1

Appendix – Timely Detection and Mitigation of Stealthy DDoS Attacks via IoT Networks

Keval Doshi, Yasin Yilmaz, and Suleyman Uludag

PROOF OF THEOREM 1

Consider a hypersphere $S_t \in \mathbb{R}^d$ centered at x_t^n with radius L_t^n , the kNN distance of x_t^n with respect to the training set $\mathcal{X}_{M_2}^n$. The maximum likelihood estimate for the probability of a point being inside S_t under f_0 is given by k/M_2 . It is known that, as the total number of points grow, this binomial probability estimate converges to the true probability mass in S_t in the mean square sense [1], i.e.,

$$k/M_2 \stackrel{L^2}{
ightarrow} \int_{\mathcal{S}_t} f_0(oldsymbol{x}) \, \mathrm{d}oldsymbol{x}$$

as $M_2 \rightarrow \infty$. Hence, the probability density estimate

$$\hat{f}_0(\boldsymbol{x}_t^n) = \frac{k/M_2}{V_d(L_t^n)^d}$$

where $V_d(L_t^n)^d$ is the volume of \mathcal{S}_t , converges to the actual probability density function, $\hat{f}_0(x_t^n) \xrightarrow{p} f_0(x_t^n)$ as $M_2 \to \infty$, since \mathcal{S}_t shrinks and $L_t^n \to 0$. Similarly, considering a hypersphere $\mathcal{S}_{(\alpha)} \in \mathbb{R}^d$ around $\tilde{\boldsymbol{x}}_{(\alpha)}^n$ which includes k points within its radius $\tilde{L}_{(\alpha)}^n$, we see that as $M_2 \to \infty$, $\tilde{L}_{(\alpha)}^n \to 0$ and

$$\hat{f}_0(\tilde{\boldsymbol{x}}^n_{(\alpha)}) = \frac{k/M_2}{V_d(\tilde{L}^n_{(\alpha)})^d} \xrightarrow{p} f_0(\tilde{\boldsymbol{x}}^n_{(\alpha)}).$$

Assuming a uniform distribution

$$f_1(\boldsymbol{x}) = f_0(\tilde{\boldsymbol{x}}_{(\alpha)}^n), \ \forall \boldsymbol{x},$$

we conclude with

$$\log \frac{\frac{k/M_2}{V_d(\tilde{L}^n_{(\alpha)})^d}}{\frac{k/M_2}{V_d(L^n_t)^d}} = d \left[\log L^n_t - \log \tilde{L}^n_{(\alpha)} \right] \xrightarrow{p} \log \frac{f_1(\boldsymbol{x}^n_t)}{f_0(\boldsymbol{x}^n_t)}$$

as $M_2 \to \infty$.

PROOF OF THEOREM 2

In online testing (see lines 6-11), the most expensive part is to compute D_t^n , in particular L_t^n . And within L_t^n the expensive part is to find the *k*th nearest neighbor, which is $O(M_2d)$ if computed straightforwardly by computing the distance of test point to all M_2 training points. The space complexity of the algorithm is due to storing M_2 training points, each of which is *d*-dimensional, i.e., $O(M_2d)$. Note that the both time and space complexity of the mitigation part shown in lines 13-23 is $O((T - \tau + 1)d)$ where $T - \tau + 1$ is a bounded number close to the detection delay, typically much smaller than M_2 . In training, to compute $\tilde{L}^n_{(\alpha)}$ shown in line 4, kth nearest neighbor among M_2 points are computed for each of M_1 points, requiring $O(M_1M_2d)$ computations. However, training is performed once offline, so the complexity of online testing is usually critical for scalability.

REFERENCES

[1] Alan Agresti. An introduction to categorical data analysis. Wiley, 2018.

This work was supported in part by the U.S. National Science Foundation under the Grant CNS-1737598 and in part by the SCEEE-17-03 Grant.

K. Doshi and Y.Yilmaz are with the Electrical Engineering Department, University of South Florida, Tampa, FL USA (e-mail: kevaldoshi@mail.usf.edu, yasiny@usf.edu).

S. Uludag, is with the Department of Computer Science, University of Michigan - Flint, MI USA (e-mail: uludag@umich.edu).