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Abstract—Sea-level rise (SLR) problem, which is a major
outcome of climate change, has been well documented and
studied. Although it is globally observed due to climate change,
local projections are needed to plan SLR adaptation strategies
accurately. Since SLR is a community-wide multi-stakeholder
problem at the local level, adaptation strategies can be more
successful if the main stakeholders, e.g., government, residents,
businesses, collaborate in shaping them. Simulating the local
socioeconomic system around SLR, including the interactions
between essential stakeholders and nature, can be an effective
way of evaluating different adaptation strategies and planning
the best strategy for the local community. This work presents
how such an SLR socioeconomic system can be modeled as
a Markov decision process (MDP) and simulated using multi-
agent reinforcement learning (RL). The proposed multi-agent RL
framework serves two purposes. It provides a general scenario
planning tool to investigate the cost-benefit analysis of natural
events (e.g., flooding, hurricane) and agents’ investments (e.g.,
infrastructure improvement). It also shows how much the total
cost due to SLR can be reduced over time by optimizing the adap-
tation strategies. We demonstrate the proposed scenario planning
tool using available economic data and sea-level projections for
Pinellas County, Florida, in a case study.

I. INTRODUCTION

Sea-level rise (SLR) is one of the most catastrophic out-
comes of the global increase in greenhouse gas (GHG) emis-
sions and climate change. While many policy makers have
committed to reducing GHG emissions since the Paris agree-
ment in 2015, coastal communities will require adaptation
strategies to deal with SLR problems before harnessing the
benefit of worldwide GHG emission reduction [1]. Due to
climate change and SLR, storm surge, recurrent hurricanes,
and permanent inundation pose significant challenges to most
coastal cities, many of which are among the world’s largest
cities [2]. Underdeveloped areas will also face many social
and financial crises apart from the property loss [3], [4].

Recently, in the literature, a quantification of present and
future flood damages in 136 major coastal cities is presented
in [5]. Population growth is also considered in [6] to assess
the potential magnitude of future impacts in the continental
US. The study in [7] proposes a coherent statistical model for
coastal flood frequency analysis and validates a mixture model
for 68 tidal stations along the contiguous United States coast
with long-term observed data. [8] demonstrates a methodology
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to assess the economic impacts of climate change at city scale
(Copenhagen, Denmark) and the benefits of SLR adaptation.
[9] uses HAZUS-MH [10] coastal flood hazard modeling and
loss estimation tools to determine flood extent and depth and
the corresponding monetary losses to infrastructure in Miami-
Dade County. A case study comparing the cost-effectiveness
of nature-based and coastal adaptation for the Gulf Coast of
the United States is presented in [11].

Several countries are already making significant investments
toward reducing the catastrophic and long-term impacts of
SLR. However, the progress in risk reduction is far behind
the coastal development and population growth globally [12].
The need for appropriate planning and execution for hurricane
and flood protection is becoming more prominent as SLR risks
grow. The major challenge is the daunting cost of undertaking
mega projects, and building megastructures [13]. The US
government spends billions of dollars to fund agencies like
the US Army Corps of Engineers and the US Department
of Transportation for hazard mitigation. In 2020, the Federal
Emergency Management Agency (FEMA) announced to grant
up to $660 million in grant funding, including a record-
breaking $500 million for the Building Resilient Infrastructure
and Communities (BRIC) pre-disaster mitigation grant pro-
gram and $160 million for the Flood Mitigation Assistance
program [14].

The success of such investments depends on understanding
different risk drivers from a financial viewpoint, including SLR
and the current state of infrastructure [15]. A disaster cost
and investment benefit analysis for a region can provide a
guideline to the government about budgeting its funds towards
different mitigation programs. Furthermore, since SLR is
not uniform across the globe [16], the adaptation planning
for different regions may differ significantly. Risk assessment
and investment planning for different regions might require
separate analyses and consider different sea-level projections
[17]. Governments, in particular administrators and officials
in the corresponding agencies, need substantial information
for better strategic vision and adaptation planning [1], [18],
[19]. The challenging task of adaptation planning demands
considering various stakeholder dynamics and SLR scenarios
[20]. Explicitly modeling the stakeholders’ reactions to SLR
scenarios can help create strategies suitable for local impacts
and resilience management, and requires planning mechanisms
such as agent-based modeling and sequential decision making
[21]–[23].

To this end, we here study the interactions between SLR
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stakeholders under different SLR scenarios using multi-agent
deep reinforcement learning (RL). Specifically, we use a prob-
abilistic model for nature’s response to the collaborative poli-
cies of three local agents (government, residents, businesses).
The proposed multi-agent RL framework serves two purposes.
It provides a general scenario planning tool to investigate the
cost-benefit analysis of natural events (e.g., flooding, hurri-
cane) and agents’ investments (e.g., infrastructure improve-
ment), and also shows how much the total cost due to SLR
can be reduced over time by optimized adaptation strategies.
We demonstrate the proposed scenario planning tool using
available economic data and sea-level projections for Pinellas
County, Florida, in a case study. Although we here focus on
the SLR problem, the proposed scenario planning framework
can be adapted to other natural and socioeconomic systems.
A preliminary version of this work was presented in [24].
This submission greatly enhances both the intellectual merit
and the broader impacts of the work. The major improvements
include a more realistic multi-agent setup, more effective state-
of-the-art deep RL methods, and a case study with extensive
experimental results based on real economic data from the
Tampa Bay area.

The remainder of the paper is organized as follows. The
proposed multi-agent RL framework is presented and analyzed
in Sec. II. The case study is given in Sec. III, and the
concluding discussions and remarks are provided in Sec. IV.

II. MULTI-AGENT RL FRAMEWORK

A. Agent-based Modeling for Adaptation Strategies

The long-term effects of adaptation strategies can be ef-
fectively simulated using agent-based modeling, where an
agent represents each stakeholder, and its actions are mod-
eled through realistic policies. In the considered sequential
decision-making setup, at the beginning of a year, residents
and businesses decide on their additional tax contributions
towards SLR adaptation; then the government decides on its
own investment amount against SLR and implements an SLR
adaptation strategy based on the total investment amount from
all stakeholders. Finally, at the end of the year, the total cost
from natural events is observed, which can serve as a feedback
about the recent SLR adaptation strategies and inform the
agents’ future actions. A straightforward but realistic policy
is the cost-based policy in which an agent decides whether
to invest and the investment amount depending on the cost it
experiences from the natural events. While different threshold
levels on the natural cost can be used to model different agent
prototypes (i.e., lower threshold for more reactive agents),
it is hard to select such thresholds to link them to realistic
prototypes. We here show that a multi-agent RL framework
can be used to model realistic stakeholder policies in an easily
controllable way. Our proposed RL framework provides an
intuitive parameterization (cooperation indices between zero
and one) to simulate different stakeholder prototypes conve-
niently. Moreover, the proposed RL framework illustrates how
much cost can be saved by proactive and fully cooperative
stakeholders with optimized decision policies.

Government Residents

Nature

Gt ∈ {0, 1, . . . , AG}

zt(st, ℓt) ≥ 0

Environment : Markov State

CG,t(Gt, zt)

St+1 = {st +∆st, ℓt +∆lt}
∆lt = rt ≥ 0
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Fig. 1. Proposed multi-agent MDP framework.

B. MDP Formulation

Markov Decision Process (MDP) is an effective tool
for modeling optimal sequential decision making problems.
MDP provides a tractable mathematical formulation to model
decision-making tasks in situations where outcomes are partly
random and partly regulated by the agent actions [25]–[27].
RL is a field of machine learning which deals with iteratively
learning optimal decision policies (i.e., which action to take
at which state) from experience with the environment through
the action-feedback mechanism. It provides a data-driven ap-
proach to solve MDP problems, which is of critical importance
for the high-dimensional state and/or action spaces where
exact dynamic programming solutions are not feasible [28].
Specifically, deep RL methods (e.g., deep Q-network (DQN))
utilize deep neural networks to handle significantly high-
dimensional problems, which are too complex for traditional
tabular RL methods (e.g., Q-learning).

We next explain the proposed cost models for the en-
vironment and the agents under the MDP framework. We
propose a multi-agent MDP framework to model the behav-
iors of local SLR stakeholders (government, residents, and
businesses), and their interactions among themselves and with
nature. As shown in Fig. 1, government, which is the major
decision-maker in dealing with the SLR problem, at each
time step t takes an action (i.e., investment decision) Gt
and receives feedback from nature through the cost zG,t.
The other two agents, residents and businesses, similarly take
actions Rt, Bt and receives feedback from nature through
the costs zR,t and zB,t, respectively. Then, this natural and
socioeconomic system moves to a new state St+1 based on
the current state St, agents’ action Gt, Rt, Bt, and SLR rt.
The system state consists of the city’s infrastructure state st
and the sea level `t, i.e., St = {st, `t}. The agents’ decisions
determine the infrastructure state st = s0 +

∑t
m=1(∆sG,m +

∆sR,m + ∆sB,m) = st−1 + ∆st(Gt, Rt, Bt). Likewise, the
sea level at time t is given by the cumulative SLR values:
`t = `0 +

∑t
m=1 rm = `t−1 + rt, where rm is the SLR

value at time m. Here, s0 and `0 are respectively the initial
infrastructure state and the initial sea level of the region
relative to a reference year. In terms of simulations, these are
two user-defined numbers representing the existing states at
the beginning of the simulations. The system state satisfies
the Markov property: P(St+1|St, . . . ,S0) = P(St+1|St). We
assume that the government observes the other agents’ actions
Rt, Bt, hence has the complete knowledge of multi-agent
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MDP. However, the residents and businesses do not necessarily
know the other agents’ actions, hence the MDP is partially
observable to them. The parameters of the proposed multi-
agent MDP framework are summarized in Table I.

TABLE I
MODEL PARAMETERS.

Initial sea level `0 ≥ 0
SLR at time t rt ≥ 0

Sea level at time t `t = `0 +
∑t

m=1 rm
Initial infrastructure state s0 ∈ {1, 2, ...}
Infrastructure improvement at time t, ∆st(Gt.Rt, Bt)

Infrastructure state at time t, st = s0 +
∑t

m=1 ∆sm
Government’s decision at time t Gt ∈ {0, 1, . . . , AG}
Residents’ decision at time t Rt ∈ {0, 1, . . . , AR}
Businesses’ decision at time t Bt ∈ {0, 1, . . . , AB}

C. Modeling Nature

We model nature’s cost zt = zG,t + zR,t + zB,t using the
generalized Pareto distribution, which is commonly used to
model catastrophic losses, e.g., [29]–[31]. It is known that
the storm- and flooding-related costs for the stakeholders
have been increasing with SLR [32]. Thus, we model the
scale parameter of generalized Pareto distributed zt directly
proportional to the most recent sea level `t and inversely
proportional to the most recent infrastructure state st. The cost
from nature is distributed among the stakeholders through the
multiplying factors (mG + mR + mB = 1) for government
(zG,t = mG× zt), residents (zR,t = mR× zt), and businesses
(zB,t = mB × zt). These factors vary with regions; however,
generally mG > mR,mB since typically government is faced
with most of the cost from nature.

The probabilistic model for the cost from nature is given by

zt ∼GeneralizedPareto(ξ, σt, µ)

µ ≥ 0, ξ < 0, σt =
η(`t)

p

(st)q
(1)

where µ, σt, ξ are the location, scale, and shape parame-
ters of generalized Pareto, respectively; and η > 0, p ∈
(0, 1), q > 0 are our additional model parameters. The pa-
rameters ξ, µ, η, p, q help to regulate the impact of the most
recent sea level `t over the nature’s cost zt relative to the most
recent infrastructure state st. Choosing an appropriate set of
parameters depends on the region considered for simulations.
Our preference for modeling the scale parameter and not the
location parameter is due to the fact that the scale parameter
can control both the mean and the variance, whereas the
location parameter appears only in the mean. For certain values
of shape parameter ξ, the expected value and range of the cost
are as follows:

E[zt] = µ+
η`pt

(1− ξ)sqt
for ξ < 1

µ ≤ zt ≤ µ−
η`pt
ξsqt

for ξ < 0.

The location parameter is set to be positive, µ > 0, to generate
positive disaster cost, zt > 0. We choose µ = $30 million from

historical data provided in Table A-1 in [33], which indicates
that a year with no serious natural disaster might produce this
cost, typically to cover maintenance. To get an upper bound
on zt, we need the shape parameter to be negative, ξ < 0. We
select ξ = −0.1, which limits the upper bound to roughly 10
times the expected cost. The other parameters η, p, q are set
according to the cost projections in Pinellas County presented
in [34], and in Sec. III.

D. Modeling Stakeholders

In our model, the government is the biggest stakeholder
and implementer of the investment decisions for other agents
too. At each time step, e.g., a year, the government decides
the degree of its investment Gt ∈ {0, 1, 2, ..., AG} for infras-
tructure development, where AG is a finite positive integer.
Gt = 0 means no investment at step t. Hence, there are
AG + 1 possible actions for the government at each time
step. The numerical value of Gt = m can be interpreted as
spending m unit money towards infrastructure development
or the m + 1 th action among AG + 1 different actions with
increasing cost and effectiveness. Possible government actions
include but are not limited to building seawalls, raising roads,
widening beaches, building traditional or horizontal levees,
placing storm-water pumps, improving sewage systems, re-
locating seaside properties, etc. [35]–[37]. The range of Gt
is designed to cover the real world costs from the cheapest
investment like cleaning the pipes to the most expensive
investment like buying lands and property to relocate the
seaside inhabitants and businesses. The total cost CG,t to the
agent at each time t consists of the investment cost and cost
from nature. We assume most of the business and residential
properties are insured by the government. So f ∈ (0, 1)
fraction of their insurance payments, f × IR,t and f × IB,t
respectively for residents and businesses go to the government,
hence negatively contribute to CG,t. We explain modeling IR,t
and IB,t later in this section while presenting the models for
residents and businesses. Since the government’s investment
decision has an integer value, we model the total cost as
CG,t = αGGt + zG,t − f(IR,t + IB,t) using parameter
αG to map the decision to monetary value. The discounted
cumulative cost for the government in T time steps is given
by CG,T =

∑T
t=0 λ

t
G[αGGt+zG,t−f(IR,t+IB,t)], where the

discount factor λG ∈ (0, 1) discounts the weight of future costs
following the common practice in MDP. In our model, this
discount factor also serves as a measure of the government’s
cooperation towards long-term welfare, hence, termed as the
government’s cooperation index in this paper. Higher λG
corresponds to a more cooperative government which better
recognizes the future SLR costs from nature, compared to a
more short-sighted government represented by lower λG. The
government’s objective is to minimize the expected cumulative
cost E[CG,T ] by taking investment actions {Gt} over time.

Residents’ community decides its own action based on its
learning of the environment and hence modeled as an agent
in our multi-agent setup. The community organization decides
the degree of its investment Rt ∈ {0, 1, 2, ..., AR}, i.e., how
much additional tax they are going to pay to the authority
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to build infrastructure for them. The unit cost of residents’
investment αR is limited to some fraction of the government
investment unit αG since the government is expected to cover
the majority of infrastructure investment costs. The change
in infrastructure state by residents’ investment decision Rt
is set relative to the government: ∆sR,t = Rt × αR/αG
where ∆sG,t = Gt. It is assumed that these coastal residents
typically insure their vulnerable properties, so their cost from
nature is mainly due to the raise of insurance premiums.
Insurance premiums go up if the insurance had to pay more for
recent catastrophic events. Hence, the insurance premium can
be approximated based on the historical cost from nature as
IR,t = IR,0×ρtR+IR×

∑t−1
m=1 ρ

t−m
R zG,m, where ρR ∈ (0, 1)

is the insurance company’s memory factor for past events, and
IR is the coefficient that maps the total recent natural cost
of the insurance company (i.e., the government) to insurance
premium. Pre-existing insurance premium for the region, IR,0,
can serve as the initial value for the simulation. Apart from
the insurance cost, the residents also endure a fraction of
the cost from nature, represented by zR,t = mR × zt.
The discounted cumulative cost for the residents in T time
steps is given by CR,T =

∑T
t=0 λ

t
R(αRRt + zR,t + IR,t),

where the discount factor λR ∈ (0, 1) can be interpreted
as the residents’ cooperation index, as in the government’s
model. The residents’ objective is to minimize the expected
cumulative cost E[CR,T ] by taking investment actions {Rt}
over time.

Businesses are another major stakeholder of SLR impacts.
Businesses get monetary loss through inundation, loss of
customers, property damages, and increasing insurance premi-
ums. Similar to the residents’ model, we consider a business
association to implement their collective actions. The business
association takes action Bt ∈ {0, 1, 2, ..., AB}, i.e., decides
on their degree of monetary contribution towards infrastruc-
ture development. The unit cost of businesses investment
αB typically ranges between αR and αG. The change in
infrastructure state by businesses’ investment decision Bt is
∆sB,t = Bt × αB/αG. Similar to the residents, businesses
have insurance and non-insurance costs. Insurance premiums
go up if the insurance had to pay more for recent catastrophic
events. Hence, the insurance premium for businesses is mod-
eled as IB,t = IB,0 × ρtB + IB ×

∑t−1
m=1 ρ

t−m
B zG,m, where

ρB ∈ (0, 1) is the insurance company’s memory factor for
past events, IB and IB,0 are the insurance coefficient and the
initial insurance premium for businesses, respectively. The dis-
counted cumulative cost for the business agent in T time steps
is given by CB,T =

∑T
t=0 λ

t
R(αBBt + zB,t + IB,t), where

discount factor λB can represent businesses’ awareness and
cooperation against SLR and is called businesses’ cooperation
index. The businesses’ objective is to minimize the expected
cumulative cost E[CB,T ] by taking investment actions {Bt}
over time.

E. Optimal Policy Analysis

In our proposed MDP structure, each agent tries to minimize
its expected total cost E[CT ] in T time steps by following an
optimal investment policy. At each time step, first, residents

and businesses take their actions Rt and Bt respectively;
then, the government collects their investments, makes its
decision Gt, and implements the monetary investment towards
developing infrastructure. So, the next state transition is fully
observable to the government and at the same time partially
observable to the other two agents. We begin with the optimal
policy analysis for the government. Its optimal value function,
which gives the minimum expected total cost possible at each
state (st, `t), characterizes the best action policy {Gt}, and is
written as

VG(st, `t, OG,t) = min
{Gt}

E[CTG,t|{Gt}],

where CTG,t =
∑T
τ=0 λ

τ
GCG,t+τ is the cumulative cost starting

from time t. We know from the main body of the paper

CG,t = αGGt + zG,t − f(IR,t + IB,t) (2)

and, CG,T =
∑T
t=0 λ

t
G[αGGt + zG,t − f(IR,t + IB,t)].

Here, the government’s observation OG,t represents its
knowledge about other agents’ actions at time t. To find the
optimal policy, the Bellman equation

VG(st, `t, OG,t) = min
Gt

E[CG,t + λGVG(st+1, `t+1)|Gt]

provides a recursive approach by focusing on finding the
optimal action Gt at each time step using the successor state
value instead of trying to find the entire policy {Gt} at
once. Using the cost expression given by (2) and considering
possible AG + 1 actions for Gt this iterative equation can be
rewritten as

VG(st, `t, OG,t) =

min
{
E
[
zG,t − f(IR,t + IB,t) + λGV (ŝt, `t + rt)

]︸ ︷︷ ︸
F0(ŝt,`t)

,

E
[
αG + zG,t − f(IR,t + IB,t) + λGV (ŝt + 1, `t + rt)

]︸ ︷︷ ︸
F1(ŝt,`t)

,

E
[
2αG + zG,t − f(IR,t + IB,t) + λGV (ŝt + 2, `t + rt)

]︸ ︷︷ ︸
F2(ŝt,`t)

, . . . ,

E
[
AGαG + zG,t − f(IR,t + IB,t) + λGV (ŝt +AG, `t + rt)

]︸ ︷︷ ︸
FAG

(ŝt,`t)

}
(3)

where ŝt = st+Rt×αR/αG+Bt×αB/αG is the deterministic
next infrastructure state before government investment, termed
as augmented infrastructure state. The knowledge of other
agents’ current actions provides the basis of our optimal policy
analysis for the government and Theorem 1.

At each time step t, action Gt shapes the instant cost
CG,t and moves the system to the next state, which de-
termines the discounted future cost λGV (st+1, lt+1). The
optimum policy chooses among the investment actions Gt ∈
{0, 1, 2, ...., AG} that has the minimum expected total cost,
minm{Fm(ŝt, `t)}, as shown in (3). Since the functions
{F0(ŝt, `t), . . . , FAG

(ŝt, `t)} determine the optimal policy, we
next analyze them to characterize the optimal government
policy.
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given infrastructure state according to Theorem 1.

Theorem 1. For m = 0, 1, . . . , AG, Fm(ŝt, `t) is nonde-
creasing and concave in `t for each ŝt; and the derivative of
Fm(ŝt, `t) with respect to `t is lower than that of Fm−1(ŝt, `t).

Proof is provided in the Appendix. For a specific infras-
tructure state ŝt, expected costs F0(ŝt, `t), . . . , F3(ŝt, `t) are
illustrated in Figure 2 according to Theorem 1. The optimum
policy picks the minimum of the AG + 1 = 4 curves at each
time, which is shown with the solid curve in Figure 2. As
a result of Theorem 1, we next give the outline of optimum
policy in Corollary 1.

Corollary 1. The optimum policy, at each augmented infras-
tructure state ŝt, compares the sea level `t with at most AG
thresholds where each threshold signifies a change of optimal
action.

To prove Corollary 1, note that Fm−1(ŝt, `t = 0) <
Fm(ŝt, `t = 0) for m ∈ {1, 2, ...., AG} because `t = 0
corresponds to the fictional case of zero sea level where
there is no risk. That is, Fm−1(ŝt, `t) starts at a lower point
than Fm(ŝt, `t), but increases faster than Fm(ŝt, `t) since its
derivative is higher (Theorem 1). Also from Theorem 1, it
is known that both of them are concave and bounded, hence
Fm−1(ŝt, `t) and Fm(ŝt, `t) intersect exactly at one point for
m ∈ {1, 2, . . . , AG}. While for `t less than the intersection
point the action AG = m is less effective than the action
AG = m − 1 in terms of immediate cost and expected
future cost, it becomes more effective when `t exceeds the
intersection point.

Figure 2 gives an example case where there are AG =
3 thresholds `thr1(ŝt), `thr2(ŝt), `thr3(ŝt), which depend on
ŝt and indicate change points of optimal action. However,

depending on the slopes of {Fm(ŝt, `t)} curves at each
augmented infrastructure state ŝt, there may be less than
AG change points. To summarize, for a given state (ŝt, `t),
the optimum policy chooses Gt based on the relative value
of the current sea level `t, with respect to the augmented
infrastructure state ŝt.

The thresholds also depend on the cooperation index λG.
Higher cooperation indices set the thresholds lower and vice
versa. Intuitively, as λG grows, the government becomes more
cautious about (i.e., sees more objectively without severely
discounting) the expected future natural costs and sets a lower
threshold for investment actions. On the contrary, small λG
implies underestimated future costs and thus overemphasized
immediate investment costs, which results in a high threshold
for investment.

Optimal value functions for residents’ and businesses’ are
similar to the government’s. The Bellman equation for resi-
dents’ is

VR(st, `t, OR,t) = min
Rt

E[CR,t + λRVR(st+1, `t+1)|Rt]

Ideally, each agent would like to see other agents’ actions.
Nevertheless, in the considered problem, residents and busi-
nesses do not have the information of others’ actions. Since the
states do not change drastically, it is reasonable to approximate
the agents’ previous optimal action as their recent action. So,
the residents approximate Gt ≈ Gt−1 and Bt ≈ Bt−1 in its
observation OR,t, where Gt−1, and Bt−1 are the actions taken
in previous time step by the corresponding agents. Similarly,
the business approximate Gt ≈ Gt−1 and Rt ≈ Rt−1 in its
observation OB,t for the value function

VB(st, `t, OB,t) = min
Bt

E[CB,t + λBVB(st+1, `t+1)|Bt].

Due to such partial knowledge and approximations, functional
analysis as in Theorem 1 is not tractable for residents and
businesses.

F. Multi-Agent RL Algorithms

The continuous sea level values, which cause an infinite
number of possible states, necessitate a deep RL algorithm
instead of a traditional RL algorithm. We consider two deep
RL approaches for comparison. The deep Q-network (DQN)
algorithm [38], which is a popular choice for deep RL,
addresses well the infinite-dimensional state space problem.
It leverages a deep neural network to estimate the optimal
action-value function for each of the three agents. The Ad-
vantage Actor-Critic (A2C) algorithm, a policy gradient-based
algorithm [39], is a popular choice for multi-agent deep RL.
A2C uses two neural networks:

(i) The actor network, also known as the policy network,
outputs the probability for each action through a softmax func-
tion. It is updated using the gradient of expected return of the
policy πθ with respect to the weights θ of the neural network,
e.g., for the government E[∇θG log πθG(Gt|St)DG(St, Gt)]
where πθG(Gt|St) denotes the probability for action Gt at
state St, and the advantage function is given by DG(St, Gt) =
CG,t + λGVψG

(St+1)− VψG
(St), where VψG

is the output of
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the critic network (see below) with ψ denoting the network
weights.

(ii) The critic network, which is also known as the value
network, is used to learn the value function for each state, e.g.,
VψG

(St) for the government. It is updated using the gradient
of the squared advantage function, E[∇ψG

D2
G].

The cost from natural events, which is modeled with a
generalized Pareto distribution, can have a high variance
depending on the parameter settings, i.e., regular flooding costs
in a typical year vs. major hurricane costs in another year. Our
experiments in the case study, explained next, corroborate the
previous findings that A2C in general deals with high variance
more successfully than DQN [39].

128-64

12

12

12
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Input
Layer

VψG
(St)

Government

Resident

st

ℓt

AG

πθG(Gt|St)

Business

AB

Output Layers
Hidden Layers

Shared

Individual

VψR
(St)

πθR(Rt|St)

πθB(Bt|St)

VψB
(St)

Fig. 3. Unified A2C structure for all three agents. Numbers inside the box
give the neuron numbers in each layer.

For the multi-agent implementation of A2C, we consider
three different structures. In the first one, a single deep
neural network structure is used for all agents based on the
similarities between their state and cost definitions. As shown
in Fig. 3, the input layer, which represents the common system
state St = {st, `t}, is the same for all agents. Since the cost
functions for the agents have similarities, they also share some
hidden layers. From there on, the agents have their individual
hidden layers to output their state values VψG

, VψR
, VψB

(critic
network) and action probabilities πθG , πθR , πθB (actor net-
work). In this unified A2C structure, the interaction between
agents is not explicitly implemented through observations of
other agents’ actions OG,t, OR,t, OB,t at the input.

We next consider using a separate neural network for each
agent with st, `t, and Ot at the input, as shown in Fig. 4. In this
structure, the agents explicitly use the other agents’ actions Ot
in their input states. Government observes the residents’ and
businesses’ actions before taking its own action, i.e., OG,t =
{Rt, Bt}. However, residents and businesses only know the
previous actions of other agents, i.e., OR,t = {Gt−1, Bt−1}
and OB,t = {Gt−1, Rt−1}.

Hidden

Layers
Input

Layer

Vψ(St)

Output

Layer

ℓt

st

128-512-12

128-12

Ot

Critic

Actor

πθ(At|St)

Fig. 4. Separate A2C structure for each agent. Numbers inside the box give
the neuron numbers in each layer.

Algorithm 1 Multi-agent A2C algorithm (Fig. 4)
1: Input: µ, ε, η, p, q,mG,mR,mB , αG, αR, αB ,
2: Input: λG, λR, λB , ρR, ρB , IR, IB
3: Initialize policy network with random weights θG, θR, θB

and critic network with random weights ψG, ψR, ψB .
4: for episode = 1, 2, ... do
5: Initialize state S0 = (s0, `0)
6: for t = 1, 2, ..., T do
7: Sample action Gt, Rt, Bt from probability distribu-

tion generated by actor networks θG, θR, θB .
8: Execute action Gt, Rt, Bt and observe costs CG,t,

CR,t, CB,t
9: end for

10: Update actor network θG (and similarly θR, θB) by back
propagating E[∇θG log πθG(Gt|St)DG(St, Gt)].

11: Update critic network ψG (and similarly ψR, ψB) by
back propagating E[∇ψG

D2
G].

12: end for

As a third (hybrid) structure, we also consider using a single
critic network common to all agents. Specifically, each agent
has its own actor network, as in Fig. 4, but shares a common
critic network. According to our experimental results in the
case study, among the three multi-agent A2C structures, the
separate A2C structure (Fig. 4) performs the best.

Algorithm 1 summarizes the separate A2C algorithm (Fig.
4). Each episode consists of Monte-Carlo simulations in which
several states are visited according to the current policy defined
by the current actor network. Line 1 initializes the disaster cost
and investment cost parameters. Line 2 sets up the discount
factors and insurance parameters. An episode starts with the
initial relative sea level and infrastructure state. Line 7 shows
the action selection procedure for the A2C agents. Then, the
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Fig. 5. Average episodic total cost of all agents in the separate A2C policy
for the high SLR scenario.

TABLE II
RELATIVE SEA LEVEL (MM) FOR DIFFERENT SCENARIOS FOR ST.

PETERSBURG.
Year NOAA 2017 [41] Simulation adjusted RSL, ˆ̀t

Int-low Intermediate High Int-low Intermediate High
2000 0 0 0 n/a n/a n/a
2010 50 70 110 n/a n/a n/a
2020 110 150 220 100 100 100
2030 170 240 380 160 190 260
2040 220 330 540 210 280 420
2050 290 440 780 280 390 660
2060 350 570 1060 340 520 940
2070 410 710 1390 400 660 1270
2080 470 860 1740 460 810 1620
2090 520 1030 2150 510 980 2030
2100 580 1190 2590 570 1140 2470
2120 670 1430 3460 660 1380 3340
2150 840 1980 5230 n/a n/a n/a
2200 1080 2970 8940 n/a n/a n/a

simulator calculates the costs. Actor and critic networks are
updated at the end of an episode. The convergence of the
separate A2C algorithm used in the experiments is shown in
Fig. 5.

III. CASE STUDY

We here present a case study for Pinellas County, Florida,
USA, using our multi-agent RL framework. Pinellas County,
home to nearly one million residents, is the most visited
destination on the US Gulf Coast. About 15 million tourists
yearly spent over $20 Billion over the past five years [40]. The
top two cities in the county, St. Petersburg and Clearwater, are
ranked among the cities with a high risk of flooding [5].

A. Parameter Estimation

Hurricanes, floods, and stagnant water are some of the many
SLR-related natural events that cause costs in different ways,
such as loss of properties, jobs, taxes, and tourism incomes
due to submerged areas. To model this cost zt, we begin with
modeling the SLR amount rt. For the Tide Gauge #8726520
located in St. Petersburg, FL, we utilize the online sea level
change calculator developed by the US Army Corps of Engi-
neers (USACE) in [41], which uses the NOAA projections for
Pinellas County [42]. Among the seven SLR projections, with
relative sea level (RSL) zero for the year 2000, the Tampa
Bay Climate Science Advisory Panel ruled out the very low,
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Fig. 6. SLR projections by NOAA [42] (solid lines) and our fittings (dashed
lines) for relative sea level change for St. Petersburg, FL.

TABLE III
GENERALIZED PARETO PARAMETERS FOR PINELLAS COUNTY.

ξ µ η p q
-0.1 $ 30M $ 100M 0.92 0.8

low, and extreme scenarios for planning purposes [43]. We
also disregard the intermediate-high scenario and limit our
simulations for intermediate-low, intermediate, and high SLR
scenarios.

Our simulations target the hundred years 2020–2120, hence
we adjust the initial sea level value for 2020 to ˆ̀

0 = 100mm
for all scenarios. For the following years, we follow SLR
projections in [42] till 2120. RSL for these scenarios from
[41] and our adjusted values are shown in Table II. The
randomness in SLR at each time step is modeled using the
Gamma distribution, which is commonly used for modeling
positive variables, including environmental applications, e.g.,
daily rainfall [44]. We use these adjusted projections {ˆ̀t}
as the mean RSL values for the Gamma distribution, i.e.,
rt ∼ Gamma(α, β). Specifically, we set the scale parameter to
β = 0.5 and vary the shape parameter α in a range to match
the mean RSL, given by

∑t
n=1 E[rn], with the adjusted NOAA

projection curves. The successful curve fitting for mean RSL
values shown in Fig. 6 is achieved by the following time series
equations,

Int-low: αt = 11.102 + 0.012× t
Intermediate: αt = 15.8 + 0.211× t (4)

High: αt = 24 + 0.85× t,

where the subscript t represents calendar year 2020 + t.
The generalized Pareto distribution used to model the cost

from nature zt, has three parameters, location, shape, and
scale. The location parameter determines the range of zt, in
particular the lower limit. We set it as $30 million according
to the data provided in Table A-1 in [33], which indicates
that a year with no serious natural disaster might produce
this cost, typically for maintenance. To get an upper limit
on zt, we need the shape parameter to be negative. We set
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it as −0.1 for the upper limit to be roughly ten times the
expected cost. The scale parameter establishes the relation
between sea level, infrastructure state, and disaster cost in our
model. A recent report by the Tampa Bay Regional Planning
Council [34] gives “the cost of doing nothing" due to SLR
impacts under the NOAA’s high SLR projections for the
Tampa Bay region, including Pinellas County. This report uses
the widely accepted REMI PI+ economic modeling tool for
their estimations. The following equations are obtained using
the data provided in [34], where the cost unit is in million
USD and subscripts represent the calendar year:

E [z2060] = µ+
η`p2060

(1− ξ)sq2020
= 5057,

E

[
2060∑
y=2020

zy

]
= 89000.

The report in [34] discusses the cost of doing nothing; hence
we keep the infrastructure state s2020 = 20 constant between
the years 2020 and 2060 in the above equations. We further
set the relative sea level `2020 = 100, and following the high
SLR scenario we obtain η = 100, p = 0.92, q = 0.8 as a set of
values suitable for our simulations. Table III summarizes the
values of the generalized Pareto parameters for the Pinellas
County case study.

To determine the distribution of cost from nature, we use the
economic data [40] and the cost projections [34] for tourism
in Pinellas County. The tourism industry contributed $9.25
billion annual spending impact to the Pinellas County local
economy [40] in 2019. We consider only the tourism business
in our model as they are the main business stakeholder of SLR
impacts. The “cost of doing nothing" report gives the tourism
loss in 2060 as $898 million [34]. The principal cost for the
business is the loss of net profit, which is estimated as the 5%
of total tourism income. With the current sea level, we estimate
the upper bound of business loss for the year 2019 as 10%
of the net profit. This loss grows with 3% yearly growth for
tourism business, in line with US GDP growth. With the high
SLR scenario, business damage loss will increase to 100% of
net profit in 2060, up from 10% in 2019, which is equivalent
to saying that the tourism sector will lose all profit if no
infrastructure is developed in the next 40 years. This cost
model for tourism business in Pinellas County corresponds
to the 22% of total cost from nature, i.e., mB = 0.22 in (1).
Together with the insurance cost explained below, it also gives
similar costs in our simulations to the cost-of-doing-nothing
estimation in [34].

Since the government is the major stakeholder with in-
frastructures, including buildings, roads, parks, etc. under its
liability, we set the government’s portion within the cost from
nature as 75%, i.e., mG = 0.75 in (1). The majority of
residents in coastal regions, in particular Pinellas County, have
flood insurance, as explained next, hence most of the property
inundation cost, which is estimated to be more than $16 billion
in the worst case scenario [34], is covered by the government.
The direct cost to residents from nature is set as 3% of total
cost from nature, i.e., mR = 0.03, to account for the uninsured
and uninsurable properties.

TABLE IV
ACTION AND COST PARAMETERS FOR PINELLAS COUNTY.

Agent Action Action Portion of Insurance Insurance
multiplier natural cost factor memory

Govt. 0,1,2,3,4 $140M mG = 0.75 n/a n/a
Resident 0,1,2,3,4 $20M mR = 0.03 IR = 0.04 ρR = 0.9
Business 0,1,2,3,4 $50M mB = 0.22 IB = 0.006 ρB = 0.9

For the insurance cost, we use a topology-based data set
provided in [11] for exposed assets by ground heights for
all the Gulf Coast. Pinellas County falls under a high-risk
flood zone, with many of its 407,720 residential properties
considered as exposed assets by ground heights [45]. The
homeowners typically have the National Flood Insurance Pro-
gram (NFIP) provided by the government. The residents of
St. Petersburg paid an average insurance premium of $950 and
around $33 million in total annually [46], which is the highest
in Florida. Scaling this total insurance premium payment in
St. Petersburg to the entire Pinellas County according to the
almost 1/4 ratio of households [47], we set the base insurance
premium by residents as IR,0 = $132 million. The insurance
cost and action parameters for each agent are given in Table
IV. Although most of the cost from nature is covered by
the insurance, increasing costs due to SLR is reflected to the
residents through a higher premium rate in the future. We
empirically determined the insurance factor as IR = 0.04
and the insurance memory factor as ρR = 0.9 to match the
insurance data stated above. Similarly, the structural properties
of businesses are mostly covered by insurance, and the premi-
ums increase with accumulating cost from nature, ρB = 0.9.
Since the commercial land use and the number of commercial
insurance policies are less than the residential ones [34], we
set the initial insurance premium for business as IB,0 = $20
million and the insurance coefficient as IB = 0.006.

We assume the infrastructure improvement is proportionate
to the total investment amount. Infrastructure development
may include activities like beach and wetland restoration,
home elevation, dykes, local levees, sandbags, etc. We estimate
the cost of these actions to range between a couple of
millions to billions of USD based on [11, supplementary].
The investment ranges for agents are determined such that the
maximum continuous investment from all agents in 40 years
prevents any cost from nature until 2060, e.g., 10-feet home
elevation or 20-feet dyke all over the coastline. The investment
cost parameters are given in Table IV along with the insurance
and natural cost parameters.

B. Scenario Simulations

To benchmark the performance of the “proactive" deep
RL framework, we also consider a straightforward "reactive"
policy that makes an infrastructure improvement only after its
need is proven by high natural cost. In a reactive commu-
nity, the government and other stakeholders generally become
active in infrastructure development after a major natural
disaster. This trend can be portrayed through a threshold-
based policy, where an agent invests in infrastructure if the
cost from nature exceeds a predefined threshold. Although
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Infrastructure Developement Policies

Reactive Threshold-based Deep RL-based

Scenario-Specific Threshold DQNA2C

$(81.6, 107.7, 152.0)B

General Threshold

$(82.2, 107.7, 154.2)B

λG = 0.1,λR = λB = 0.1 λG = 0.99,λR = λB = 0.1λG = 0.1,λR = λB = 0.99 λG = 0.99,λR = λB = 0.99
$(164.2, 209.1, 334.5)B $(71.9, 94.5, 131.9)B

$(84.8, 105.6, 155.2)B

$(72.2, 103.4, 156.6)B$(84.6, 121.3, 172.6)B

Fig. 7. Expected episodic cost under different policies for high SLR scenario.The values within the parenthesis indicate the cost for Intermediate Low,
Intermediate, and High SLR, respectively.

simple, this policy is not tractable for generating simulations
that represent realistic stakeholder behaviors because of the
difficulty in selecting the thresholds for natural cost. Whereas,
the cooperation indices in our simulation tool can be intuitively
varied between zero and one to jointly simulate the adaptation
strategies of different stakeholder prototypes.

Fig. 7 presents the total cost for all stakeholders over the
100-year period 2020-2120 when the threshold-based and deep
RL policies are deployed. The three values in parentheses are
the total cost over 100 years in billion US dollars considering
the intermediate-low, intermediate, and high SLR projections
of NOAA, respectively. The threshold-based policy is used in
two forms: the general threshold policy represents the case
where the agents are agnostic to SLR projection scenario
in the simulations, and the scenario-specific threshold policy
corresponds to the case where the best threshold is used for
each SLR scenario. In both threshold-based policies, all three
agents take the maximum investment action shown in Table IV
once the cost from nature in a year exceeds the same threshold.
This common threshold is optimized for each scenario in the
scenario-specific policy, and for the average of three scenarios
in the general threshold-based policy to demonstrate the best
performance such threshold-based policies can attain (Fig. 8).
As shown in Fig. 7, the proposed deep RL policy based
on the A2C algorithm can intuitively simulate a variety of
stakeholder prototypes by varying their cooperation indices
between zero and one. While the fully non-cooperative case
with all three cooperation indices equal to 0.1 results in huge
costs, double the costs of the best threshold-based policy,
the fully-cooperative case with cooperation indices equal to
0.99 reduces the total cost by 13% with respect to the best
threshold-based policy. The costs presented for the DQN-based
policy are for the fully cooperative case (λG = λR = λB =
0.99). They are significantly worse than their counterparts in
the A2C policy due to the high variance in the cost from
nature. Finally, Fig. 9 shows the cumulative yearly cost for
the high SLR scenario for each policy.

IV. DISCUSSIONS AND CONCLUSION

In this work, we presented how a socioeconomic system
around the sea-level rise (SLR) problem can be modeled
as a Markov Decision Process (MDP) and simulated using
Deep Reinforcement Learning (RL) algorithms. In addition
to providing a general scenario planning tool to investigate
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Fig. 8. 100-year total cost for the intermediate-low, intermediate, high
scenarios of SLR, and their average. The vertical dashed line represents the
best general threshold for the average SLR scenario.
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Fig. 9. Yearly total cost under different policies for the high SLR scenario.

the cost-benefit analysis of natural events and stakeholders’
investments, the proposed framework also illustrates, through
a case study for the Tampa Bay region based on real data, how
optimizing the adaptation strategies can effectively minimize
the total cost due to SLR. Being the first in the literature, the
proposed MDP model relies on some simplifying assumptions.

For example, we assumed a uniform cost-benefit economic
model for the adaptation actions to represent the natural
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disaster cost with a tractable model with respect to the taken
adaptation actions so far (i.e., setting the scale parameter of
the generalized Pareto distribution as a function of the sea
level and infrastructure state). In the uniform model, the action
level (Table IV) also determines the development level in
the infrastructure. A detailed cost-benefit model for different
actions can easily replace the considered uniform model.
Specifically, for a set of actions such as beach restoration, rais-
ing roads, building seawalls, and relocating coastal properties,
the cost levels and development levels can be non-uniformly
set after a detailed study. Another feasible improvement over
the proposed framework would be to represent residents and
businesses with multiple independent agents and consider local
infrastructure improvement actions for each subregion defined
by a resident/business agent. Such an extension will increase
the number of agents and the number of actions to decide
for the government while the structure of the overall model
remains the same. Note that the proposed multi-agent MDP
model is not restricted to the RL policies; any action policy
can be followed by the agents. The sequential and agent-based
structure allows for a turn-taking game mode, where each
agent decides on its action sequentially in a round, and at
the end of the round nature imposes its cost on the agents. We
developed a board game in which players can cooperate on
adaptation strategies to mitigate SLR-related damages from
nature [48]. A digital and improved version of the game is
planned as a future work.

APPENDIX

In Theorem 1, we analyze the government’s policy since it
is the most dominant agent with the full observation of other
agents’ actions. In the first part of the proof, we will show
that if V (ŝt, `t)=VG(st, `t, O

G
t ) is nondecreasing and concave

in `t, then so is

Fm(ŝt, `t) = E [mαG + zG,t − f(IR,t + IB,t)+

λgV (ŝt +m, `t + rt)],

for m = 0, 1, . . . , AG. Government observes the residents’
and businesses’ decisions beforehand, thus Rt and Bt are con-
sidered constant for its decision making. We denote the next
infrastructure state that includes the residents’ and business’
current action with ŝt = st + Rt × αR/αG + Bt × αB/αG.
Assuming V (ŝt, `t) is nondecreasing, i.e., ∂

∂`t
V (ŝt, `t) ≥ 0,

and using the expected value of generalized Pareto-distributed
zG,t, we can write

∂

∂`t
Fm(ŝt, `t) =

mGηp`
p−1
t

(1− ξ)sqt
+λGE

[
∂

∂`t
V (ŝt +m, `t+1)

]
≥ 0.

Note that IR,t and IB,t are determined by past data, indepen-
dent of `t. In the above equation, the derivative can be brought
inside the integral due to the monotone convergence theorem.
Assuming V (ŝt, `t) is concave, i.e., ∂2

∂`2t
V (ŝt, `t) < 0, for the

second derivative we have

∂2

∂`2t
Fm(ŝt, `t) =

mGηp(p− 1)`p−2t

(1− ξ)sqt
+

λGE

[
∂2

∂`2t
V (ŝt +m, `t+1)

]
< 0

since 0 < p < 1. Hence, it is sufficient to show that V (ŝt, `t)
is nondecreasing and concave.

Finding the value function iteratively (i.e., value iteration)
is a common approach which is known to converge [28]:

lim
i→∞

Vi(ŝ, `) = V (ŝ, `),

where, for brevity, we drop the time index from now on.
We will next prove that V (ŝ, `) is nondecreasing and con-
cave iteratively. Initializing all the state values as zero, i.e.,
V0(ŝ, `) = 0,∀s, `, after the first iteration we get

V1(ŝ, `) = min
G

{
E[αGG+ zG(s, `) + λGV0(ŝ+G, `+ r)

+ const.]
}

= const. + E[zG(s, `)] = const. + µ+
mGη`

p

(1− ξ)sq
.

Differentiating with respect to `, we get

∂

∂`
V1(ŝ, `) = mGηp

`p−1

(1− ξ)sq
≥ 0, ∀s, (5)

∂2

∂`2
V1(ŝ, `) = mGηp(p− 1)

`p−2

(1− ξ)sq
< 0, ∀s,

since mG, η > 0, p ∈ (0, 1), q > 0, ξ < 0. Thus, V1(ŝ, `) is
nondecreasing and concave in ` for all s. Similarly, the value
function after the second iteration becomes

V2(ŝ, `) = min
G

{
E[αGG+ zG(s, `) + λGV1(ŝ+G, `+ r)

+ const.]
}

= min
G

{
αGG+ µ+

mGη`
p

(1− ξ)sq
+ µλG+

λGE

[
mGη(`+ r)p

(1− ξ)(ŝ+G)q

]
+ const.

}
.

Denoting the optimum action with Ĝ we will show that
V2(ŝ, `) is nondecreasing and concave for any Ĝ. Moreover,
the pointwise minimum of nondecreasing and concave func-
tions is also nondecreasing and concave. Taking the derivative
with respect to ` we get

∂

∂`
V2(ŝ, `) =

∂

∂`

{
mGη`

p

(1− ξ)sq
+ λG

mGηE[(`+ r)p]

(1− ξ)(ŝ+ Ĝ)q

}

= mGηp
`p−1

(1− ξ)sq
+ λGmGηp

E[(`+ r)p−1]

(1− ξ)(ŝ+ Ĝ)q
≥ 0, ∀s

∂2

∂`2
V2(ŝ, `) = mGηp(p− 1)

`p−2

(1− ξ)sq

+ λGmGηp(p− 1)
E[(`+ r)p−2]

(1− ξ)(ŝ+ Ĝ)q
< 0, ∀s.
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Hence, V2(ŝ, `) is nondecreasing and concave. Now, for any
i, given that Vi−1(ŝ, `) is nondecreasing and concave, we can
write

∂

∂`
Vi(ŝ, `) = mGηa

`p−1

(1− ξ)sq
+ λGE

[
∂

∂`
Vi−1(ŝ+ Ĝ, `)

]
≥ 0,∀s

∂2

∂`2
Vi(ŝ, `) = mGηp(p− 1)

`p−2

(1− ξ)sq

+ λGE

[
∂2

∂`2
Vi−1(ŝ+ Ĝ, `)

]
< 0, ∀s. (6)

Consequently, by mathematical induction, V (ŝ, `) is nonde-
creasing and concave.

The second part of the proof is to show that ∂
∂`Fm(ŝ, `) <

∂
∂`Fm−1(ŝ, `). Similar to the first part, if we show that

∂

∂`
V (ŝ+m, `) <

∂

∂`
V (ŝ+m− 1, `),

we can conclude that ∂
∂`Fm(ŝ, `) < ∂

∂`Fm−1(ŝ, `) since

∂

∂`t
Fm(ŝt, `t) =

mGηp`
p−1
t

(1− ξ)sqt
+λGE

[
∂

∂`t
V (ŝt +m, `t + rt)

]
∂

∂`t
Fm−1(ŝt, `t) =

mGηp`
p−1
t

(1− ξ)sqt
+

λGE

[
∂

∂`t
V (ŝt +m− 1, `t + rt)

]
.

Starting again with V0(ŝ, `) = 0,∀s, `, from (5) we can write
the following inequality for the first iteration

∂

∂`
V1(ŝ+m, `) = mGηp

`p−1

(1− ξ)(ŝ+m)q

<
∂

∂`
V1(ŝ+m− 1, `) = mGηp

`p−1

(1− ξ)(ŝ+m− 1)q
.

For any i, given that ∂
∂`Vi−1(ŝ+m, `) < ∂

∂`Vi−1(ŝ+m−1, `),
from (6) we have

mGηp
`p−1

(1− ξ)(ŝ+m)q
+ λGE

[
∂

∂`
Vi−1(ŝ+m+, `)]

]
< mGηp

`p−1

(1− ξ)(ŝ+m− 1)q
+λGE

[
∂

∂`
Vi−1(ŝ+m− 1+, `)

]
, i.e.,

∂

∂`
Vi(ŝ+m, `) <

∂

∂`
Vi(ŝ+m− 1, `)

As a result, by mathematical induction we conclude that
∂
∂`V (ŝ+m, `) < ∂

∂`V ŝ+m− 1, `).
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