Section VI.

II. BACKGROUND

A. Distribution Transformer Overload by EV Charging

The existing residential distribution grid is not designed
for serving emerging EV loads. While a typical home in
the US consumes 1.2 kW power on average, an EV adds
another 6.6-17 kW load to the transformer, effectively more
than doubling the peak residential demand [8]. Consequently,
distribution grid transformers that were installed before EV
penetration might become overloaded and fail to support
additional EV load. Our research focuses on the impact of
EV on distribution end transformers that provides electricity
directly to the customers. These transformers are smaller in
size and rating, and thus less tolerant to loading variation due
to EVs. We do not consider the growth of regular loads in
this research because it is usually the result of new property
developments or new businesses, which require the installation
of separate distribution transformers [14].

B. Transformer Aging and Failure

Transformer aging is the result of high temperature, mois-
ture content, and other impurities in the insulation. Trans-
former insulation oil is maintained to minimize contamination,
leaving the insulation temperature as the main reason for
aging. Thus, the highest (hottest-spot) temperature (HST) of
the transformer is a sufficient parameter for aging estimation
[15]. The ambient temperature and electrical load are two
major factors responsible for the HST of a transformer [16].
With the inclusion of high-intensity EV load, distribution
transformers are now more susceptible to expedited aging and
subsequent failure.

1) Hottest Spot Temperature Model: If a transformer op-
erating at full load capacity has Θf rise over the ambient
temperature, then the top oil temperature rise will be

Θo = Θf

(
L2R+ 1

R+ 1

)n
,

where L = actual load
capacity , R = full load loss

no load loss , and n = 0.8 for ONAN
transformer, which is the most common type of distribution
transformer. The transient temperature rise of the top oil above
ambient after N hours is:

Θo(N) = Θo(1− e−N/τ ) + Θie
−N/τ ,

where τ is the oil thermal time constant for rated load, and
Θi is the initial top oil temperature rise over ambient. Only
the first value of Θi needs estimation as the calculated top oil
temperature rise can be used as Θi for the next time step. The
HST rise over top oil temperature rise is

Θg(N) = ΘgfL
2q

where Θgf is HST rise over top oil temperature for full load
and q = 0.8 for ONAN transformer. Finally, with ambient
temperature Θa(N), the HST of a transformer is

ΘH(N) = Θa(N) + Θo(N) + Θg(N)

2) Aging due to HST : Experimental evidence shows that
the cumulative effect of HST over time in transformer aging
complies with the Arrhenius reaction rate theory [17]. Fig.
1 shows the relation between per unit transformer insulation
life and winding HST, and demonstrates that HST is the
key variable for aging. This curve applies to both power
and distribution transformers as they typically have similar
insulation materials. It sets 110 °C as a reference temperature
above which aging is expedited. Per unit life is defined as:

Per unit life = 9.8× 10−18e
15000

ΘH+273

where ΘH in °C is the winding HST.

Fig. 1. Per unit transformer insulation life [15]

Fig. 1 is instrumental in calculating the aging acceleration
factor, F that has a value more than 1 for ΘH > 110°C and
less than 1 when ΘH < 110°C. The equation for the aging
acceleration factor is as follows:

F = e

(
15000
383 − 15000

ΘH+273

)
.

The days of life lost on a day can be determined by adding
the equivalent aging for each hour of the day. Hence, the age
of the transformer at the end of ith day is

Ai = Ai−1 +

24∑
j=1

Fj , (1)

where Ai−1 is the effective age of the transformer at the
beginning of the day. Fj is the aging acceleration factor for
the transformer at jth hour of the day.

III. PROBLEM FORMULATION

We propose an MDP framework for the utility company
to make a maintenance schedule for a fleet of M distribution
transformers. The mth transformer of the fleet with current age
Amt and load Lmt , accumulates additional age ∆Amt through
serving load for time step t. Meanwhile, ∆Lmt load is added
to the transformer through the introduction of new EVs in the
households it serves. We define the system state as a collection
of age and load of all the transformers, as shown in Fig. 2,
which satisfies the Markov property,

St+1 = (A1
t +∆A1

t , L
1
t +∆L1

t , . . . , A
N
t +∆ANt , L

N
t +∆LNt ).
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Fig. 2. Proposed MDP Model.

Utility Company is the MDP agent, whose action Xt to
change an old transformer by the same capacity one (replace)
or a double-sized one (upgrade) changes the system state.
Each transformer m causes the breakdown cost Cmt to the
utility if it fails through the combination of replacement cost,
corresponding outage, and customer dissatisfaction. The MDP
agent’s goal is to select the most cost-enduring transformer
for replacement or upgrade. It has a constraint of changing
at most one transformer at a time step. The upgradation
cost, Cchngt = Cupgt , is higher than the replacement cost,
Cchngt = Crept . The goal of the MDP agent is to minimize
the following discounted cumulative cost in T time steps:

CT =

T∑
t=0

atg
[
Cchngt +

M∑
m=1

Cmt
]
, (2)

where ag is the discount factor for future decisions.

A. State, St
The load and age of every transformer forms the state

space. So, for the M transformers in the network, the input
state space has 2M variables. The existing electrical load for
the mth transformer at time t is Dm

t , and the transformer’s
capacity Pmt indicates the rated power or kVA capacity.
Loading Lmt is the ratio of kVA load and rated capacity. The
additional load due to EV inclusion is ∆Lmt . The effective
age of the transformer is calculated using Eq. (1). ∆Amt is
the aging accumulated by the transformer on tth time step.
Fig. 2 shows the state of mth transformer at time step t. M
such tuples of (Amt +∆Amt , L

m
t +∆Lmt ) constitutes the input

state space.

B. Action, Xt

The under loaded and young transformers make bad can-
didates for the change. Thus selecting a pool of overloaded
and over aged transformers is meaningful in the context of
replacing or upgrading. Furthermore, if the load increment due
to EV inclusion makes the load higher than the transformer’s
capacity, then it is more reasonable to upgrade it. Thus,
creating a pool of B number of candidate transformers for
replacement or upgrade makes the action space smaller than
the input state without making a significant compromise. In
the case of no overloaded or over aged transformer in the
fleet, the best action might be to do no replacement or upgrade.

Thus, the action space Xt ∈ {0, 1, 2, . . . , 2B}, contains 2B+1
actions: replacing or upgrading any of the B transformers or
doing nothing.

C. Cost, Ct
The transformer being loaded will face aging and will

be more susceptible to failure. Transformer failure is the
most costly event for the utility, and hence modeling it
requires the most attention. We use Weibull hazard function
to generate aging-related failure events. Weibull distribution
has wide acceptability for predicting electrical breakdown in
solid insulation [18]. The probability of transformer failure
during the ith day is

P(i) =
P(i ≥ Ai)− P(i ≥ Ai + 1)

P(i ≥ Ai)

=
(1− F (Ai))− (1− F (Ai + 1))

1− F (Ai)

=
e−(

Ai
α )β − e−(

Ai+1

α )β

e−(
Ai
α )β

= 1− e[(
Ai
α )β−(

Ai+1

α )β ]

Here, scale parameter, α=10690 days (29.29 years) and the
shape parameter, β= 5.01 of Weibull distribution are obtained
from the [9] for the new group of transformer therein. Trans-
former effective age on ith day Ai is taken from Eq. (1).

Overloading a transformer will expedite its aging and
subsequently cause failure. Failure of the transformer means
emergency service work, replacement of the transformer, and
unexpected outages, all of which cause the utility company’s
cost. Apart from failure, we introduce another cost due to fuse
replacement. If the load on the transformer is more than 1.8
times its rated load, then a protective fuse blows to save the
transformer [19]. Fuse replacement requires less service work,
outage, and subsequently less cost compared to a failure event.
The monetary value Cmt of these events vary for different
utility companies, but will be significantly higher than the
scheduled change cost of the transformer Cchngt . Although
the failure and fuse blow events are generated daily, the agent
is not bound to take action every day. Instead, it is more
pragmatic for the utility to have a weekly or biweekly policy
depending on the network’s size. In that case, the breakdown
cost Cmt of the transformer will incorporate all the observed
daily costs for the duration of the utility’s decision time step.

D. Next State, St+1

Each transformer’s age for the next state is the sum of its
current age and estimated age to be accumulated at the next
time step. Furthermore, the agent’s decision to change the
mth transformer changes its age to zero. If the transformer is
replaced, then the capacity of the transformer will remain the
same, Pmt+1 = Pmt . However, if the transformer is upgraded,
its capacity will be twice, Pmt+1 = 2Pmt .

IV. SOLUTION APPROACH

A. Reinforcement Learning

The solution lies in minimizing the expected cost E[CT ],
where CT is given in Eq. (2), by selecting the appropriate



action Xt. Central to this problem is the following Bellman
equation, after ith iteration at time t, the agent’s value function
is

V i(St) = min
{

E

[
M∑
m=1

Cmt + agV
i−1(St+1)

]
︸ ︷︷ ︸

No replacement or upgrade, Xt=0

,

E

[
Crept +

M∑
m=1

Cmt + agV
i−1(St+1)

]
︸ ︷︷ ︸

Replacing mth transformer, Xt=m

,

E

[
Cupgt +

M∑
m=1

Cmt + agV
i−1(St+1)

]
︸ ︷︷ ︸

Upgrading mth transformer, Xt=2m

}
.

Since closed form solution is not tractable, the RL algorithm
looks for the best action through simulations by assessing the
expected cost E[Ct] for each of the 2B + 1 possible actions.
Cmt is the immediate cost caused by the mth transformer by
serving load during time t. Since the agent’s action changes
the next state of the transformer, the future discounted cost
through the value function of next state, V i−1(St+1) depends
on the action of the agent.

RL provides a very suitable framework to iteratively obtain
the value function. The action-value function for our problem
is:

Q(St, Xt) = E[Ct + ag min
Xt

Q(At + ∆At, Lt + ∆Lt) | Xt]

where At(A1
t , . . . , A

M
t ) is a function of the current age of all

the transformers in the fleet. Similarly, Ct,∆At, Lt,∆Lt are
respectively functions of cost, accumulated age, current load,
and load increase of all the transformers.

B. Deep RL

The age and load are continuous, and create an infinite
number of possible states. Thus, we require a neural network-
based deep RL algorithm. The Advantage Actor-Critic (A2C)
algorithm, which is a policy gradient-based algorithm [20],
is suitable for continuous state space. A2C employs two
neural networks, actor network and critic network. The actor
network, also known as the policy network, outputs probability
for each action value through a softmax function. It aims to
find the gradient of expected return J(πθ) of the policy πθ
with respect to the weights θ of the neural network by the
following equation:

∇θJ(πθ) = Ea∼πθ [∇θ log(πθ(Xt|St))A(St;Xt)] (3)

where the advantage function is given by

A(St;Xt) = agV
πθ(St+1;ψ) − V πθ(St;ψ). (4)

Here, V πθ(St;ψ) is the output of critic network for weight
matrix ψ. It is also known as the value network to learn the
value function for each state-action pair. A pseudocode for
the A2C algorithm is given in Algorithm 1.

Algorithm 1 A2C algorithm for distribution transformer
replacement schedule

Input: discount factor ag , learning rate lr, EV inclusion rate
p, and number of episodes e
Initialize Actor network with random weights θ and critic
network with random weights ψ
for episode = 1, 2, ..., e do

Initialize transformer state S0 = (A0, L0)
for t = 1, 2, ..., 50 do

for d = 1, 2, ..., 365 do
Generate EV inclusion from a binomial distribution
with probability p
Add EV charging load to Lt
Calculate aging of each transformer due to loading
from Eq. (1).
Calculate cumulative operation cost of all trans-
former as explained in Section III-B.

end for
Select action Xt from Eq. (3).
Execute action Xt and observe cost Ct
Store transitions (St, Xt, Ct, St+1).
Update actor network θ via Eq. (4).
Update critic network ψ through back propagation.

end for
end for

V. SIMULATION RESULTS

A. Simulation setup

We utilize the 200 households load profile and predicted EV
recharging profile data from [7], which includes households,
variable in size, and number of occupants. In the distribution
network, there will be three different neighborhoods with
different degrees of EV penetration rate. We think of EV pen-
etration as the replacement of current conventional passenger
vehicles by EVs. For example, 50% EV penetration means re-
placing 174 petrol cars by EVs in our proposed neighborhood
of 200 households with 348 vehicles. These replacements will
come one at a time, and we use binomial distribution for a
single EV inclusion in each neighborhood for each day. That
means we are looking for one success (1 EV inclusion) in 1
trial (per day) in each of the three neighborhoods with the rate
of 100% EV penetration respectively in 25, 50, and 100 years
for low, medium, and high EV penetration neighborhood.

Each neighborhood consists of 25 transformers, and each of
the transformers serve eight homes. The maximum demand is
well below the 25 kVA rating without the EV loads. AC level
2 charging is nowadays very popular [21] and is used as the
EV charger in our model. Assumptions for the transformer’s
characteristics are summarized in Table I.

Although failure and fuse blow events are generated daily,
the agent takes action once in a year. All the costs assumed for
the simulation are in USD, based on market research for the
US. Scheduled replacement by a 25 kVA transformer causes
1000$, and upgradation to a 50 kVA costs 2000$. Transformer
failure causes 24 hours of outage and replacement cost, 2000$
for 25 kVA or 3000$ for 50 kVA. Failure related replacement



Rated Capacity 25 kVA
Voltage Level 480/208 V

Phase 1
Cooling ONAN

Ratio of losses, R 3.2
Full load top-oil rise, Θf 50 °C

Time constant, τ 3.5 h
HST rise over top oil, Θgf 30 °C

Table I: Transformer characteristics.

costs are higher as they require emergency service and get no
salvage value for the failed transformer. Fuse blow costs 500$
and 6 hours of outage. Failure and fuse blow events cause
unexpected outages that cost the utility in terms of unserved
electricity and customer dissatisfaction. The cost for outage
is taken as 1.3 $/kWh for transformer failure, and 1.5 $/kWh
for fuse blows reflecting the value of service assessed in [22].
We will ignore outage costs due to scheduled replacement
or upgrade as the customers will be notified beforehand, and
work will require a shorter time.

We assume discount factor, ag = 0.99 for the RL network
to put emphasis on future cost. Both actor and critic networks
have 3 hidden layers with 48, 320, and 48 neurons. Learning
rate 3× 10−4 worked best for the experiments.

B. Results

We compare four policies. Failure based policy only re-
places a transformer by the same capacity once it fails. This
policy does not do upgrades, thus fails to cope with the EV
inclusion, and results in excessive fuse blow and transformer
failure events, as evident in Fig. 3. Consequently, cumulative
outage and cost are the most for this policy.

The myopic policies upgrade or replace the transformer
yearly, based on some predetermined thresholds on load
(e.g., 170%) and age (e.g., 7000 days). The myopic policy
that prioritizes load over age performs well to reduce the
number of fuse blows, but the number of transformer failure is
high. The other myopic policy that prioritizes age over load
performs well to reduce the number of transformer failure,
however it fails to control fuse blows. For the simulations,
we selected the threshold pair that minimized the total cost
for a 50-year timeline.

The proposed deep RL based policy also takes action yearly
based on the value function. It achieves the least cost and
power outage compared to the failure based policy and myopic
policies. Results shown in Fig. 3 and Table II indicate that
the deep RL algorithm finds the best balance between age
and load for making transformer replacement and upgrade
decisions by considering the future expected EV penetration.
In Table II, we take the cost and outage of failure based policy
as a unit to compare the benefit of maintenance policies.
Deep RL based policy reduces 54.6% cost with respect to
the failure based policy, compared to the 37.3% and 29.3%
cost reduction by the load priority and age priority myopic
policies, respectively. Deep RL based policy performs even
better in reducing outage by avoiding 70.1% of the outage
caused by the failure based policy. The age priority myopic
policy reduces outage by 62.4%, whereas the load priority

Policy Cumulative cost Reduction Outage Reduction
Failure based 159408 $ 0 % 20862 kWh 0 %

Myopic (Load priority) 99889 $ 37.3 % 10767 kWh 48.4 %
Myopic (Age priority) 112719 $ 29.3 % 7844 kWh 62.4 %

Deep RL based 72294 $ 54.6 % 6243 kWh 70.1 %

Table II: Cumulative maintenance and outage cost for 75
transformers over a 50-year timeline.

one reduces by about 48.4%. While both myopic policies are
effective in reducing the cost and power outage with respect
to the straightforward failure based policy, the proposed deep
RL based policy clearly achieves the best performance.

VI. CONCLUSION

This work aims to guide electrical utility companies for
predictive maintenance of the distribution transformers. We
have analyzed distribution transformer failure events in light
of high EV load inclusion. A reinforcement learning (RL)
algorithm was presented to decide on replacing or upgrading
a transformer at each time step considering the future EV pen-
etration in addition to the maintenance cost and instantaneous
risk of failure. The proposed algorithm was compared with a
straightforward policy that replaces failed transformers, and
two myopic policies which replace or upgrade a transformer
based on current age and load. Experiments exhibit the supe-
rior performance of our deep RL algorithm for total cost and
power outage reduction. The results indicate that the deep RL
algorithm better controls the priority decision between load
and age of a transformer by considering the future expected
EV penetration. The proposed method is flexible enough to
be implemented for various utility companies.
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