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Abstract

Sequential estimation of a vector of linear regression coefficients is considered under both centralized

and decentralized setups. In sequential estimation, the number of observations used for estimation is

determined by the observed samples, hence is random, as opposed to fixed-sample-size estimation.

Specifically, after receiving a new sample, if a target accuracy level is reached, we stop and estimate

using the samples collected so far; otherwise we continue to receive another sample. It is known that

finding an optimum sequential estimator, which minimizes the average observation number for a given

target accuracy level, is an intractable problem with a general stopping rule that depends on the complete

observation history. By properly restricting the search space to stopping rules that depend on a specific

subset of the complete observation history, we derive the optimum sequential estimator in the centralized

case via optimal stopping theory. However, finding the optimum stopping rule in this case requires

numerical computations that quadratically scales with the number of parameters to be estimated. For the

decentralized setup with stringent energy constraints, under an alternative problem formulation that is

conditional on the observed regressors, we first derive a simple optimum scheme with a well-defined one-

dimensional stopping rule regardless of the number of parameters. Then, following this simple optimum

scheme we propose a decentralized sequential estimator whose computational complexity and energy

consumption scales linearly with the number of parameters. Specifically, in the proposed decentralized

scheme a close-to-optimum average stopping time performance is achieved by infrequently transmitting

a single pulse with very short duration.
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I. INTRODUCTION

In this paper, we are interested in sequentially estimating a vector of parameters (i.e., regression

coefficients) X ∈ Rn at a random stopping time T in the following linear (regression) model,

yt = H ′tX + wt, t ∈ N, (1)

where yt ∈ R is the observed sample, Ht ∈ Rn is the vector of regressors, wt ∈ R is the additive

noise, and the prime symbol denotes the transpose. We consider the general case in which Ht is random

and observed at time t, which covers the deterministic Ht case as a special case. This linear model is

commonly used in many applications. For example, in system identification, X is the unknown system

coefficients, Ht is the (random) input applied to the system, and yt is the output at time t. Another example

is the estimation of wireless channel coefficients, in which X is the unknown channel coefficients, Ht

is the transmitted (random) pilot signal, yt is the received signal, and wt is the additive channel noise.

Energy constraints are inherent to wireless sensor networks [1]. Since data transmission is the primary

source of energy consumption, it is essential to keep transmission rates low in wireless sensor networks,

resulting in a decentralized setup. Decentralized parameter estimation is a fundamental task performed

in wireless sensor networks [2]–[13]. In sequential estimation, the objective is to minimize the (average)

number of observations for a given target accuracy level [14]. To that end, a sequential estimator (T , X̂T ),

as opposed to a traditional fixed-sample-size estimator, is equipped with a stopping rule which determines

an appropriate time T to stop taking new observations based on the observation history. Hence, the

stopping time T (i.e., the number of observations used in estimation) is a random variable. Endowed

with a stopping mechanism, a sequential estimator saves not only time but also energy, both of which

are critical resources. In particular, it avoids unnecessary data processing and transmission.

Decentralized parameter estimation has been mainly studied under three different network topologies.

In the first one, sensors communicate to a fusion center (FC) that performs estimation based on the

received information, e.g., [3]–[8]. Another other commonly studied topology is called ad hoc network,

in which there is no designated FC, but sensors first compute their local estimators (sensing phase) and

then communicate them through the network to reach a consensus (communication phase), e.g., [2],

[9]–[12]. Decentralized estimation under both network topologies is reviewed in [13]. Recently, a new

class of consensus-based algorithms, in which sensing and communication phases occur in the same time

step, has been proposed for decentralized detection [15]–[17]. Many existing works consider parameter
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estimation in linear models, e.g., [2], [3], [5]–[7], [10]. Whereas in [4], [8], [9], [11]–[13] a general

nonlinear signal model is assumed. The majority of existing works on decentralized estimation, e.g.,

[2]–[10], [13], studies fixed-sample-size estimation. There are a few works, such as [12], [18], [19], that

consider sequential decentralized parameter estimation, as opposed to the significant volume of literature

that considers the sequential decentralized detection, e.g., [15], [20]–[26]. Nevertheless, [12] assumes that

sensors transmit real numbers, and [18] focuses on continuous-time observations, which can be seen as

practical limitations.

In decentralized detection [22], [23] and estimation [19], level-triggered sampling, an adaptive sampling

technique which infrequently transmits a few bits, e.g., one bit, from sensors to the FC, has been used

to achieve low-rate transmission. It has been also shown that the decentralized schemes based on level-

triggered sampling significantly outperform their counterparts based on conventional uniform sampling in

terms of average stopping time. We here propose a novel form of level-triggered sampling that infrequently

transmits a single pulse from sensors to the FC, and at the same time achieves a close-to-optimum average

stopping time performance.

The stopping capability of sequential estimators comes with the cost of sophisticated analysis. In most

cases, it is not possible with discrete-time observations to find an optimum sequential estimator that

attains the sequential Cramér-Rao lower bound (CRLB) if the stopping time S is adapted to the complete

observation history [27]. Alternatively, [28] and more recently [18] and [19] considered stopping times

that are adapted to a specific subset of the complete observation history, namely the regressors {Ht}
in (1). This idea of using a restricted stopping time first appeared in [28] with no optimality result.

In [18], with continuous-time observations, a sequential estimator with a restricted stopping time that

solely depends on {Ht} was shown to achieve the sequential version of the CRLB for scalar parameter

estimation. In [19], for scalar parameter estimation with discrete-time observations, a similar sequential

estimator was shown to achieve the conditional sequential CRLB for the same restricted class of stopping

times.

In this paper, with discrete-time observations and considering the restricted class of stopping times that

solely depend on {Ht}, we find the optimum sequential estimators that minimize the average observation

number for a given target accuracy level, under two different formulations of the vector parameter

estimation problem. Following the common practice in sequential analysis we first minimize the average

stopping time subject to a constraint on the estimation accuracy which is a function of the estimator

covariance. The optimum solution to this classical problem proves intractable for even moderate number

of unknown parameters. Hence, it is not a convenient model for decentralized estimation. Therefore, we
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next follow an alternative approach and formulate the problem conditioned on the observed {Ht} values,

which yields a tractable optimum solution for any number of parameters.

Moreover, from the optimum conditional sequential estimator of alternative approach, we develop a

computation- and energy-efficient decentralized scheme based on level-triggered sampling for sequential

estimation of vector parameters. We should note here that the proposed vector parameter estimator is

by no means a straightforward extension of the scalar parameter estimators in [18], [19], [28]. Firstly,

straightforward application of level-triggered sampling to the vector case yields a computational complex-

ity and energy consumption that scale quadratically with the number of unknown parameters. We propose

a linearly scaling method, which is analytically justified and numerically shown to perform close to the

optimum average stopping time performance. Secondly, data transmission and thus energy consumption

increase with the number of parameters, which may easily become prohibitive for a sensor with limited

battery [29]. We address this energy efficiency issue by infrequently transmitting a single pulse with

very short duration, which encodes, in time, the overshoot in level-triggered sampling, achieving hence

a close-to-optimum performance.

The remainder of the paper is organized as follows. In Section II, we provide background information

on linear parameter estimation. Then, in Section III, we derive the optimum sequential estimators under

the conventional unconditional and alternative conditional problem formulations. In Section IV, using the

tractable solution of conditional formulation as a model, we propose a computation- and energy-efficient

decentralized sequential estimator based on level-triggered sampling. Finally, the paper is concluded in

Section V. We represent scalars with lower-case letters, vectors with upper-case letters and matrices with

upper-case bold letters.

II. BACKGROUND

In (1), at each time t, we observe the sample yt and the vector Ht, hence {(yp, Hp)}tp=1 are available.

We assume {wt} are i.i.d. with E[wt] = 0 and Var(wt) = σ2. The least squares (LS) estimator minimizes

the sum of squared errors, i.e.,

X̂t = arg min
X

t∑
p=1

(yp −H ′pX)2, (2)

and is given by

X̂t =

 t∑
p=1

HpH
′
p

−1
t∑

p=1

Hpyp = (H ′tHt)
−1H ′tYt, (3)
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where Ht = [H1, . . . ,Ht]
′ and Yt = [y1, . . . , yt]

′. Note that spatial diversity (i.e., a vector of observations

and a regressor matrix at time t) can be easily incorporated in (1) in the same way we deal with temporal

diversity. Specifically, in (2) and (3) we would also sum over the spatial dimensions.

Under the Gaussian noise, wt ∼ N (0, σ2), the LS estimator coincides with the minimum variance

unbiased estimator (MVUE), and achieves the CRLB, i.e., Cov(X̂t|Ht) = CRLBt. To compute the

CRLB we first write, given X and Ht, the log-likelihood of the vector Yt as

Lt = log f(Yt|X,Ht) = −
t∑

p=1

(yp −H ′pX)2

2σ2
− t

2
log(2πσ2). (4)

Then, we have

CRLBt =

(
E

[
− ∂2

∂X2
Lt
∣∣Ht

])−1

= σ2U−1
t , (5)

where E
[
− ∂2

∂X2Lt
∣∣Ht

]
is the Fisher information matrix and U t , H ′tHt is a nonsingular matrix. Since

E[Yt|Ht] = HtX and Cov(Yt|Ht) = σ2I , from (3) we have E[X̂t|Ht] = X and Cov(X̂t|Ht) = σ2U−1
t ,

thus from (5) Cov(X̂t|Ht) = CRLBt. Note that the maximum likelihood (ML) estimator, that maximizes

(4), coincides with the LS estimator in (3).

In general, the LS estimator is the best linear unbiased estimator (BLUE). In other words, any linear

unbiased estimator of the form AtYt with At ∈ Rn×t, where E[AtYt|Ht] = X , has a covariance no

smaller than that of the LS estimator in (3), i.e., Cov(AtYt|Ht) ≥ σ2U−1
t in the positive semidef-

inite sense. To see this result we write At = (H ′tHt)
−1H ′t + Bt for some Bt ∈ Rn×t, and then

Cov(AtYt|Ht) = σ2U−1
t + σ2BtB

′
t, where BtB

′
t is a positive semidefinite matrix.

The recursive least squares (RLS) algorithm enables us to compute X̂t in a recursive way as follows

X̂t = X̂t−1 +Kt(yt −H ′tX̂t−1)

where Kt =
P t−1Ht

1 +H ′tP t−1Ht
and P t = P t−1 −KtH

′
tP t−1,

(6)

where Kt ∈ Rn is a gain vector and P t = U−1
t . While applying RLS we first initialize X̂0 = 0 and

P 0 = δ−1I , where 0 represents a zero vector and δ is a small number, and then at each time t compute

Kt, X̂t and P t as in (6).

III. OPTIMUM SEQUENTIAL ESTIMATION

In this section we aim to find the optimal pair (T, X̂T) of stopping time and estimator corresponding

to the optimal sequential estimator. The stopping time for a sequential estimator is determined according
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to a target estimation accuracy. In general, the average stopping time is minimized subject to a constraint

on the estimation accuracy, which is a function of the estimator covariance, i.e.,

min
T ,X̂T

E[T ] s.t. f
(
Cov(X̂T )

)
≤ c, (7)

where f(·) is a function from Rn×n to R and c ∈ R is the target accuracy level.

The accuracy function f should be a monotonic function of the covariance matrix Cov(X̂T ), which is

positive semi-definite, in order to make consistent accuracy assessments, e.g., f(Cov(X̂T )) > f(Cov(X̂S))

for T < S since Cov(X̂T ) � Cov(X̂S) in the positive definite sense. Two popular and easy-to-compute

choices are the trace Tr(·), which corresponds to the mean squared error (MSE), and the Frobenius norm

‖ · ‖F . Before handling the problem in (7), let us explain why we are interested in restricted stopping

times that are adapted to a subset of observation history.

Denote {Ft} as the filtration that corresponds to the samples {y1, . . . , yt} where Ft = σ{y1, . . . , yt}
is the σ-algebra generated by the samples observed up to time t, i.e., the accumulated history related

to the observed samples, and F0 is the trivial σ-algebra. Similarly we define the filtration {Ht} where

Ht = σ{H1, . . . ,Ht} and H0 is again the trivial σ-algebra. Firstly, the optimal stopping theory for

multi-dimensional observations is intractable. Secondly, it is known that, in general, with discrete-time

observations the sequential CRLB for an unrestricted {Ft ∪Ht}-adapted stopping time is not attainable

under any noise distribution except for the Bernoulli noise [27]. On the other hand, in the case of

continuous-time observations with continuous paths, the sequential CRLB for an unrestricted stopping

time is attained by the LS estimator with an {Ht}-adapted stopping time, that depends only on HT [18].

Furthermore, in the following lemma we show that, with discrete-time observations, the LS estimator with

an {Ht}-adapted stopping time attains the conditional sequential CRLB for the {Ht}-adapted stopping

times. Note that the (conditional) sequential CRLB for the {Ht}-adapted stopping times is not the same

as that for the {Ft ∪Ht}-adapted stopping times. The latter is tighter since an {Ht}-adapted stopping

time is also {Ft ∪Ht}-adapted.

Lemma 1. With a monotonic accuracy function f and an {Ht}-adapted stopping time T we can write

f
(
Cov(X̂T |HT )

)
≥ f

(
σ2U−1

T
)

(8)

for all unbiased estimators under Gaussian noise, and for all linear unbiased estimators under non-

Gaussian noise, and the LS estimator

X̂T = U−1
T VT , U t = H ′tHt, VT , H ′T YT , (9)
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satisfies the inequality in (8) with equality.

Proof: Since the LS estimator, with Cov(X̂t|Ht) = σ2U−1
t , is the MVUE under Gaussian noise and

the BLUE under non-Gaussian noise, we write

f
(
Cov(X̂T |HT )

)
= f

(
E

[ ∞∑
t=1

(X̂t −X)(X̂t −X)′ 1{t=T }
∣∣Ht

])

= f

( ∞∑
t=1

E
[
(X̂t −X)(X̂t −X)′

∣∣Ht

]
1{t=T }

)
(10)

≥ f
( ∞∑
t=1

σ2U−1
t 1{t=T }

)
(11)

= f
(
σ2U−1

T
)
, (12)

for all unbiased estimators under Gaussian noise and for all linear unbiased estimators under non-Gaussian

noise. The indicator function 1{A} = 1 if A is true, and 0 otherwise. We used the facts that the event

{T = t} is Ht-measurable and E[(X̂t −X)(X̂t −X)′|Ht] = Cov(X̂t|Ht) ≥ σ2U−1
t to write (10) and

(11), respectively.

Hence, we here consider {Ht}-adapted stopping times, as in [18], [19], [28].

A. The Optimum Sequential Estimator

In this case we assume {Ht} are i.i.d.. From the constrained optimization problem in (7), using a

Lagrange multiplier λ we obtain the following unconstrained optimization problem,

min
T ,X̂T

E[T ] + λf
(
Cov(X̂T )

)
. (13)

For simplicity assume a linear accuracy function f so that f(E[·]) = E[f(·)], e.g., the trace function

Tr(·). Then, our constraint function becomes the sum of the individual variances, i.e., Tr
(
Cov(X̂T )

)
=∑n

i=1 Var(x̂
i
T ). Since Tr

(
Cov(X̂T )

)
= Tr

(
E
[
Cov(X̂T |HT )

])
= E

[
Tr
(
Cov(X̂T |HT )

)]
, we rewrite

(13) as

min
T ,X̂T

E
[
T + λTr

(
Cov(X̂T |HT )

)]
, (14)

where the expectation is with respect to HT . From Lemma 1, we see that Tr
(
Cov(X̂T |HT )

)
is

minimized by the LS estimator, and so is the objective value in (14). Hence, X̂T given in (9) [cf.

(6) for recursive computation] is the optimum estimator for the problem in (7).
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Since Tr
(
Cov(X̂T |HT )

)
= Tr

(
σ2U−1

T
)
, to find the optimal stopping time we need to solve the

following optimization problem,

min
T

E
[
T + λTr

(
σ2U−1

T
)]
, (15)

which can be solved by using the optimal stopping theory. Writing (15) in the following alternative form

min
T

E

[T −1∑
t=0

1 + λTr
(
σ2U−1

T
)]
, (16)

we see that the term
∑T −1

t=0 1 accounts for the cost of not stopping until time T and the term λTr
(
σ2U−1

T
)

represents the cost of stopping at time T . Note that U t = U t−1 + HtH
′
t and given U t−1 the current

state U t is (conditionally) independent of all previous states, hence {U t} is a Markov process. That is,

in (16), the optimal stopping time for a Markov process is sought, which can be found by solving the

following Bellman equation

V(U) = min
{
λTr

(
σ2U−1

)︸ ︷︷ ︸
F (U )

, 1 + E[V(U +H1H
′
1)|U ]︸ ︷︷ ︸

G(U )

}
, (17)

where the expectation is with respect to H1 and V is the optimal cost function. The optimal cost function

is obtained by iterating a sequence of functions {Vm} where V(U) = limm→∞ Vm(U) and

Vm(U) = min
{
λTr

(
σ2U−1

)
, 1 + E[Vm−1(U +H1H

′
1)|U ]

}
.

In the above optimal stopping theory, dynamic programming is used. Specifically, the original complex

optimization problem in (15) is divided into simpler subproblems given by (17). At each time t we are

faced with a subproblem consisting of a stopping cost F (U t) = λTr
(
σ2U−1

t

)
and an expected sampling

cost G(U t) = 1 + E[V(U t+1)|U t] to proceed to time t+ 1. Since {U t} is a Markov process, and {Ht}
are i.i.d., (17) is a general equation holding for all t, and thus we drop the time subscript for simplicity.

The optimal cost function V(U t), selecting the action with minimum cost (i.e., either continue or stop),

determines the optimal policy to follow at each time t. That is, we stop the first time the stopping cost

is smaller than the average cost of sampling, i.e.,

T = min{t ∈ N : V(U t) = F (U t)}.

We obviously need to analyze the structure of V(U t), i.e., the cost functions F (U t) and G(U t), to find

the optimal stopping time T. We refer to [31] for more information on optimal stopping theory.

Note that V , being a function of the symmetric matrix U = [uij ] ∈ Rn×n, is a function of n2+n
2

variables {uij : i ≤ j}. Analyzing a multi-dimensional optimal cost function proves intractable, hence we

will first analyze the special case of scalar parameter estimation and then provide some numerical results

for the two-dimensional vector case, demonstrating how intractable the higher dimensional problems are.
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1) Scalar case: For the scalar case, from (17) we have the following one-dimensional optimal cost

function,

V(u) = min

{
λσ2

u
, 1 + E[V(u+ h2

1)|u]

}
, (18)

where the expectation is with respect to the scalar coefficient h1. Specifically, at time t the optimal cost

function is written as V(ut) = min
{
λσ2

ut
, 1 + E[V(ut+1)|ut]

}
, where ut+1 = ut + h2

t+1. Writing V as

a function of zt , 1/ut we have V(zt) = min
{
λσ2zt, 1 + E[V(zt+1)|zt]

}
, where zt+1 = zt

1+zth2
t+1

, and

thus in general

V(z) = min

{
λσ2z︸ ︷︷ ︸
F (z)

, 1 + E

[
V
(

z

1 + zh2
1

)
|z
]

︸ ︷︷ ︸
G(z)

}
. (19)

We need to analyze the cost functions F (z) = λσ2z and G(z) = 1 + E
[
V
(

z
1+zh2

1

)
|z
]
. The former is a

line, whereas the latter is, in general, a nonlinear function of z. We have the following lemma regarding

the structure of V(z) and G(z). Its proof is given in the Appendix.

Lemma 2. The optimal cost V and the expected sampling cost G, given in (19), are non-decreasing,

concave and bounded functions of z.

Following Lemma 2 the theorem below presents the stopping time for the scalar case of the problem

in (7).

Theorem 1. The optimal stopping time for the scalar case of the problem in (7) with Tr(·) as the accuracy

function is given by

T = min

{
t ∈ N : ut ≥

1

ć

}
, (20)

where ć is selected so that E
[
σ2

uT

]
= c, i.e., the variance of the estimator exactly hits the target accuracy

level c, (see Algorithm 1).

Proof: The cost functions F (z) and G(z) are continuous functions as F is linear and G is concave.

From (19) we have V(0) = min{0, 1 + V(0)} = 0, hence G(0) = 1 + V(0) = 1. Then, using Lemma

2 we illustrate F (z) and G(z) in Fig. 1. The optimal cost function V(z), being the minimum of F and

G [see (19)], is also shown in Fig. 1. Note that as t increases z tends from infinity to zero. Hence, we

continue until the stopping cost F (zt) is lower than the expected sampling cost G(zt), i.e., until zt ≤ ć.
The threshold ć(λ) = {z : F (λ, z) = G(z)} is determined by the Lagrange multiplier λ, which is selected

to satisfy the constraint Var(x̂T) = E
[
σ2

uT

]
= c [cf. (13)]. In Algorithm 1, we show how to determine

the threshold ć.
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V(z)
G(z)
F (z)

1

0 z
ć

t incr.

Fig. 1. The structures of the optimal cost function V(z) and the cost functions F (z) and G(z).

Algorithm 1 The procedure to compute the threshold ć for given c
1: Select ć
2: Estimate C = E

[
σ2

uT

]
through simulations, where ut =

∑t
p=1 h

2
p and T = min

{
t ∈ N : ut ≥ 1

ć

}
3: if C = c then
4: return ć
5: else
6: if C > c then
7: Decrease ć
8: else
9: Increase ć

10: end if
11: Go to line 2
12: end if

We see from Theorem 1 that the optimum stopping time in the scalar case is given by a threshold rule

on the Fisher information.

2) Two-dimensional case: We will next show that the multi-dimensional cases are intractable by

providing some numerical results for the two-dimensional case. In the two-dimensional case, we have

Tr
(
σ2U−1

)
= σ2 u11 + u22

u11u22 − u2
12

where U =

 u11 u12

u12 u22

 , H1 =

 h1,1

h1,2

 .
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Hence, from (17) the optimal cost function is written as

V(u11, u12, u22) = min

{
λσ2 u11 + u22

u11u22 − u2
12

, 1 + E
[
V(u11 + h2

1,1, u12 + h1,1h1,2, u22 + h2
1,2)|U

]}
,

(21)

where the expectation is with respect to h1,1 and h1,2. Changing variables we can write V as a function

of z11 , 1/u11, z22 , 1/u22 and ρ , u12/
√
u11u22,

V(z11, z22, ρ) =

min

{
λσ2 z11 + z22

1− ρ2︸ ︷︷ ︸
F (z11,z22,ρ)

, 1 + E

[
V
(

z11

1 + z11h2
1,1

,
z22

1 + z22h2
1,2

,
ρ+ h1,1h1,2

√
z11z22√

(1 + z11h2
1,1)(1 + z22h2

1,2)

)∣∣∣z11, z22, ρ

]
︸ ︷︷ ︸

G(z11,z22,ρ)

}
,

(22)

which can be iteratively computed as follows

Vm(z11, z22, ρ) =

min

{
λσ2 z11 + z22

1− ρ2
, 1+E

[
Vm−1

(
z11

1 + z11h2
1,1

,
z22

1 + z22h2
1,2

,
ρ+ h1,1h1,2

√
z11z22√

(1 + z11h2
1,1)(1 + z22h2

1,2)

)∣∣∣z11, z22, ρ

]}
,

(23)

where limm→∞ Vm = V .

Note that ρ is the correlation coefficient, hence we have ρ ∈ [−1, 1]. Following the procedure in

Algorithm 2 we numerically compute V from (23) and find the boundary surface

S (λ) = {(z11, z22, ρ) : F (λ, z11, z22, ρ) = G(z11, z22, ρ)},

that defines the stopping rule. In Algorithm 2, firstly the three-dimensional grid (n1dz, n2dz, n3dr),

n1, n2 = 0, . . . , Rz
dz , n3 = − 1

dr , . . . ,
1
dr is constructed. Then, in lines 4-6 the stopping cost F [cf. (22)]

and in line 7 the first iteration of the optimal cost function V1 with V0 = 0 are computed over the grid.

In lines 9-28, the optimal cost function V is computed for each point in the grid by iterating Vm [cf.

(23)] until no significant change occurs between Vm and Vm+1. In each iteration, in lines 13-21, the

expectation in (23) with respect to h1,1 and h1,2 is computed through Monte Carlo calculations. While

computing the expectation, since the updated (future) (z11, z22, ρ) values, i.e, the arguments of Vm−1 in

(23), in general may not correspond to a grid point, we average the Vm−1 values of eight neighboring

grid points with appropriate weights in lines 17-20 to obtain the desired Vm−1 value.

The results for λ ∈ {0.01, 1, 100}, σ2 = 1 and h1,1, h1,2 ∼ N (0, 1) are shown in Fig. 2 and Fig. 3.

For λ = 1, the dome-shaped surface in Fig. 2 separates the stopping region from the continuing region.
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Algorithm 2 The procedure to compute the boundary surface S for given λ
1: Set dz, Rz, dr, Nh; Nz = Rz

dz + 1; Nr = 2
dr + 1

2: z1 = [0 : dz : Rz]; z2 = z1; ρ = [−1 : dr : 1] {all row vectors}
3: Z1 = 1Nzz1; Z2 = Z ′1 {1Nz: column vector of ones in RNz}
4: for i = 1 : Nr do
5: F (:, :, i) = λ Z1+Z2

1−ρ(i)2 {stopping cost over the 3D grid}
6: end for
7: V = min(F, 1) {start with V0 = 0}
8: dif =∞; Fr = ‖V‖F
9: while dif > δ Fr {δ: a small threshold} do

10: for i = 1 : Nz2 do
11: z11 = Z1(i); z22 = Z2(i) {linear indexing in matrices}
12: for j = 1 : Nr do
13: Generate hNh×1

1 and hNh×1
2 {e.g., according to N (0, 1)}

14: Z ′11 = z11./(1 + z11h1.
2); Z ′22 = z22./(1 + z22h2.

2) {dot denotes elementwise operation}
15: ρ′ = [ρ(j) + h1. ∗ h2

√
z11z22]./

√
(1 + z11h1.2)(1 + z22h2.2) {vector}

16: I1 = Z ′11/dz + 1; I2 = Z ′22/dz + 1; I3 = (ρ′ + 1)/dr + 1 {fractional indices}
17: J8×Nh = linear indices of 8 neighbor points using bInc, dIne, n = 1, 2, 3

18: Dn = dIne − In; Dn = 1−Dn, n = 1, 2, 3 {distances to neighbor indices}
19: W 8×Nh = weights for neighbors as 8 multiplicative combinations of Dn, Dn, n = 1, 2, 3

20: V Nh×1 = diag(W ′V(J)) {average the neighbor V values}
21: G = sum(V )/Nh {continuing cost}
22: ` = i+ (j − 1)Nz2 {linear index of the point the 3D grid}
23: V ′(`) = min(F (`), 1 +G) {new optimal cost function}
24: end for
25: end for
26: dif = ‖V ′ − V‖F ; Fr = ‖V‖F
27: V = V ′ {update the optimal cost function}
28: end while
29: Find the points where transition occurs between regions V = F and V 6= F , i.e., S .

Outside the “dome” V = G, hence we continue. As time progresses zt,11 and zt,22 decrease, so we move

towards the “dome”. And whenever we are inside the “dome” (e.g., at the fifth sample in Fig. 2), we stop,

i.e., V = F . We obtain similar dome-shaped surfaces for different λ values. However, the cross-sections

of the “domes” at specific ρt values differ significantly. In particular, we investigate the case of ρt = 0,

where the scaling coefficients ht,1 and ht,2 are uncorrelated. For small values of λ, e.g., λ = 0.01, the

boundary that separates the stopping and the continuing regions is highly nonlinear as shown in Fig. 3(a).

In Fig. 3(b) and 3(c), it is seen that the boundary tends to become more and more linear as λ increases.

Now let us explain the meaning of the λ value. Firstly, note from (22) that F and G are functions of
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Fig. 2. The surface that defines the stopping rule for λ = 1, σ2 = 1 and h1,1, h1,2 ∼ N (0, 1) in the two-dimensional case. A

sample path, which stops at the fifth sample, is also shown.

Fig. 3. The stopping regions for ρt = 0, σ2 = 1 and ht,1, ht,2 ∼ N (0, 1), ∀t with (a) λ = 0.01, (b) λ = 1, (c) λ = 100. That

of the conditional problem (see Section III-B) is also shown in (c).

z11, z22 for fixed ρ, and the boundary is the solution to F (λ, z11, z22) = G(z11, z22). When λ is small,

the region where F < G, i.e., the stopping region, is large, hence we stop early as shown in Fig. 3(a) 1.

Conversely, for large λ the stopping region is small, hence the stopping time is large [cf. Fig. 3(c)]. In

fact, the Lagrange multiplier λ is selected through simulations following the procedure in Algorithm 3

1Note that the axis scales in Fig. 3(a) are on the order of hundreds and zt,11, zt,22 decrease as t increases.
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Algorithm 3 The procedure to compute the boundary surface S
1: Select λ
2: Compute S (λ) as in Algorithm 2
3: Estimate C = E

[
σ2 zT,11+zT,22

1−ρ2T

]
through simulations, where zt,11 = 1/ut,11, zt,22 = 1/ut,22, ρt =

ut,12/
√
ut,11ut,22 and T = min{t ∈ N : (zt,11, zt,22, ρt) is between S and the origin}

4: if C = c then
5: return S

6: else
7: if C > c then
8: Increase λ
9: else

10: Decrease λ
11: end if
12: Go to line 2
13: end if

so that the constraint Tr
(
E
[
σ2U−1

T

])
= E

[
σ2 zT,11+zT,22

1−ρ2T

]
= c is satisfied. Note that line 2 of Algorithm

3 uses Algorithm 2 to compute the boundary surface S .

Remarks: In general, we need to numerically compute the stopping rule offline, i.e., the hypersurface

that separates the stopping and the continuing regions, for a given target accuracy level c. This becomes a

quite intractable task as the dimension n of the vector to be estimated increases as we find the separating

hypersurface in a n2+n
2 -dimensional space. Recall from (17) that the optimal cost function V is a function

of the matrix U , which has n2+n
2 distinct entries. On the other hand, conditioning the problem formulation

in (7) on the observed regressors {Ht}, we next show that, for any n, the optimum stopping rule takes a

simple one-dimensional form. We can much more easily decentralize such a tractable optimum solution

offered by the conditional formulation than the one given by the cumbersome procedure in Algorithm 2.

B. The Optimum Conditional Sequential Estimator

In the presence of an ancillary statistic whose distribution does not depend on the parameters to be

estimated, such as the regressor matrix Ht, the conditional covariance Cov(X̂t|Ht) can be used to assess

the accuracy of the estimator more precisely than the (unconditional) covariance, which is in fact the

mean of the former, i.e., Cov(X̂T ) = E[Cov(X̂t|Ht)], [28], [30]. Motivated by this fact we propose to

reformulate the problem in (7) conditioned on Ht, that is,

min
T ,X̂T

E[T ] s.t. f
(
Cov(X̂T |HT )

)
≤ c. (24)
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Note that the constraint in (24) is stricter than the one in (7) since it requires that X̂T satisfies the

target accuracy level for each realization of HT , whereas in (7) it is sufficient that X̂T satisfies the target

accuracy level on average. In other words, in (7), even if f
(
Cov(X̂T |HT )

)
> c for some realizations

of HT , we can still satisfy f
(
Cov(X̂T )

)
≤ c. In fact, we can always have f

(
Cov(X̂T )

)
= c by using

a probabilistic stopping rule such that we sometimes stop above c, i.e., f
(
Cov(X̂T |HT )

)
> c, and

the rest of the time at or below c, i.e., f
(
Cov(X̂T |HT )

)
≤ c. On the other hand, in (24) we always

have f
(
Cov(X̂T |HT )

)
≤ c, and moreover since we observe discrete-time samples, in general we have

f
(
Cov(X̂T |HT )

)
< c for each realization of HT . Hence, the optimal objective value E[T ] in (7) will,

in general, be smaller than that in (24). Note that on the other hand, if we observed continuous-time

processes with continuous paths, then we could always have f
(
Cov(X̂T |HT )

)
= c for each realization

of HT , and thus the optimal objective values of (24) and (7) would be the same.

Since minimizing T also minimizes E[T ], in (24) we want to find the first time that a member of our

class of estimators (i.e., unbiased estimators under Gaussian noise and linear unbiased estimators under

non-Gaussian noise) satisfies the constraint f
(
Cov(X̂T |HT )

)
≤ c, as well as the estimator that attains

this earliest stopping time. From Lemma 1, it is seen that the LS estimator, given by (9), among its

competitors, achieves the best accuracy level f
(
σ2U−1

T
)

at any {Ht}-adapted stopping time T . Hence,

for the conditional problem the optimum sequential estimator is composed of the stopping time

T = min{t ∈ N : f
(
σ2U−1

t

)
≤ c}, (25)

and the LS estimator

X̂T = U−1
T VT, (26)

which can be computed recursively as in (6). The recursive computation of U−1
t = P t in the test statistic

in (25) is also given in (6). Note that for an accuracy function f such that f(σ2U−1
t ) = σ2f(U−1

t ), e.g.,

Tr(·) and ‖ · ‖F , we can use the following stopping time,

T = min{t ∈ N : f
(
U−1
t

)
≤ c̄}, (27)

where c̄ = c
σ2 is the relative target accuracy with respect to the noise power. Hence, given c̄ we do not

need to know the noise variance σ2 to run the test given by (27). Note that U t = H ′tHt is a non-

decreasing positive semi-definite matrix, i.e., U t � U t−1, ∀t, in the positive semi-definite sense. Thus,

from the monotonicity of f , the test statistic f
(
σ2U−1

t

)
is a non-increasing scalar function of time.

Specifically, for accuracy functions Tr(·) and ‖ · ‖F we can show that if the minimum eigenvalue of U t

tends to infinity as t→∞, then the stopping time is finite, i.e., T <∞.
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In the conditional problem, for any n, we have a simple stopping rule given in (27), which uses

the target accuracy level c
σ2 as its threshold, hence known beforehand. For the special case of scalar

parameter estimation, we do not need a function f to assess the accuracy of the estimator since instead

of a covariance matrix we now have a variance σ2

ut
, where ut =

∑t
p=1 h

2
p and ht is the scaling coefficient

in (1). Hence, from (27) the stopping time in the scalar case is given by

T = min

{
t ∈ N : ut ≥

1

c̄

}
, (28)

where ut
σ2 is the Fisher information at time t. That is, we stop the first time the gathered Fisher information

exceeds the threshold 1/c, which is known.

Note that the optimal stopping time in the scalar case of the unconditional problem, given by (20), is

of the same form as in (28). In both conditional and unconditional problems the LS estimator

x̂T =
vT
uT

is the optimal estimator. The fundamental difference between the optimal stopping times in (28) and (20)

is that the threshold c̄ = c
σ2 in the conditional problem is known beforehand; whereas the threshold ć in

the unconditional problem needs to be determined through offline simulations following the procedure

in Algorithm 1. We also observe that c̄ ≤ ć, hence the optimal objective value E[T] of the unconditional

problem is in general smaller than that of the conditional problem as noted earlier in this subsection.

This is because the upper bound σ2ć on the conditional variance σ2

uT
[cf. (20)] is also an upper bound for

the variance E
[
σ2

uT

]
= c, and the threshold c̄ is given by c̄ = c

σ2 .

In the two-dimensional case of the conditional problem with the accuracy function Tr(·), the optimal

stopping time is given by

T = min

{
t ∈ N :

zt,11 + zt,22

1− ρ2
t

≤ c

σ2

}
,

which is a function of zt,11 +zt,22 for fixed ρt. In Fig. 3(c), where ρt = 0 and σ2 = 1, the stopping region

(resp. average stopping time) of the conditional problem, which is characterized by a line, is shown to

be smaller (resp. larger) than that of the unconditional problem due to the same reasoning in the scalar

case.

IV. DECENTRALIZED SEQUENTIAL ESTIMATION

In this section, we propose a computation- and energy-efficient decentralized estimator based on

the optimum conditional sequential estimator and level-triggered sampling. Consider a network of K

distributed sensors and a fusion center (FC) which is responsible for determining the stopping time and
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computing the estimator. In practice, due to the stringent energy constraints, sensors must infrequently

convey low-rate information to the FC, which is the main concern in the design of a decentralized

sequential estimator.

As in (1) each sensor k observes

ykt = (Hk
t )′X + wkt , t ∈ N, k = 1, . . . ,K, (29)

as well as the regressor vector Hk
t = [hkt,1, . . . , h

k
t,n]′ at time t, where {wkt }k,t 2 are independent, zero-

mean, i.e., E[wkt ] = 0, ∀k, t, and Var(wkt ) = σ2
k, ∀t. Then, similar to (3) the weighted least squares

(WLS) estimator

X̂t = arg min
X

K∑
k=1

t∑
p=1

(
ykp − (Hk

p )′X
)2

σ2
k

is given by

X̂t =

 K∑
k=1

t∑
p=1

Hk
p (Hk

p )′

σ2
k

−1
K∑
k=1

t∑
p=1

Hk
p y

k
p

σ2
k

= Ū
−1
t V̄t (30)

where Ū
k
t ,

1
σ2
k

∑t
p=1H

k
p (Hk

p )′, V̄ k
t , 1

σ2
k

∑t
p=1H

k
p y

k
p , Ū t =

∑K
k=1 Ū

k
t and V̄t =

∑K
k=1 V̄

k
t . As before

it can be shown that the WLS estimator X̂t in (30) is the BLUE under the general noise distributions.

Moreover, in the Gaussian noise case, where wkt ∼ N (0, σ2
k) ∀t for each k, X̂t is also the MVUE.

Following the steps in Section III-B it is straightforward to show that the optimum sequential estimator

for the conditional problem in (24) is given by the stopping time

T = min
{
t ∈ N : f

(
Ū
−1
t

)
≤ c
}
, (31)

and the WLS estimator X̂T [cf. (30)]. Note that (T, X̂T) is achievable only in the centralized case, where

all local observations until time t, i.e., {(ykp , Hk
p )}k,p 3, are available to the FC. Local processes {Ūk

t }k,t
and {V̄ k

t }k,t are used to compute the stopping time and the estimator as in (31) and (30), respectively.

On the other hand, in a decentralized system the FC can compute approximations Ũ
k

t and Ṽ k
t , and then

use these approximations to compute the stopping time and estimator as in (31) and (30), respectively.

A. Key Approximations in Decentralized Approach

If each sensor k reports Ū
k
t ∈ Rn×n and V̄ k

t ∈ Rn to the FC in a straightforward way, then O(n2)

terms need to be transmitted, which may not be practical, especially for large n, in a decentralized setup.

2The subscripts k and t in the set notation denote k = 1, . . . ,K and t ∈ N.
3The subscript p in the set notation denotes p = 1, . . . , t.
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Similarly, in the literature, the distributed implementation of the Kalman filter, which covers RLS as a

special case, through its inverse covariance form, namely the information filter, requires the transmission

of an n× n information matrix and an n× 1 information vector e.g., [32].

To overcome this problem, considering Tr(·) as the accuracy function f in (31), we propose to transmit

only the n diagonal entries of Ūk
t for each k, yielding linear complexity O(n). Using the diagonal entries

of Ū t we define the diagonal matrix

Dt , diag (dt,1, . . . , dt,n)

where dt,i =

K∑
k=1

t∑
p=1

(hkp,i)
2

σ2
k

, i = 1, . . . , n.
(32)

We further define the correlation matrix

R =


1 r12 · · · r1n

r12 1 · · · r2n

...
...

. . .
...

r1n r2n · · · 1

 , (33)

where rij =

∑K
k=1

E[hkt,ih
k
t,j ]

σ2
k√∑K

k=1
E[(hkt,i)

2]

σ2
k

∑K
k=1

E[(hkt,j)
2]

σ2
k

, i, j = 1, . . . , n.

Proposition 1. For sufficiently large t, we can make the following approximations,

Ū t
∼= D

1/2
t R D

1/2
t

and Tr
(
Ū
−1
t

)
∼= Tr

(
D−1
t R−1

)
.

(34)

Proof: The approximations are motivated from the special case where E[hkt,ih
k
t,j ] = 0, ∀k, i, j =

1, . . . , n, i 6= j. In this case, by the law of large numbers for sufficiently large t the off-diagonal elements

of
¯U t

t vanish, and thus we have
¯U t

t
∼= Dt

t and Tr(Ū
−1
t ) ∼= Tr(D−1

t ). For the general case where we

might have E[hkt,ih
k
t,j ] 6= 0 for some k and i 6= j, using the diagonal matrix Dt we write

Tr
(
Ū
−1
t

)
= Tr

((
D

1/2
t D

−1/2
t Ū tD

−1/2
t︸ ︷︷ ︸

Rt

D
1/2
t

)−1
)

(35)

= Tr
(
D
−1/2
t R−1

t D
−1/2
t

)
= Tr

(
D−1
t R−1

t

)
. (36)

Note that each entry rt,ij of the newly defined matrix Rt is a normalized version of the corresponding

entry ūt,ij of Ū t. Specifically, rt,ij = ūt,ij√
dt,idt,j

= ūt,ij√
ūt,iiūt,jj

, i, j = 1, . . . , n, where the last equality
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follows from the definition of dt,i in (32). Hence, Rt has the same structure as in (33) with entries

rt,ij =

∑K
k=1

∑t
p=1

hkp,ih
k
p,j

σ2
k√∑K

k=1

∑t
p=1

(hkp,i)
2

σ2
k

∑K
k=1

∑t
p=1

(hkp,j)
2

σ2
k

, i, j = 1, . . . , n.

For sufficiently large t, by the law of large numbers

rt,ij ∼= rij =

∑K
k=1

E[hkt,ih
k
t,j ]

σ2
k√∑K

k=1
E[(hkt,i)

2]

σ2
k

∑K
k=1

E[(hkt,j)
2]

σ2
k

(37)

and Rt
∼= R, where R is given in (33). Hence, for sufficiently large t we can make the approximations

in (34) using (35) and (36).
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Fig. 4. The accuracy term Tr
(
Ū

−1
t

)
and its approximation Tr

(
D−1
t R−1

)
proposed in (34) across time. Both uncorrelated

(rij = 0, ∀i, j) and correlated (rij = 0.5, ∀i, j) parameters are investigated.

Fig. 4 corroborates the accuracy approximation in (34).

Then, assuming that the FC knows the correlation matrix R, i.e.,
{
E[hkt,ih

k
t,j ]
}
i,j,k

4 and
{
σ2
k

}
[cf.

4The subscripts i and j in the set notation denote i = 1, . . . , n and j = i, . . . , n. In the special case where E[(hkt,i)
2] =

E[(hmt,i)
2], k,m = 1, . . . ,K, i = 1, . . . , n, the correlation coefficientsξkij =

E[hkt,ih
k
t,j ]√

E[(hkt,i)
2]E[(hkt,j)

2]
: i = 1, . . . , n− 1, j = i+ 1, . . . , n


k
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(33)], it can compute the approximations in (34) if sensors report their local processes
{
Dk
t

}
k,t

to the

FC, where Dt =
∑K

k=1 D
k
t . Note that each local process

{
Dk
t

}
t

is n-dimensional, and its entries at

time t are given by
{
dkt,i =

∑t
p=1

(hkp,i)
2

σ2
k

}
i

[cf. (32)]. Hence, we propose that each sensor k sequentially

reports the local processes {Dk
t }t and {V̄ k

t }t to the FC, achieving linear complexity O(n). On the other

side, the FC, using the information received from sensors, computes the approximations {D̃t} and {Ṽt},
which are then used to compute the stopping time

T̃ = min
{
t ∈ N : Tr

(
Ũ
−1

t

)
≤ c̃
}
, (38)

and the estimator

X̃T̃ = Ũ
−1

T̃ ṼT̃ (39)

similar to (31) and (30), respectively. The approximations Tr
(
Ũ
−1

t

)
in (38) and Ũ T̃ in (39) are computed

using D̃t as in (34). The threshold c̃ is selected through simulations to satisfy the constraint in (24) with

equality, i.e., Tr
(
Cov

(
X̃T̃|H T̃

))
= c.

B. Decentralized Sequential Estimator Based on Level-triggered Sampling

Level-triggered sampling provides a very convenient way of information transmission in decentralized

systems [19], [22]. Specifically, decentralized methods based on level-triggered sampling, transmitting

low-rate information, enable highly accurate approximations and thus high performance schemes at the

FC. They significantly outperform conventional decentralized methods which sample local processes using

the traditional uniform sampling and send the quantized versions of samples to the FC [19], [23].

Existing methods employ level-triggered sampling to report a scalar local process to the FC. Using a

similar procedure to report each distinct entry of Ūk
t and V̄ k

t we need O(n2) parallel procedures, which

may be prohibitive in a decentralized setup for large n. Hence, we propose to use the approximations

introduced in the previous subsection, achieving linear complexity O(n). Moreover, for highly accurate

approximations, existing methods transmit multiple bits of information per sample to overcome the

overshoot problem, which again can be cumbersome even with O(n) parallel procedures. To that end, we

propose an alternative way to handle the overshoot problem. Particularly, in the proposed decentralized

estimator, the overshoot in each sample is encoded in time by transmitting a single pulse with very short

duration, which greatly helps comply with the stringent energy constraints.

together with
{
σ2
k

}
are sufficient statistics since rij =

∑K
k=1 ξ

k
ij/σ

2
k∑K

k=1
1/σ2

k

from (37).
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Fig. 5. Illustration of sampling time sm, transmission time tm, transmission delay δm and overshoot qm. We encode qm =

(dsm − dsm−1)−∆ < θd in δm = tm − sm < 1 using the slope φd > θd.

We will next describe the proposed decentralized estimator based on level-triggered sampling in which

each sensor non-uniformly samples the local processes {Dk
t }t and {V̄ k

t }t, transmits a single pulse for

each sample to the FC, and the FC computes {D̃t} and {Ṽt} using received information.

1) Sampling and Recovery of Dk
t : Each sensor k samples each entry dkt,i of Dk

t at a sequence of

random times {skm,i}m 5 given by

skm,i , min
{
t ∈ N : dkt,i − dkskm−1,i,i

≥ ∆k
i

}
, sk0,i = 0, (40)

where dkt,i =
∑t

p=1
(hkp,i)

2

σ2
k
, dk0,i = 0 and ∆k

i > 0 is a constant threshold that controls the average sampling

interval. Note that the sampling times {skm,i}m in (40) are dynamically determined by the signal to be

sampled, i.e., realizations of dkt,i. Hence, they are random, whereas sampling times in the conventional

uniform sampling are deterministic with a certain period. According to the sampling rule in (40), a sample

is taken whenever the signal level dkt,i increases by at least ∆k
i since the last sampling time. Note that

dkt,i =
∑t

p=1
(hkp,i)

2

σ2
k

is non-decreasing in t.

After each sampling time skm,i, sensor k transmits a single pulse to the FC at time tkm,i , skm,i + δkm,i,

indicating that dkt,i has increased by at least ∆k
i since the last sampling time skm−1,i. The delay δkm,i

between the transmission time and the sampling time is used to linearly encode the overshoot

qkm,i ,
(
dkskm,i,i − d

k
skm−1,i,i

)
−∆k

i , (41)

5The subscript m in the set notation denotes m ∈ N.
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and given by

δkm,i =
qkm,i
φd
∈ [0, 1), (42)

where φ−1
d is the slope of the linear encoding function, as shown in Fig. 5, known to sensors and the

FC.

Assume a global clock, that is, the time index t ∈ N is the same for all sensors and the FC, meaning

that the FC knows the potential sampling times. Assume further ultra-wideband (UWB) channels between

sensors and the FC, in which the FC can determine the time of flight of pulses transmitted from sensors.

Then, FC can measure the transmission delay δkm,i if it is bounded by unit time, i.e., δkm,i ∈ [0, 1). To

ensure this, from (42), we need to have φd > qkm,i, ∀k,m, i. Assuming a bound for overshoots, i.e.,

qkm,i < θd, ∀k,m, i, we can achieve this by setting φd > θd.

Consequently, the FC can uniquely decode the overshoot by computing qkm,i = φdδ
k
m,i (cf. Fig. 5), using

which it can also find the increment occurred in dkt,i during the interval (skm−1,i, s
k
m,i] as dk

skm,i,i
−dk

skm−1,i,i
=

∆k
i + qkm,i from (41). It is then possible to reach the signal level dk

skm,i,i
by accumulating the increments

occurred until the m-th sampling time, i.e.,

dkskm,i,i =

m∑
`=1

(
∆k
i + qk`,i

)
= m∆k

i +

m∑
`=1

qk`,i. (43)

Using
{
dk
skm,i,i

}
m

the FC computes the staircase approximation d̃kt,i as

d̃kt,i = dkskm,i,i, t ∈ [tkm,i, t
k
m+1,i), (44)

which is updated when a new pulse is received from sensor k, otherwise kept constant. Such approximate

local signals of different sensors are next combined to obtain the approximate global signal d̃t,i as

d̃t,i =

K∑
k=1

d̃kt,i. (45)

In practice, when the m-th pulse in the global order regarding dimension i is received from sensor km

at time tm,i, instead of computing (43)–(45) the FC only updates d̃t,i as

d̃tm,i,i = d̃tm−1,i,i + ∆km
i + qm,i, d̃0,i = ε, (46)

and keeps it constant when no pulse arrives. We initialize d̃t,i to a small constant ε to prevent dividing

by zero while computing the test statistic [cf. (47)].

Note that in general d̃tm,i,i 6= dsm,i,i unlike (44) since all sensors do not necessarily sample and transmit

at the same time. The approximations
{
d̃t,i
}
i

form D̃t = diag(d̃t,1, . . . , d̃t,n), which is used in (38) and

(39) to compute the stopping time and the estimator, respectively. Note that to determine the stopping
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time as in (38) we need to compute Tr
(
Ũ
−1

t

)
using (34) at times

{
tm
}

when a pulse is received from

any sensor regarding any dimension. Fortunately, when the m-th pulse in the global order is received

from sensor km at time tm regarding dimension im we can compute Tr
(
Ũ
−1

tm

)
recursively as follows

Tr
(
Ũ
−1

tm

)
= Tr

(
Ũ
−1

tm−1

)
−
κim(∆km

im
+ qm)

d̃tm,im d̃tm−1,im

, Tr
(
Ũ
−1

0

)
=

n∑
i=1

κi
ε
, (47)

where κi is the i-th diagonal element of the inverse correlation matrix R−1, known to the FC. In (47)

pulse arrival times are assumed to be distinct for the sake of simplicity. In case multiple pulses arrive at

the same time, the update rule will be similar to (47) except that it will consider all new arrivals together.

2) Sampling and Recovery of V̄ k
t : Similar to (40) each sensor k samples each entry v̄kt,i of V̄ k

t at a

sequence of random times
{
αkm,i

}
m

written as

αkm,i , min
{
t ∈ N :

∣∣v̄kt,i − v̄kαkm−1,i,i

∣∣ ≥ γki } , αk0,i = 0, (48)

where v̄kt,i =
∑t

p=1
hkp,iy

k
p

σ2
k

and γki is a constant threshold, available to both sensor k and the FC. It has

been shown in [23, Section IV-B] that γki = γi can be determined by

γi tanh
(γi

2

)
=

1

R

K∑
k=1

|E[v̄k1,i]| (49)

to ensure that the FC receives messages with an average rate of R messages per unit time interval. Since

v̄kt,i is neither increasing nor decreasing, we use two thresholds γki and −γki in the sampling rule given

in (48). Specifically, a sample is taken whenever v̄kt,i increases or decreases by at least γki since the

last sampling time. Then, sensor k at time pkm,i , αkm,i + βkm,i transmits a single pulse bkm,i to the FC,

indicating whether v̄kt,i has changed by at least γki or −γki since the last sampling time αkm−1,i. We can

simply write bkm,i as

bkm,i = sign
(
v̄kαkm,i,i − v̄

k
αkm−1,i,i

)
, (50)

where bkm,i = 1 implies that v̄k
αkm,i,i

−v̄k
αkm−1,i,i

≥ γki and bkm,i = −1 indicates that v̄k
αkm,i,i

−v̄k
αkm−1,i,i

≤ −γki .

The overshoot ηkm,i ,
∣∣v̄k
αkm,i,i

− v̄k
αkm−1,i,i

∣∣ − γki is linearly encoded in the transmission delay as before.

Similar to (42) the transmission delay is written as βkm,i =
ηkm,i
φv

, where φ−1
v is the slope of the encoding

function, available to sensors and the FC.

Assume again that (i) there exists a global clock among sensors and the FC, (ii) the FC determines

channel delay (i.e., time of flight), and (iii) overshoots are bounded by a constant, i.e., ηkm,i < θv, ∀k,m, i,
and we set φv > θv. With these assumptions we ensure that the FC can measure the transmission delay
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Algorithm 4 The level-triggered sampling procedure at the k-th sensor for the i-th dimension
1: Initialization: t← 0, m← 0, `← 0, χ← 0, ψ ← 0

2: while χ < ∆k
i and ψ ∈ (−γki , γki ) do

3: t← t+ 1

4: χ← χ+
(hkt,i)

2

σ2
k

5: ψ ← ψ +
hkt,iy

k
t

σ2
k

6: end while
7: if χ ≥ ∆k

i {sample dkt,i} then
8: m← m+ 1

9: skm,i = t

10: Send a pulse to the fusion center at time instant tkm,i = skm,i +
χ−∆k

i

φd

11: χ← 0

12: end if
13: if ψ 6∈ (−γki , γki ) {sample v̄kt,i} then
14: `← `+ 1

15: αk`,i = t

16: Send bk`,i = sign(ψ) to the fusion center at time instant pk`,i = αk`,i +
|ψ|−γki
φv

17: ψ ← 0

18: end if
19: Stop if the fusion center instructs so; otherwise go to line 2.

βkm,i, and accordingly decode the overshoot as ηkm,i = φvβ
k
m,i. Then, upon receiving the m-th pulse bm,i

regarding dimension i from sensor km at time pm,i the FC performs the following update,

ṽpm,i,i = ṽpm−1,i,i + bm,i
(
γkmi + ηm,i

)
, (51)

where
{
ṽt,i
}
i

compose the approximation Ṽt = [ṽt,1, . . . , ṽt,n]′. Recall that the FC employs Ṽt to compute

the estimator as in (39).

The level-triggered sampling procedure at each sensor k for each dimension i is summarized in

Algorithm 4. Each sensor k runs n of these procedures in parallel. The sequential estimation procedure at

the FC is also summarized in Algorithm 5. We assumed, for the sake of clarity, that each sensor transmits

pulses to the FC for each dimension through a separate channel, i.e., parallel architecture. On the other

hand, in practice the number of parallel channels can be decreased to two by using identical sampling

thresholds ∆ and γ for all sensors and for all dimensions in (40) and (48), respectively. Moreover,

sensors can even employ a single channel to convey information about local processes {dkt,i} and {v̄kt,i}
by sending ternary digits to the FC. This is possible since pulses transmitted for {dkt,i} are unsigned.
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Algorithm 5 The sequential estimation procedure at the fusion center

1: Initialization: Tr←∑n
i=1

κi
ε , m← 1, `← 1, d̃i ← ε ∀i, ṽi ← 0 ∀i

2: while Tr < c̃ do
3: Wait to receive a pulse
4: if m-th pulse about dt,i arrives from sensor k at time t then
5: qm = φd(t− btc)
6: Tr← Tr − κi(∆

k
i+qm)

d̃i(d̃i+∆k
i+qm)

7: d̃i = d̃i + ∆k
i + qm

8: m← m+ 1

9: end if
10: if `-th pulse b` about vt,j arrives from sensor k at time t then
11: η` = φv(t− btc)
12: ṽj = ṽj + b`(γ

k
j + η`)

13: `← `+ 1

14: end if
15: end while
16: Stop at time T̃ = t

17: D̃ = diag(d̃1, . . . , d̃n), Ũ
−1

= D̃
−1/2

R−1D̃
−1/2

, Ṽ = [ṽ1, . . . , ṽn]′

18: X̃ = Ũ
−1
Ṽ

19: Instruct sensors to stop

C. Discussions

We introduced the decentralized estimator in Section IV-B initially for a continuous-time system with

infinite precision. In practice, due to bandwidth constraints, discrete-time systems with finite precision

are of interest. For example, in such systems, the overshoot qkm,i ∈
[
j θdN , (j + 1) θdN

)
, j = 0, 1, . . . , N −1,

is quantized into q̂km,i =
(
j + 1

2

)
θd
N where N is the number of quantization levels. More specifically, a

pulse is transmitted at time tkm,i = skm,i + j+1/2
N , where the transmission delay j+1/2

N ∈ (0, 1) encodes

q̂km,i. This transmission scheme is called pulse position modulation (PPM).

In UWB and optical communication systems, PPM is effectively employed. In such systems, N , which

denotes the precision, can be easily made large enough so that the quantization error |q̂km,i−qkm,i| becomes

insignificant. Compared to conventional transmission techniques which convey information by varying

the power level, frequency, and/or phase of a sinusoidal wave, PPM (with UWB) is extremely energy

efficient at the expense of high bandwidth usage since only a single pulse with very short duration is

transmitted per sample. Hence, PPM suits well to energy-constrained sensor network systems.
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D. Simulation Results

We next provide simulation results to compare the performances of the proposed scheme with linear

complexity, given in Algorithm 4 and Algorithm 5, the unsimplified version of the proposed scheme with

quadratic complexity and the optimal centralized scheme. A wireless sensor network with 10 identical

sensors and an FC is considered to estimate a 5-dimensional deterministic vector of parameters, i.e.,

n = 5. We assume i.i.d. Gaussian noise with unit variance at all sensors, i.e., wkt ∼ N (0, 1), ∀k, t. We

set the correlation coefficients {rij} [cf. (37)] of the vector Hk
t to 0 in Fig. 6 and 0.5 in Fig. 7 to

test the performance of the proposed scheme in the uncorrelated and correlated cases, respectively. We

compare the average stopping time performance of the proposed scheme with linear complexity to those

of the other two schemes for different MSE values. In Fig. 6 and Fig. 7, the horizontal axis represents

the signal-to-error ratio in dB, where nMSE , MSE
‖X‖22

, i.e., the MSE normalized by the square of the

Euclidean norm of the vector to be estimated.

| log10 nMSE|

A
ve
ra
ge
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to
p
p
in
g
T
im

e

Fig. 6. Average stopping time performances of the optimal centralized scheme and the decentralized schemes based on level-

triggered sampling with quadratic and linear complexity vs. normalized MSE values when scaling coefficients are uncorrelated,

i.e., rij = 0, ∀i, j.

In the uncorrelated case, where rij = 0, ∀i, j, i 6= j, the proposed scheme with linear complexity

nearly attains the performance of the unsimplified scheme with quadratic complexity as seen in Fig. 6.

This result is rather expected since in this case Ū t
∼= Dt for sufficiently large t, where Ū t and Dt are used

to compute the stopping time and the estimator in the unsimplified and simplified schemes, respectively.
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Strikingly the decentralized schemes (simplified and unsimplified) achieve very close performances to that

of the optimal centralized scheme, which is obviously unattainable in a decentralized system, thanks to the

efficient information transmission through level-triggered sampling. It is seen in Fig. 7 that the proposed

| log10 nMSE|
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to
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p
in
g
T
im

e

Fig. 7. Average stopping time performances of the optimal centralized scheme and the decentralized schemes based on level-

triggered sampling with quadratic and linear complexity vs. normalized MSE values when scaling coefficients are correlated

with rij = 0.5, ∀i, j.

simplified scheme exhibits an average stopping time performance close to those of the unsimplified

scheme and the optimal centralized scheme even when the scaling coefficients {hkt,i}i are correlated with

rij = 0.5, ∀i, j, i 6= j, justifying the simplification proposed in Section IV-A to obtain linear complexity.

In Fig. 8, we fix the normalized MSE value at 10−2 and plot average stopping time against the

correlation coefficient r where rij = r, ∀i, j, i 6= j. We observe an exponential growth in average

stopping time of each scheme as r increases. The average stopping time of each scheme becomes infinite

at r = 1 since in this case only some multiples of a certain linear combination of the parameters to be

estimated, i.e., hkt,1
∑n

i=1 cixi, are observed under the noise wkt at each sensor k at each time t, hence it

is not possible to recover the individual parameters. Specifically, it can be shown that ci =

√
E
[(
hkt,i

)2]
E
[(
hkt,1

)2] ,

which is the same for all sensors as we assume identical sensors. To see the mechanism that causes the

exponential growth consider the computation of Tr(Ū−1
t ), which is used to determine the stopping time
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Fig. 8. Average stopping time performances of the optimal centralized scheme and the decentralized schemes based on

level-triggered sampling with quadratic and linear complexity vs. correlation coefficient for normalized MSE fixed to 10−2.

in the optimal centralized scheme. From (34) we write

Tr(Ū
−1
t ) ∼= Tr(D−1

t R−1) =

n∑
i=1

κi
dt,i

(52)

for sufficiently large t, where dt,i and κi are the i-th diagonal elements of the matrices Dt and R−1,

respectively. For instance, we have κi = 1,∀i, κi = 8.0435, ∀i and κi = ∞ when r = 0, r = 0.9

and r = 1, respectively. Assuming that the scaling coefficients have the same mean and variance when

r = 0 and r = 0.9, we have similar dt,i values [cf. (32)] in (52), hence the stopping time of r = 0.9 is

approximately 8 times that of r = 0 for the same accuracy level. Since MSE = E
[
‖X̂T −X‖22

]
= Tr(Ū

−1
t )

in the centralized scheme, using κi for different r values we can approximately know how the average

stopping time changes as r increases for a given MSE value. As shown in Fig. 8 with the label “Theory”

this theoretical curve is in a good match with the numerical result. The small discrepancy at high r values

is due to the high sensitivity of the WLS estimator in (30) to numerical errors when the stopping time

is large. The high sensitivity is due to multiplying the matrix Ū
−1
T with very small entries by the vector

V̄T with very large entries while computing the estimator X̂T in (30) for a large T . The decentralized

schemes suffer from a similar high sensitivity problem [cf. (39)] much more than the centralized scheme

since making error is inherent in a decentralized system. Moreover, in the decentralized schemes the MSE

is not given by the stopping time statistic Tr
(
Ũ
−1

t

)
, hence “Theory” does not match well the curves for
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the decentralized schemes. Although it cannot be used to estimate the rates of the exponential growths

of the decentralized schemes, it is still useful to explain the mechanism behind them as the decentralized

schemes are derived from the centralized scheme.

To summarize, with identical sensors any estimator (centralized or decentralized) experiences an

exponential growth in its average stopping time as the correlation between scaling coefficients increases

since in the extreme case of full correlation, i.e., r = 1, each sensor k, at each time t, observes a

noisy sample of the linear combination
∑n

i=1 xi

√
E
[(
hkt,i

)2]
E
[(
hkt,1

)2] , and thus the stopping time is infinite. As

a result of exponentially growing stopping time, the WLS estimator, which is the optimum estimator in

our case, i.e., the MVUE, and the decentralized estimators derived from it become highly sensitive to

errors as r increases. In either uncorrelated or mildly correlated cases, which are of practical importance,

the proposed decentralized scheme with linear complexity performs very close to the optimal centralized

scheme as shown in Fig. 6 and Fig. 7, respectively.
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Fig. 9. Average stopping time performances vs. normalized MSE values for different sensor diversity K. Unknown parameters

are correlated with rij = 0.5,∀i, j. Similar results are obtained for the uncorrelated case.

Finally, we analyze the effect of increasing number of sensors, K. In Fig. 9, it is seen that the average

stopping times of all schemes decay with the same rate of 1/K, as expected for identical sensors. The
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small performance gaps between the centralized and decentralized schemes are preserved as K increases.

Note that the decentralized algorithm proposed in Section IV-B is scalable to very large sensor networks

if identical sampling thresholds are used for all sensors, in which case the FC treats the messages from

all sensors in the same way.

V. CONCLUSIONS

We have considered the problem of sequential vector parameter estimation under both centralized and

decentralized settings. In the centralized setting, we have first sought the optimum sequential estimator

under the classical formulation of the problem in which expected stopping time is minimized subject to a

constraint on a function of the estimator covariance. Treating the problem with optimal stopping theory we

have showed that the optimum solution is intractable for even moderate number of parameters to be esti-

mated. Then, we have considered an alternative formulation that is conditional on the observed regressors,

and showed that it has a simple optimum solution for any number of parameters. Using the tractable

optimum sequential estimator of the conditional formulation we have also developed a computation-

and energy-efficient decentralized estimator. In the decentralized setup, to satisfy the stringent energy

constraints we have proposed two novelties in the level-triggered sampling procedure, which is a non-

uniform sampling technique. Finally, numerical results have demonstrated that the proposed decentralized

estimator has a similar average stopping time performance to that of the optimum centralized estimator.

APPENDIX: PROOF OF LEMMA 2

We will first prove that if V(z) is non-decreasing, concave and bounded, then so is G(z) = 1 +

E
[
V
(

z
1+zh2

1

)]
. That is, assume V(z) satisfies: (a) d

dzV(z) ≥ 0, (b) d2

dz2V(z) < 0, (c) V(z) < c <∞, ∀z.

Then by (c) we have

1 + V
(

z

1 + zh2
1

)
< 1 + c,∀z, (53)

hence G(z) < 1 + c is bounded. Moreover,

d
dz
V
(

z

1 + zh2
1

)
=

d
dzV(z)

(1 + zh2
1)2

> 0, ∀z (54)

by (a), and thus G(z) is non-decreasing. Furthermore,

d2

dz2
G(z) = E

[
d2

dz2
V
(

z

1 + zh2
1

)]
= E

[
d2

dz2V(z)

(1 + zh2
1)4︸ ︷︷ ︸

<0 by (b)

+
d

dzV(z)

−(1 + zh2
1)3/2h2

1︸ ︷︷ ︸
<0 by (a) & z= 1

u
>0

]
, ∀z, (55)

hence G(z) is concave, concluding the first part of the proof.
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1

λσ2z
V1(z)

Fig. 10. The function V1(z) is non-decreasing and concave.

Now, it is sufficient to show that V(z) is non-decreasing, concave and bounded. Assume that the limit

limm→∞ Vm(z) = V(z) exists. We will prove the existence of the limit later. First, we will show that

V(z) is non-decreasing and concave by iterating the functions {Vm(z)}. Start with V0(z) = 0. Then,

V1(z) = min

{
λσ2z, 1 + E

[
V0

(
z

1 + zh2
1

)]}
= min{λσ2z, 1}, (56)

which is non-decreasing and concave as shown in Fig. 10. Similarly we write

V2(z) = min

{
λσ2z, 1 + E

[
V1

(
z

1 + zh2
1

)]}
, (57)

where 1 + E
[
V1

(
z

1+zh2
1

)]
is non-decreasing and concave since V1(z) is non-decreasing and concave.

Hence, V2(z) is non-decreasing and concave since pointwise minimum of non-decreasing and concave

functions is again non-decreasing and concave. We can show in the same way that Vm(z) is non-decreasing

and concave for m > 2, i.e., V(z) = V∞(z) is non-decreasing and concave.

Next, we will show that V(z) is bounded. Assume that

V(z) < min{λσ2z, c} = λσ2z1{λσ2z≤c} + c1{λσ2z>c}. (58)

Then, from the definition of V(z) we have 1 + E
[
V
(

z
1+zh2

1

)]
< c. Since V(z) is non-decreasing,

E
[
V
(

z
1+zh2

1

)]
≤ E

[
V
(

1
h2
1

)]
. From (58) we can write

1 + E

[
V
(

z

1 + zh2
1

)]
≤ 1 + E

[
V
(

1

h2
1

)]
< 1 + E

[
λσ2

h2
1

1{λσ2
h2
1
≤c}

]
+ c P

(
λσ2

h2
1

> c

)
, (59)

Recalling 1 + E
[
V
(

z
1+zh2

1

)]
< c we want to find a c such that

1 + E

[
λσ2

h2
1

1{λσ2
h2
1
≤c}

]
+ c P

(
λσ2

h2
1

> c

)
< c. (60)

August 12, 2015 DRAFT



32

For such a c we have

1 < c P

(
λσ2

h2
1

≤ c
)
− E

[
λσ2

h2
1

1{λσ2
h2
1
≤c}

]
= E

[(
c− λσ2

h2
1

)
1{λσ2

h2
1
≤c}

]
= E

[(
c− λσ2

h2
1

)+
]
, (61)

where (·)+ is the positive part operator. We need to show that there exists a c satisfying E

[(
c− λσ2

h2
1

)+
]
>

1. Note that we can write

E

[(
c− λσ2

h2
1

)+
]
≥ E

[(
c− λσ2

h2
1

)+

1{h2
1>ε}

]

> E

[(
c− λσ2

ε

)+

1{h2
1>ε}

]

=

(
c− λσ2

ε

)+

P(h2
1 > ε), (62)

where
(
c− λσ2

ε

)+
→∞ as c→∞ since λ and ε are constants. If P(h2

1 > ε) > 0, which is always true

except the trivial case where h1 = 0 deterministically, then the desired c exists.

Now, what remains is to justify our initial assumption V(z) < min{λσ2z, c}. We will use induction to

show that the assumption holds with the c found above. From (56), we have V1(z) = min{λσ2z, 1} <
min{λσ2z, c} since c > 1. Then, assume that

Vm−1(z) < min{λσ2z, c} = λσ2z1{λσ2z≤c} + c1{λσ2z>c}. (63)

We need to show that Vm(z) < min{λσ2z, c}, where Vm(z) = min
{
λσ2z, 1 + E

[
Vm−1

(
z

1+zh2
1

)]}
.

Note that 1 + E
[
Vm−1

(
z

1+zh2
1

)]
≤ 1 + E

[
Vm−1

(
1
h2
1

)]
since Vm−1(z) is non-decreasing. Similar to

(59), from (63) we have

1 + E

[
Vm−1

(
1

h2
1

)]
< 1 + E

[
λσ2

h2
1

1{λσ2
h2
1
≤c}

]
+ c P

(
λσ2

h2
1

> c

)
< c, (64)

where the last inequality follows from (60). Hence,

Vm(z) < min{λσ2z, c}, ∀m, (65)

showing that V(z) < min{λσ2z, c}, which is the assumption in (58).

We showed that V(z) is non-decreasing, concave and bounded if it exists, i.e., the limit limm→∞ Vm(z)

exists. Note that we showed in (65) that the sequence {Vm} is bounded. If we also show that {Vm} is

monotonic, e.g., non-decreasing, then {Vm} converges to a finite limit V(z). We will again use induction

to show the monotonicity for {Vm}. From (56) we write V1(z) = min{λσ2z, 1} ≥ V0(z) = 0. Assuming
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Vm−1(z) ≥ Vm−2(z) we need to show that Vm(z) ≥ Vm−1(z). Using their definitions we write Vm(z) =

min
{
λσ2z, 1 + E

[
Vm−1

(
z

1+zh2
1

)]}
and Vm−1(z) = min

{
λσ2z, 1 + E

[
Vm−2

(
z

1+zh2
1

)]}
. We have

1 + E
[
Vm−1

(
z

1+zh2
1

)]
≥ 1 + E

[
Vm−2

(
z

1+zh2
1

)]
due to the assumption Vm−1(z) ≥ Vm−2(z), hence

Vm(z) ≥ Vm−1(z).

To conclude, we proved that Vm(z) is non-decreasing and bounded in m, thus the limit V(z) exists,

which was also shown to be non-decreasing, concave and bounded. Hence, G(z) is non-decreasing,

concave and bounded.
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