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Abstract— In this paper, online detection of false data injection
(FDI) attacks and denial of service (DoS) attacks in the smart
grid is studied. The system is modelled as a discrete-time linear
dynamic system and state estimation is performed using the
Kalman filter. The generalized CUSUM algorithm is employed for
quickest detection of the cyber-attacks. Detectors are proposed in
both centralized and distributed settings. The proposed detectors
are robust to time-varying states, attacks, and set of attacked
meters. Online estimates of the unknown attack variables are
provided, that can be crucial for a quick system recovery.
In the distributed setting, due to bandwidth constraints, local
centers can only transmit quantized messages to the global center,
and a novel event-based sampling scheme called level-crossing
sampling with hysteresis (LCSH) is proposed that is shown to
exhibit significant advantages compared with the conventional
uniform-in-time sampling (US) scheme. Moreover, a distributed
dynamic state estimator is proposed based on information filters.
Numerical examples illustrate the fast and accurate response of
the proposed detectors in detecting both structured and random
attacks and their advantages over the existing methods.

Index Terms— Smart grid, Kalman filter, false data injection
attack, denial of service attack, quickest detection, generalized
CUSUM, distributed algorithm, level-crossing sampling.

I. INTRODUCTION

With the recent advancements in monitoring, sensing, sig-
nal processing, control, and communication, advanced tech-
nologies are being integrated into the next-generation power
systems, i.e., the smart grid. Due to such features, the smart
grid depends on a critical cyber infrastructure which makes it
vulnerable to hostile cyber threats [1]. This raises safety and
security concerns about the smart grid since any outages or
failures in this system may lead to wide-area power blackouts
and significant financial losses. Among many types of cyber-
attacks, we pay special attention to false data injection (FDI)
and denial of service (DoS) attacks in this study. The aim
of FDI attacks is to compromise meter measurements with
additive malicious data and the aim of DoS attacks is to block
system functionality or intervene normal system operation to
some extent.

A. Literature Survey on Cyber-Attacks and Counter-Measures
in Smart Grid

In practice, FDI and DoS attacks can be performed by
manipulating/jamming the network communication channels,
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Fig. 1: An illustration of the vulnerabilities of a smart grid.
The solid lines illustrate the network communication channels
and the dashed lines illustrate the possible cyber-attacks. The
attacker can (i) hack a smart grid component to block or
manipulate its operation (A1, A3, A5), (ii) manipulate, jam
or block the communication channels (A2, A4).

hacking (physically or through cyber infrastructure) the smart
grid components (smart meter, control center, etc.) or access-
ing and manipulating the database of a control center [1]–[4].
The DoS attack can also be performed by repeatedly send-
ing huge amounts of packets to the network communication
channels to prevent the useful system message packets from
being received by the legitimate receivers (flooding) [5]. For
an illustration of how an attacker can perform cyber-attacks in
a smart grid, we present Fig. 1.

Cyber attacks in the smart grid mainly target against state
estimation. Since the power system is regulated based on
estimated states, any deviation from the actual state estimates
leads to wrong decisions in energy management system, ma-
nipulated electricity market prices [6], and other unpredictable
detrimental consequences. Traditionally, state estimation in
power systems is based on the least squares (LS) methods.
Bad data detection methods based on the LS estimators are
successful in identifying bad data due to random noise and
faults but unable to identify structured (called “stealth” in the
literature) FDI attacks [7]. Moreover, it is inconvenient to use
LS estimators for real-time monitoring of power system that
is highly dynamic due to changes in load, power generation,
and system topology over time [8].

Classical methods for bad data detection checks either the
l2-norm of measurement residual or the largest normalized
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residue and if these values are above a certain threshold,
an attack or a fault is detected. It has been first shown in
[7] that it is possible to inject false data without changing
the measurement residual if the attacker knows the system
topology. Moreover, in [9], it is shown that even if the attacker
has incomplete knowledge of the grid topology, it can still
carry out stealth FDI attacks if the system parameters vary in
a small dynamic range. This vulnerability of the LS estimator-
based detectors has opened up new research directions. For
instance, in [10], the attacker is constrained such that it can
compromise only a limited number of meters and then an
algorithm for meter selection is proposed. In [11], the problem
of constructing a stealth attack by minimizing the number of
attacked meters is investigated. In some studies, it is assumed
that the attacker has incomplete knowledge about the system
and it is shown that the attacker can estimate the topology
by collecting online and offline data [12] or by exploiting
electricity market data [13]. Furthermore, in [14], it is shown
that if an attacker knows the topology of only a local region
in a power system, it can successfully perform stealth FDI
attacks to the local meters.

In response to FDI attacks, some techniques for defending
the grid have been proposed. In [10], it is shown that if a
certain number of meters are protected, then FDI attacks can
always be detected and in [15], an algorithm to specify such
meters is proposed. Meters can be protected by using Phasor
Measurement Units (PMUs). PMUs are advanced devices that
make use of the Global Positioning System (GPS) and provide
highly precise phasor measurements synchronized over the
whole grid [16]. They are expensive devices, hence the number
of PMUs and their locations should be optimized. In this
direction, PMU placement algorithms are proposed in [17]
and [18]. It is shown in [19], however, if the GPS receiver
is spoofed, the advantages of PMUs will disappear. In such a
case, coordination between different parts of the power grid is
lost and the whole power system might even collapse.

For a timely and reliable response, detecting cyber attacks
as quickly as possible and with an acceptable level of false
alarm rate has a critical importance in real-time operation of
the smart grid. Hence, the framework of sequential change
detection, also known as quickest detection, is very suitable
for this setup. In this framework, data is sequentially observed
and after each observation time, a decision is taken: it either
stops and a change is declared or continues to observe more
data. Moreover, there exists a tradeoff between the detection
speed and the detection accuracy. As the desired detection
accuracy increases, the detection delay also increases, or
equivalently the detection speed decreases. There are several
studies exploiting this framework for detection of FDI attacks
[20], [21]. The detector in [20] outperforms the so-called
adaptive CUSUM test [21] and has a quick and accurate
response if the attacker has an incomplete information about
the system topology. However, it cannot detect the stealth FDI
attacks.

The LS methods for state estimation depend only on the
present measurements. Adopting a state-space model enables
a dynamic state estimator that combines present and past
measurements so that the system state can be inferred in a

more accurate and robust way. If the noise has a Gaussian
distribution, the Kalman filter is the optimal linear estimator
that minimizes the mean squared error [22]. Moreover, the
Kalman filter provides predicted measurements which can
be exploited to improve attack detection performance. Some
simple bad data detectors based on the Kalman filter have
been proposed in the literature. In particular, the Euclidean
detector [23], cosine similarity metric based detector [24], and
chi-square detector [25] are the existing techniques that check
the difference between actual measurements and the predicted
measurements. However, such detectors are essentially outlier
detection methods making sample-by-sample decisions, i.e.,
they declare a sample measurement as either normal or anoma-
lous. On the other hand, in sequential change detection, nega-
tive/positive evidence for a change (e.g., an attack or failure) in
the system are accumulated over time and a change is declared
only if the evidence supporting change is reliably high. Hence,
attack/anomaly detectors based on the sequential change de-
tection theory are more reliable compared to outlier detection
techniques. Furthermore, detection-only schemes such as the
detectors presented in [23]–[25] do not provide any estimates
for the magnitude of the injected malicious data or the set
of compromised meters, which may be critical to know for an
effective attack mitigation and system recovery, e.g., to recover
the attack-free states or to isolate the compromised meters
during the recovery process. On the other hand, in detection
schemes including an estimation mechanism, estimation errors
may worsen the detection performance.

Due to limited communication resources, e.g., energy and
bandwidth, collection of measurements in a single node may
not be practically feasible. Moreover, in a large power system,
processing huge amount of data in a single node is infeasible
and susceptible to single node failure. Therefore, a resource-
effective distributed implementation is required in practice.
In such a system, the computation is distributed over the
whole network and the communication overhead is reduced
as much as possible. The information filter, which is an
algebraic equivalence to the Kalman filter, is convenient for
a distributed setting due to its simple update rules [26].
Furthermore, event-based sampling techniques are convenient
for sequential change detection, see e.g., [20], [27], [28]. In
our case, the decision statistics are expected to vary in a small
range before the attack, hence non-informative transmissions
during this period can be eliminated with event-based sampling
techniques.

B. Contributions

In this paper, the smart grid is modeled as a discrete-time
linear dynamic system and the Kalman filter is employed for
state estimation. State and measurement forecasts/predictions
provided by the Kalman filter are exploited to improve the
attack detection performance. We list our main contributions
as follows:
• Novel low-complexity real-time detection schemes are

proposed for both FDI and DoS attacks in smart grid in
both centralized and distributed settings. The proposed
schemes are robust to unknown and time-varying attack
magnitudes, set of attacked meters, and the system state.
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• Online estimates of the attack variables are provided that
can be crucial for a quick attack mitigation and system
recovery. In particular, simple closed-form maximum
likelihood estimate (MLE) expressions are derived for the
attack magnitudes and the set of attacked meters.

• The stealth FDI attacks described in [7] can be detected
with the proposed FDI detection mechanisms.

• A novel fully distributed dynamic state estimator is
proposed.

Further, in the distributed setting, to use communication
resources more effectively and to improve the distributed
attack detection performance, a novel event-triggered sampling
scheme called level-crossing sampling with hysteresis (LCSH)
is proposed for sampling and transmission of local statistics,
that is shown to exhibit significant advantages over the con-
ventional uniform-in-time sampling (US) scheme.

C. Organization

The remainder of the paper is organized as follows. In
Section II, we present the system model, the attack models
under consideration, and the problem formulations. In Section
III, we present the cyber-attack detectors in the centralized
setting, where all measurements in the system are collected
and processed by a single node. In Section IV, we present the
system model in the distributed setting, the distributed state
estimation technique, and the corresponding cyber-attack de-
tectors. We illustrate the performance of the proposed detectors
via extensive simulations in Section V. Finally, Section VI
concludes the paper. Throughout the paper, we use boldface
letters for vectors and matrices. Moreover, oooT denotes the
transpose of a vector or matrix ooo.

II. SYSTEM MODEL AND PROBLEM FORMULATIONS

Suppose that there are K meters in a power system consist-
ing of N + 1 buses, where usually K ≥ N [29]. System state
xt = [x1,t, . . . , xN,t]

T represents phase angles of N buses
at time t where one of the buses is chosen as the reference
bus. Measurement taken at meter k ∈ {1, . . . ,K} at time t
is denoted with yk,t and the set of measurements is denoted
with yt = [y1,t, . . . , yK,t]

T . In a centralized setup, a single
controller node observes all the measurements in yt. On the
other hand, in a distributed setup, measurements in yt are
distributed over the network, i.e., each node in the system
observes yt in part.

In the actual power system, relationship between the mea-
surements and the state variables is based on a nonlinear
function [1]. We consider the commonly used approximate
direct current (DC) model, see e.g., [7], [29], [30], and
a discrete-time linear dynamic system with the state-space
equations

xt = Axt−1 + vt, (1)
yt = Hxt + wt, (2)

where A ∈ RN×N is the state transition matrix, H ∈ RK×N
is the measurement matrix, vt = [v1,t, . . . , vN,t]

T is the
process noise, and wt = [w1,t, . . . , wK,t]

T is the measurement
noise. We assume that vt and wt are independent additive
white Gaussian random processes where vt ∼ N (0, σ2

v IN ),

wt ∼ N (0, σ2
w IK), and IK is a K ×K identity matrix.

Next, we explain the considered cyber-attack models and the
corresponding problem formulations. Henceforth, we use the
superscripts f , d, and 0 to denote quantities related to FDI
attacks, DoS attacks, and no-attack, respectively.

A. FDI Attack

We consider that the attacker is initially inactive and at an
unknown time τ , it starts to manipulate the measurements by
injecting additive false data so that the measurement vector
takes the following form:

yt = Hxt + at + wt, t ≥ τ (3)

where at = [a1,t, . . . , aK,t]
T is the false data created by the

attacker at time t ≥ τ . Let hTk ∈ RN be the kth row of the
measurement matrix, i.e., HT = [h1, . . . ,hK ]. Based on (3),
in case of an FDI attack, yk,t takes the following form:

yk,t =

{
hTk xt + ak,t + wk,t, if k ∈ Sft ,
hTk xt + wk,t, if k /∈ Sft ,

, t ≥ τ , (4)

where Sft ⊂ {1, . . . ,K} is the unknown set of compromised
meters at time t. Then, the null and alternative hypotheses
can be written as

H0 : yk,t ∼ N (hTk xt, σ
2
w), ∀k ∈ {1, 2, . . . ,K}, ∀t (5)

Hf1 : yk,t ∼


N (hTk xt, σ

2
w), ∀k ∈ {1, 2, . . . ,K}, t < τ{

N (hTk xt, σ
2
w), ∀k /∈ Sft

N (hTk xt + ak,t, σ
2
w), ∀k ∈ Sft .

, t ≥ τ,

(6)
where we define the change event of interest as

|ak,t| ≥ γ, ∀k ∈ Sft , t ≥ τ, (7)

i.e., γ is a predefined lower bound for the absolute value of ak,t
that draws security attentions1. Since it is hard to distinguish
noise with low-magnitude false data, the value of γ should be
selected such that the number of false positives due to noise
is reduced to an acceptable level. Moreover, FDI attacks with
small magnitudes are expected to affect the system minimally.

Our aim is to detect the attack as quickly as possible with
the desired level of false alarm rate. In the sequential change
detection literature, there are two main approaches: Bayesian
and non-Bayesian [31]. In the Bayesian approach, the change
point τ is considered as a random variable with a known prior
(geometric) distribution [32]. However, in practice (also in
our case), it is difficult to know a prior distribution for τ .
Hence, we proceed with a non-Bayesian approach where τ is
considered as a deterministic unknown quantity. In particular,
we use Lorden’s definition for the worst-case detection delay
[33]

J(T f ) = sup
τ

ess sup
Fτ

Eτ
[
(T f − τ)+ |Fτ

]
, (8)

where T f is the stopping time of a detection scheme, Fτ is
the filtration, i.e., all measurements obtained until time τ , and
(·)+ = max(·, 0). Moreover, Ek is the expectation under Pk
that is defined as the probability measure when τ = k. In

1γ is only a detector parameter. It is not a restriction for an attacker’s
strategy.
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(8), the essential supremum, which is a concept in measure
theory, is in practice equivalent to the supremum of a set.
Note that J(T f ) is called the worst-case detection delay since
it is equal to the average detection delay calculated under
the least favorable attack time and the least favorable history
of measurements until the attack time. The stopping time is
chosen to minimize the detection delay subject to false alarm
constraints. The optimization problem is then expressed as

inf
T f

J(T f ) subject to E∞[T f ] ≥ α, (9)

where E∞[T f ] is the mean time between false alarms in case
of no attack, i.e., τ = ∞, and α is a predetermined lower
bound for E∞[T f ].

Let the probability density functions (pdfs) of the mea-
surements corresponding to the measurement models given in
(2) and (3) be denoted with p0(yt |xt) and pf (yt |xt,at),
respectively. If these two pdfs can be completely specified,
the optimal solution of the quickest detection problem in (9)
can be found using the CUSUM test [34]:

T f = inf

{
m ∈ N : max

1≤j≤m

m∑
t=j

log
pf (yt |xt,at)
p0(yt |xt)

≥ hf
}
,

(10)

where hf is the threshold of the test, which controls the
tradeoff between minimizing the average detection delay and
the false alarm rate.

Since (i) the system state xt evolves over time and is
not observed and (ii) the attack vector at and the set of
meters under attack Sft are time-varying and unknown, it
is not possible to directly apply the CUSUM test given in
(10). However, we can follow the generalized likelihood ratio
method [35, Sec. 5.3] and replace the unknown quantities with
their estimates [20]. In particular, since we have a discrete-time
linear dynamic system, the Kalman filter can be used to obtain
the optimal state estimates x̂t [22]. Moreover, the MLEs of
the attack vector, i.e., ât, and the set of attacked meters, i.e.,
Ŝft , can be derived2. Then, the generalized CUSUM test can
be used to obtain a solution to (9).

B. DoS Attack

We assume that in case of DoS attack, communication
between some unknown set of meters and the control center is
lost so that the control center has no knowledge about the mea-
surements taken at the attacked meters. Let Sdt ⊂ {1, . . . ,K}
be the set of attacked meters at time t. At an unknown time τ ,
the attack starts and a meter measurements in case of a DoS
attack take the following form:

yk,t =

{
nk,t, if k ∈ Sdt ,
hTk xt + wk,t, if k /∈ Sdt ,

t ≥ τ, (11)

where nk,t ∼ N (0, σ2
n) is the i.i.d. noise observed in case of

a DoS attack.
The null hypothesis is as given in (5) and the alternative

2Both at and Sf
t are time-varying, non-random unknown parameters. Their

values at each time depend only on the attacker’s strategy.

hypothesis can be written as

Hd1 : yk,t ∼


N (hTk xt, σ

2
w), ∀k ∈ {1, 2, . . . ,K}, t < τ{

N (hTk xt, σ
2
w), ∀k /∈ Sdt

N (0, σ2
n), ∀k ∈ Sdt .

, t ≥ τ.

(12)

Again, we use Lorden’s definition for the worst-case detec-
tion delay [33]

J(T d) = sup
τ

ess sup
Fτ

Eτ
[
(T d − τ)+ |Fτ

]
, (13)

where T d is the stopping time. The optimization problem is
then stated as

inf
Td

J(T d) subject to E∞[T d] ≥ α. (14)

Let the pdfs of the measurements corresponding to the
measurement models given in (2) and (11) be denoted with
p0(yt |xt) and pd(yt |xt), respectively. As before, as a solu-
tion to (14), the generalized CUSUM algorithm can be used
using the MLE of the set of attacked meters and estimating
the state variables using the Kalman filter.

Remark 1: In the literature, DoS attack is modeled as the
lack of availability of meter measurements and in case of DoS
attack, either a zero signal or a random signal is observed [3],
[4], [36]. The former is more appropriate if the attacker hacks
some subset of meters (or some control centers) and prevents
the data transmission from these meters to the control centers.
On the other hand, the latter is more appropriate if the attacker
jams the network communication channels. We address both
kinds of DoS attacks by modeling the signal received from the
attacked meters as a zero-mean Gaussian noise with a generic
variance σ2

n.
For the DoS attacks performed by preventing the data

transmission from smart meters, σ2
n can be set to a very

small value (close to zero) so that the received signal is
almost the zero signal. On the other hand, for the DoS attacks
performed by jamming the network communication channels,
the attacker can increase the noise variance to a very high
level so that the actual message is lost (very low signal to
noise ratio (SNR)). In this case, we consider that the attacker
jams the communication channel by constantly emitting the
Gaussian noise since (i) it is a common model for jamming
in the literature [37], (ii) for an additive noise channel with
a Gaussian input, among all distributions with a given mean
and variance, the Gaussian noise maximizes the mean squared
error (MSE) of estimating the input given the channel output
[38], [39]. Hence, in order to maximize damages on the
state estimation mechanism, the attacker can transmit additive
white Gaussian noise for jamming. σ2

n can then be set to the
minimum possible noise variance such that the actual signal
can be neglected compared to the noise signal (SNR close to
zero).

III. CENTRALIZED ATTACK DETECTORS

In the centralized setting, a central controller has all the
system-wide information. In particular, a single node collects
and processes all the measurements in the system. This can
be achieved for a power system consisting of small number
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of meters and located in a geographically small region. In the
following, we present the generalized CUSUM test structures,
the Kalman filter equations, the MLEs of the unknown attack
parameters, and the proposed centralized detection algorithms
for FDI and DoS attacks, respectively.

A. Centralized Detector for FDI Attacks

Since the measurement models in the null (cf. (5)) and the
alternative (cf. (6)) hypotheses are different, state estimates
corresponding to different hypotheses need to be calculated
based on their respective measurement models. For this pur-
pose, two parallel state estimators need to be simultaneously
employed. The Kalman filter consists of two steps at each
iteration: the prediction step and the measurement update step.
At the prediction step, the state estimates at time t are based
on all measurements up to t − 1, and at the measurement
update step, the state estimates at time t are based on all
measurements up to t. Let the state estimates at time t for
the null and the alternative hypotheses be denoted with x̂0

t|t′

and x̂ft|t′ , respectively (t′ = t − 1 for prediction and t′ = t
for measurement update). The stopping time based on the
generalized CUSUM test is then given in (15) (shown at the
top of the next page) where gfm is the decision statistic at
time m, and βt is the generalized log-likelihood ratio (GLLR)
calculated at time t.

Note that in (15), the state estimates of the prediction step,
i.e., x̂0

t|t−1 and x̂ft|t−1 are used. One of our purposes here
is to block the effect of the attack vector at time t on the
state estimates at time t. In this way, we aim to improve
the detection of the time-varying attacks and also to obtain
closed-form expressions for the MLEs of the unknown attack
variables. Moreover, the prediction step of the Kalman filter, in
fact, provides state and measurement forecasts/predictions, and
the deviation of the actual measurements from the predicted
ones is an indication of an unusual event, e.g., a fault or
an attack. Hence, it is also exploited to improve the attack
detection performance.

The Kalman filter equations at time t are given as follows:
Prediction:

x̂0
t|t−1 = Ax̂0

t−1|t−1,

x̂ft|t−1 = Ax̂ft−1|t−1,

Pt|t−1 = APt−1|t−1A
T + σ2

v IN , (16)

Measurement update:

Gt = Pt|t−1H
T (HPt|t−1H

T + σ2
w IK)−1,

x̂0
t|t = x̂0

t|t−1 + Gt(yt −Hx̂0
t|t−1),

x̂ft|t = x̂ft|t−1 + Gt(yt −Hx̂ft|t−1 − ât),

Pt|t = Pt|t−1 −GtHPt|t−1, (17)

where Pt|t−1 and Pt|t denote the estimates of the state
covariance matrix based on the measurements up to t − 1
and t, respectively. Moreover, Gt is the Kalman gain matrix
and ât is the MLE of at (cf. (19)). Note that ât is used
in the measurement update step of the Kalman filter for the
alternative hypothesis. The following proposition presents the
MLEs of the unknown attack parameters and the GLLR at

time t.
Proposition 1: Let et = [e1,t, . . . , eK,t]

T , yt −Hx̂ft|t−1.
Then, ek,t = yk,t −hTk x̂

f
t|t−1. The most likely set of attacked

meters at time t is given by

Ŝft = {k : |ek,t| >
γ

2
, k = 1, . . . ,K}, (18)

the MLE of the attack vector, i.e., ât = [â1,t, . . . , âK,t]
T , is

given by

âk,t =


ek,t, if |ek,t| ≥ γ
γ, if γ

2 < ek,t < γ

−γ, if − γ < ek,t < −γ2
0, else,

(19)

and the GLLR at time t is given by

βt =
1

2σ2
w

K∑
k=1

(
(yk,t − hTk x̂

0
t|t−1)2

− (yk,t − hTk x̂
f
t|t−1 − âk,t)

2

)
. (20)

Proof: See Appendix A.
Based on (15), recursion of the decision statistic gft , t ∈ N

can be written as

gft = (gft−1 + βt)
+, (21)

where gf0 = 0 and βt is as given in (20). Note that if
gft = 0 for any time t, then the change-point estimate in
the (generalized) CUSUM algorithm is updated to time t
[35, Sec. 2.2]. Since the alternative hypothesis Hf1 assumes
the normal (no-attack) measurement model up to the change-
point (cf. (6)), the Kalman filter for the alternative hypothesis
needs also to be employed based on the normal measurement
model up to the change-point. Hence, whenever the change-
point estimate is updated, the Kalman filter estimates for the
alternative hypothesis are updated by setting x̂ft|t ← x̂0

t|t.
We summarize the proposed centralized attack detector in

Algorithm 1 and present a graphical representation of the
algorithm in Fig. 2. At each time t, we first employ the
Kalman filters to estimate the states through the prediction
step. We then calculate the MLE of the attack vector and
specify the most likely set of attacked meters. Using the
MLEs, we then implement the measurement update step of the
Kalman filter. Then, we calculate the decision statistic. If the
decision statistic crosses the predefined threshold, we declare
an attack, otherwise we continue to collect measurements in
the next time cycle.

Note that we deal with the false alarms due to outliers (e.g.,
high noise) through selecting γ and hf sufficiently large. Since
we gather attack statistics both in space and time, sufficiently
high thresholds ensure small false alarm rates, equivalently
high false alarm periods. On the other hand, higher thresholds
will cause larger detection delays. Hence, there is a tradeoff
in selecting γ and hf .

B. Centralized Detector for DoS Attacks

Let the state estimates under the null (cf. (5)) and the
alternative (cf. (12)) hypotheses be denoted with x̂0

t|t′ and x̂dt|t′ ,
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T f = inf

{
m ∈ N : max

1≤j≤m

m∑
t=j

sup
Sft

log
sup|ak,t|≥γ, k∈Sft

pf (yt | x̂ft|t−1,at)

p0(yt|x̂0
t|t−1)︸ ︷︷ ︸

βt︸ ︷︷ ︸
gfm

≥ hf
}

(15)

Algorithm 1 The centralized attack detector

1: Initialization: t← 0, gf0 ← 0

2: while t < T f do
3: t← t+ 1

4: Implement the prediction step of the Kalman filter using (16).

5: Compute ât, βt, and gft using (19), (20), and (21), respec-

tively.

6: Implement the measurement update step of the Kalman filter

using (17).

7: if gft = 0 then
8: x̂f

t|t ← x̂0
t|t

9: else if gft ≥ hf then
10: T f ← t

11: end if
12: end while
13: Declare the attack and stop the procedure.

respectively. The generalized CUSUM test is given by

T d = inf

{
m ∈ N : max

1≤j≤m

m∑
t=j

sup
Sdt

log
pd(yt | x̂dt|t−1)

p0(yt|x̂0
t|t−1)︸ ︷︷ ︸

ρt︸ ︷︷ ︸
gdm

≥ hd
}
,

(22)

where gdm is the decision statistic at time m, ρt is the GLLR
calculated at time t, and hd is the test threshold.

The noise levels in the measurement models given in (2)
and (11) are different. Hence, in addition to the state estimates,
estimates of the state covariance matrices are also different for
different hypotheses. Let P0

t|t′ and Pdt|t′ be such estimates for
the null and alternative hypotheses, respectively. The Kalman
filter equations at time t are then given as follows:

Prediction:

x̂0
t|t−1 = Ax̂0

t−1|t−1,

x̂dt|t−1 = Ax̂dt−1|t−1,

P0
t|t−1 = AP0

t−1|t−1A
T + σ2

v IN ,

Pdt|t−1 = APdt−1|t−1A
T + σ2

v IN , (23)

Measurement update:

G0
t = P0

t|t−1H
T (HP0

t|t−1H
T + σ2

w IK)−1,

Gd
t = Pdt|t−1H

T (HPdt|t−1H
T + ΛΛΛt)

−1,

Obtain the measurement vector yt

Predection step of the Kalman filter

Compute the MLEs of the attack parameters

Measurement update step of the Kalman filter

Compute the GLLR βt

Update the decision statistic: gft ← (gft−1 + βt)
+

gft ≥ hf

t← t+ 1

Declare an attack

gft = 0

0 < gft < hf
x̂f
t|t ← x̂0

t|t

a a

a

a

aaa

Fig. 2: A graphical description of Algorithm 1.

x̂0
t|t = x̂0

t|t−1 + G0
t (yt −Hx̂0

t|t−1),

x̂dt|t = x̂dt|t−1 + Gd
t (yt − ut),

P0
t|t = P0

t|t−1 −G0
tHP0

t|t−1,

Pdt|t = Pdt|t−1 −Gd
tHPdt|t−1, (24)

where ΛΛΛt = diag(λ1,t, . . . , λK,t) is a diagonal matrix with the
following diagonal terms:

λk,t =

{
σ2
n, if k ∈ Ŝdt
σ2
w, if k /∈ Ŝdt .

(25)

Furthermore, ut = [u1,t, . . . , uK,t]
T can be determined as

uk,t =

{
0, if k ∈ Ŝdt
hTk x̂

d
t|t−1, if k /∈ Ŝdt .

(26)

Note that the measurement update step of the Kalman
filter for the alternative hypothesis is performed based on the
MLE of the set of attacked meters. The following proposition
presents the MLE of Sdt and the GLLR at time t.

Proposition 2: The most likely set of attacked meters can
be determined as

Ŝdt =

{
k :

1

σ2
n

y2
k,t−

1

σ2
w

(yk,t − hTk x̂
d
t|t−1)2

< log

(
σ2
w

σ2
n

)
, k = 1, . . . ,K

}
, (27)
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and the GLLR can be computed as follows:

ρt =
1

2

(
K log(σ2

w) +
1

σ2
w

K∑
k=1

(yk,t − hTk x̂
0
t|t−1)2

−
∑
k∈Ŝdt

log(σ2
n) +

1

σ2
n

y2
k,t

−
∑
k/∈Ŝdt

log(σ2
w) +

1

σ2
w

(yk,t − hTk x̂
d
t|t−1)2

)
. (28)

Proof: See Appendix B.
Based on (22), recursion of the decision statistic gdt , t ∈ N

can be written as

gdt = (gdt−1 + ρt)
+, (29)

where gd0 = 0 and ρt is as given in (28). As before, if
gdt = 0 for any t ∈ N, then the change-point estimate
is updated and consequently the Kalman filter estimates for
the alternative hypothesis are updated as x̂dt|t ← x̂0

t|t and
Pdt|t ← P0

t|t, respectively. We summarize the centralized DoS
attack detector in Algorithm 1 after a few changes. Particularly,
we replace T f with T d, gft with gdt , and hf with hd. Moreover,
we replace lines 4-6, and 8 of Algorithm 1 with the following
lines.

4: Implement the prediction step of the Kalman filter using (23).

5: Compute Ŝd
t , ΛΛΛt, ut, ρt, and gdt based on (27), (25), (26), (28),

and (29), respectively.

6: Implement the measurement update step of the Kalman filter

using (24).

8: x̂d
t|t ← x̂0

t|t, P
d
t|t ← P0

t|t

IV. DISTRIBUTED ATTACK DETECTORS

In practice, the interconnected power grid is composed of
several geographically separated subregions and each sub-
region contains a different set of meters. Thus, gathering
and processing measurements obtained by all meters at a
single place is infeasible, especially in large grids. Hence, a
distributed implementation is needed. In the distributed setting,
we consider a hierarchical structure where there are several
local (control) centers and a global (control) center (cf. Fig.
4). In particular, each subregion is supervised by a local center
that collects the measurements in its subregion, performs some
computational tasks, and communicates with the neighboring
local centers and with the global center through ideal (error-
free) communication channels. We assume that (i) there is an
ample bandwidth between any two neighboring local centers,
(ii) a local center has knowledge of only its measurements and
the configuration of the whole power grid.

The global center is responsible for detecting an attack
and it needs to compute decision statistics based on all mea-
surements, as discussed in Section III. We assume that there
are parallel communication channels between local centers
and the global center and the resources, e.g., bandwidth, for
communication are scarce. Hence, we propose that each local
center calculates a local statistic based on the measurements

collected in its subregion, then transmits a quantized version
of it to the global center. The global center then detects and
declares an attack (if any) based on the received messages
from the local centers. Furthermore, the global center sends
feedback signals to the local centers when necessary. Note that
for transmission of local statistics from the local centers to the
global center and for the feedback signals received from the
global center, we assume instantaneous communication.

In the following, we firstly describe the system model in
the distributed setting, then explain the distributed state esti-
mation procedure, and finally present the distributed detection
algorithms for FDI attacks and DoS attacks, respectively.

A. System Model in the Distributed Setup

Suppose that there exist L subregions in the power grid and
let R` denote the set of meters inside the `th subregion, ` =
1, 2, . . . , L. We assume that a meter reports its measurements
to only one local center. Hence, if the number of meters in the
`th subregion is denoted with K` , |R`|, then

∑L
`=1K

` = K.
The measurement vector yt is then decoupled into L sub-
vectors where y`t , consisting of the set of measurements
{yk,t | k ∈ R`}, denotes the measurements collected in the
`th subregion at time t.

We next need to determine the state vector of a local center.
Based on the measurement model given in (2), yk,t, k ∈
{1, . . . ,K} can be written as

yk,t = hTk xt + wk,t,

where hTk = [hk,1, . . . , hk,N ] is the kth row of the mea-
surement matrix H, as defined before. Then, yk,t depends
on, equivalently bears information about, the state variables
corresponding to the nonzero entries of hk. Let the set of
such state variables be denoted with Xyk , {xn |n ∈
{1, 2, . . . , N}, hk,n 6= 0}. The state vector of the `th local
center, which is denoted with x`t at time t, includes the state
variables in Xyk for all k ∈ R`. In fact, x`t may include further
state variables due to dependencies between state variables
over time.

In particular, due to the state transition matrix A, evolution
of a state variable over time depends on a set of state variables.
Let aaaTn = [an,1, . . . , an,N ] be the nth row A, i.e., AT =
[aaa1, . . . , aaaN ]. Based on the state update equation given in (1),
xn,t, n ∈ {1, . . . , N} can be written as follows:

xn,t = aaaTnxt−1 + vn,t.

Thus, xn,t depends directly (over one-time period) on the
state variables in the set {xi | i ∈ {1, 2, . . . , N}, an,i 6= 0}.
Since the state variables belonging to this set may depend on
several other state variables through (1), xn,t may indirectly
(over multiple time periods) depend on a larger set of state
variables. Including all direct and indirect dependencies, we
finally obtain a set of state variables Xn that do not depend
on any state variable outside the set Xn. Hence, the evolution
of xn in time depends only on Xn.

The state vector of the `th local center then consists of the
state variables in the set:

Xy` ,
⋃

k∈R`

{ ⋃
xn ∈Xyk

{
{xn} ∪ Xn

}}
.
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Let N ` , |Xy` |, then x`t ∈ RN` . Note that
∑L
`=1N

` ≥ N .
As a simple and illustrative example, consider a system with

the state vector xt = [x1,t, x2,t, x3,t, x4,t]
T . Suppose that the

system matrix and the measurement matrix are given as

A =

[
1 0 −0.3 0
0 1 0 0
0 0.5 1 0
0 0 0 1

]
and H =

[
1 0 0 0
−1 1 0 0
0 −1 −1 2
0 0 1 −1
0 0 0 1

]
,

respectively. Moreover, let the system be composed of two
subregions and the measurements obtained at the first and
the second local centers at time t be y1

t = [y1,t, y2,t]
T and

y2
t = [y3,t, y4,t, y5,t]

T , respectively. Then, Xy1 = {x1}, Xy2 =
{x1, x2}, Xy3

= {x2, x3, x4}, Xy4
= {x3, x4}, and Xy5

=
{x4}. Furthermore, X1 = {x1, x2, x3}, X2 = {x2}, X3 =
{x2, x3}, and X4 = {x4}. Therefore, Xy1 = {x1, x2, x3} and
Xy2 = {x2, x3, x4}. Then, the local state vectors are obtained
as x1

t = [x1,t, x2,t, x3,t]
T and x2

t = [x2,t, x3,t, x4,t]
T .

For the `th local center, the state update equation and the
normal measurement model are then given by

x`t = A`x`t−1 + v`t , (30)

y`t = H`x`t + w`
t , (31)

where A` ∈ RN`×N` is the local system matrix, v`t , a sub-
vector of vt, is the local process noise vector corresponding
to x`t , H

` ∈ RK`×N` is the local measurement matrix, and
w`
t ∼ N (0, σ2

w IK`) is the local measurement noise vector.
Note that A` and H` can be simply obtained from A and H,
respectively. Recall that for any two subregions ` and j, y`t
and yjt do not overlap but x`t and xjt may overlap.

B. Distributed State Estimation Assuming Null Hypothesis

The information filter, or the inverse covariance filter, is
an algebraic equivalence to the Kalman filter and its update
rules are simpler and more convenient for a distributed setup
[26], [40]. Hence, we use information filters for state esti-
mation in the distributed setting. In particular, we employ
two information filters (one for the null hypothesis and one
for the alternative hypothesis) at each local center. With the
exchange of necessary information between local centers, state
estimation is performed in a fully distributed manner. In this
section, we explain the proposed distributed state estimation
procedure for one of the local centers, say the `th one, in case
of no attack (null hypothesis). Note that the procedure is the
same for all local centers.

Among all measurements taken system-wide, the state esti-
mator of the `th local center needs to exploit the measurements
that bear information about at least one of the state variables in
x`t . Clearly, y`t are among such measurements. Note that due
to the tie-lines between neighboring subregions, some state
variables can be shared between neighboring local centers.
Moreover, due to the dependencies between state variables
over time, some (neighboring or non-neighboring) local cen-
ters may have common state variables with the `th local center.
Hence, it is possible that some measurements collected at the
other local centers bear information about a nonempty subset
of x`t . Another challenge is that such measurements may be
partially related to x`t .

Let the set of local centers that share at least one state

variable with the `th local center be denoted with C`, i.e.,

C` = {i | i ∈ {1, 2, . . . , L},Xyi ∩ Xy` 6= ∅},
where ∅ is an empty set. Suppose that j ∈ C`. Then, let Xy`,j

be the set of shared state variables between the `th and the
jth local centers, i.e.,

Xy`,j , Xy` ∩ Xyj ,

and let the set of state variables included in the jth local center
but not included in the `th local center be

Xy ¯̀,j , Xyj\Xy` .

Furthermore, let the subset of measurements of the jth local
center at time t that bear information about Xy`,j be denoted
with y`,jt , which is given, with an abuse of notation, by

y`,jt , {yk,t | k ∈ Rj ,Xyk ∩ Xy` 6= ∅}.

If Xy ¯̀,j is a nonempty set, then y`,jt may also depend on
some state variables that are not included in Xy` . Since our
aim is to use y`,jt in the estimation of x`t , the non-included
state variables cannot be considered as unknown from the
perspective of the state estimator of the `th local center.
Hence, the corresponding measurements should be adjusted by
subtracting the part about the non-included states. To that end,
the non-included states can be replaced with their estimates.
Note that the non-included states need to be replaced with
different state estimates under different hypotheses.

Let {hjk
T
| k ∈ Rj} denote the rows of the local mea-

surement matrix Hj and suppose there exists a measurement
yk,t ∈ y`,jt . Then, based on (31), yk,t can be written as follows:

yk,t = hjk
T
xjt + wk,t. (32)

Let x
¯̀,j
t be the state vector consisting of the state variables in

Xy ¯̀,j . We then decompose the term hjk
T
xjt in (32) into two

parts as follows:

hjk
T
xjt = h`,jk

T
x`t + h

¯̀,j
k

T
x

¯̀,j
t , (33)

where the vectors h`,jk and h
¯̀,j
k are determined to satisfy the

equality in (33) for all t. The processed measurement, by the
jth local center for the estimation purposes of the `th local
center under the null hypothesis, is denoted with ỹ0,`,j

k,t and
given as follows:

ỹ0,`,j
k,t = yk,t − h

¯̀,j
k

T
x̂0,¯̀,j
t|t−1

' h`,jk
T
x`t + wk,t, (34)

where x̂0,¯̀,j
t|t−1 is the estimate of x

¯̀,j
t , calculated under the null

hypothesis and at the prediction step of the information filter
of the jth local center at time t.

Let ỹ0,`,j
t , consisting of the set of processed measurements

{ỹ0,`,j
k,t | k ∈ Rj , yk,t ∈ y`,jt }, denote the processed mea-

surement vector under the null hypothesis, which takes the
following form:

ỹ0,`,j
t 'H`,jx`t + w`,j

t , (35)

where H`,j and w`,j
t are the corresponding measurement

matrix and measurement noise vector, respectively. Note that
{h`,jk

T
| k ∈ Rj , yk,t ∈ y`,jt } correspond to the rows of H`,j .
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Considering the same example given in the previous section,
we have y1,2

t = [−x2,t − x3,t + 2x4,t, x3,t − x4,t]
T + w1,2

t ,
where w1,2

t = [w3,t, w4,t]
T . Then,

ỹ0,1,2
t = y1,2

t − [2 x̂0,j
4,t|t−1, −x̂

0,j
4,t|t−1]T

' [−x2,t − x3,t, x3,t]
T + w1,2

t

=

[
0 −1 −1
0 0 1

]x1,t

x2,t

x3,t

+ w1,2
t

= H1,2x1
t + w1,2

t ,

where x̂0,j
4,t|t−1 is estimate of x4,t, calculated at the jth

local center under the null hypothesis. Next, we present the
information filter equations and explain the distributed state
estimation procedure (under the null hypothesis H0) for the
`th local center.

Let the state estimate of the `th local center under the
null hypothesis at time t be denoted with x̂0,`

t|t′ . Moreover,
let Z`t|t′ be the information matrix of the `th local center
and z0,`

t|t′ = Z`t|t′ x̂
0,`
t|t′ be the information vector of the `th

local center under the null hypothesis. The information filter
equations at time t at the `th local center under the null
hypothesis are then given as follows:

Prediction:

Z`t|t−1 = (IN` − F`t−1)E`t−1,

z0,`
t|t−1 = (IN` − F`t−1)A`−T z0,`

t−1|t−1, (36)

Measurement update:

Z`t|t = Z`t|t−1 +
1

σ2
w

(
H`TH` +

∑
j ∈C`

H`,jTH`,j︸ ︷︷ ︸
ΥΥΥ`,j

)
,

z0,`
t|t = z0,`

t|t−1 +
1

σ2
w

(
H`Ty`t +

∑
j ∈C`

H`,jT ỹ0,`,j
t︸ ︷︷ ︸

υυυ0,`,j
t

)
,

E`t = A`−TZ`t|tA
`−1

,

F`t = E`t
(
E`t + (1/σ2

v)IN`
)−1

, (37)

where E`t,F
`
t ∈ RN`×N` are auxiliary matrices at time t,

ΥΥΥ`,j , H`,jTH`,j , and υυυ0,`,j
t , H`,jT ỹ0,`,j

t . Note that
the structure of the information filter requires the matrices
{A`}L`=1 to be invertible.

Since the `th local center knows the grid topology (and
hence the matrices {H`,j}j), it can easily compute the ma-
trices {ΥΥΥ`,j | j ∈ C`} defined above. However, υυυ0,`,j

t is
calculated based on the measurements collected at the jth local
center. Thus, each local center j ∈ C` needs to compute and
report υυυ0,`,j

t to the `th local center. Because only neighboring
local centers are allowed to communicate with each other, mul-
tiple hops might be needed to send the required information
entities. After receiving {υυυ0,`,j

t | j ∈ C`}, the `th local center
performs its measurement update step.

Remark 2: The proposed distributed state estimation proce-
dure requires that all necessary communications between local
centers are done before the next measurement interval. This
can be achieved in practice since measurements in real power
grid are currently taken with 15-minutes time intervals [41].
Hence, the possible communication delays due to multiple

hops are not expected to affect the proposed procedure.

C. Distributed Detector for FDI Attacks

The attack vector at is decomposed into L sub-vectors
where a`t consists of {ak,t | k ∈ R`}. The measurement vector
of the `th local center in case of FDI attack is then given by

y`t = H`x`t + a`t + w`
t .

Furthermore, let the processed measurements at the jth local
center, j ∈ C`, under the alternative hypothesis (Hf1 ) be
denoted with ỹf,`,jt and given by

ỹf,`,jt = H`,jx`t + a`,jt + w`,j
t , (38)

where ỹf,`,jt consists of {ỹf,`,jk,t | k ∈ Rj , yk,t ∈ y`,jt }, that are
obtained similar to (34) as follows:

ỹf,`,jk,t = yk,t − h
¯̀,j
k

T
x̂f,

¯̀,j
t|t−1

' h`,jk
T
x`t + ak,t + wk,t, (39)

where x̂f,
¯̀,j

t|t−1 is the estimate of x
¯̀,j
t , calculated at the jth local

center under the alternative hypothesis. Moreover, a`,jt is the
attack vector corresponding to y`,jt .

Let the state estimate of the `th local center under the
alternative hypothesis at time t be denoted with x̂f,jt|t′ and let
zf,`t|t′ = Z`t|t′ x̂

f,`
t|t′ be the corresponding information vector at

time t. Together with (36) and (37), the following equations
form the information filter equations of `th local center at time
t:

Prediction:

zf,`t|t−1 = (IN` − F`t−1)A`−T zf,`t−1|t−1, (40)

Measurement update:

zf,`t|t = zf,`t|t−1 +
1

σ2
w

(
H`T (y`t − â`t)

+
∑
j ∈C`

H`,jT (ỹf,`,jt − â`,jt )︸ ︷︷ ︸
υυυf,`,jt

)
, (41)

where â`t and â`,jt are the MLEs of a`t and a`,jt , respectively,
and υυυf,`,jt , H`,jT (ỹf,`,jt − â`,jt ).

At the `th local center, after the prediction step at time t,
the state estimates are calculated as x̂0,`

t|t−1 = Z`
−1

t|t−1z
0,`
t|t−1 and

x̂f,`t|t−1 = Z`
−1

t|t−1z
f,`
t|t−1. Then, â`t is calculated based on (19)

where ek,t = yk,t − h`k
T
x̂f,`t|t−1. Then, the `th local center

calculates and transmits the information entities {υυυ0,j,l
t }j and

{υυυf,j,lt }j to the corresponding local centers through its neigh-
boring local centers. Moreover, it performs its measurement
update step after receiving {υυυ0,`,j

t | j ∈ C`} and {υυυf,`,jt | j ∈
C`}.

Sampling and Transmission of Local Statistics

Based on (20), the local statistic at the `th local center is
calculated as follows:

β`t ,
1

2σ2
w

∑
k∈R`

((
yk,t − h`k

T
x̂0,`
t|t−1

)2
−
(
yk,t − h`k

T
x̂f,`t|t−1 − â`k,t

)2)
. (42)
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The local center then sends a summary of {β`t}t to the
global center. Recall that the communication channels between
the local centers and the global center are bandlimited and
therefore only quantized versions of the local statistics can be
transmitted to the global center. We propose two sampling
schemes for the local centers: US and LCSH [42]. If the
conventional sampling is used, the range of the possible values
of the local statistic and the quantization levels are determined.
Then, the local statistic is sampled at each predetermined
sampling time, quantized according to the quantization levels,
and the corresponding finite bit sequence is transmitted to the
global center.

In the LCSH scheme, the amplitude axis is uniformly parti-
tioned with a spacing level ∆ and the corresponding amplitude
levels are determined a priori. A local center transmits a
message to the global center only when the local statistic
crosses a new amplitude level. If a lower/upper level is crossed,
a sign bit 0/1 is transmitted. If more than one level are crossed
simultaneously, then 1/0 is transmitted for each additional
double/single crossings. For instance, let the most recently
crossed level is ∆ and the new value of the local statistic
is 5.7∆ at a local center. Then, the bit sequence 110 is
transmitted to the fusion center, where the first bit denotes
the sign of the first crossing and the subsequent bits represent
additional 3 crossings.

Let the maximum and minimum possible values of the local
statistic be β`max and β`min, respectively. If the conventional
sampling is used, the interval between β`min and β`max is
divided into 2ν quantization intervals and ν bits are trans-
mitted for β`t indicating its quantization interval. The length
of a quantization interval is η` , (β`max − β`min)/2ν . The
transmitted bit sequence for β`t is the binary representation of

ζ`t ,

⌊
β`t − β`min

η`

⌋
(43)

in ν bits. The global center, upon receiving the bit sequence
from the `th local center, converts the bit sequence into its dec-
imal form and obtain ζ`t . Then, it determines the quantization
level β`q,t for the `th local center as follows:

β`q,t ,

{
0, if β`min + ζ`t η

` ≤ 0 < β`min + (ζ`t + 1)η`

β`min + (ζ`t + 0.5)η`, else.
(44)

Note that the local statistics belonging to the quantization
interval containing zero are mapped to zero as the quantization
level. This is due to the fact that the local statistics before the
attack are expected to take values around zero (cf. (42)). After
receiving bit sequences from all local centers, the global center
updates the decision statistic at time t based on (21) as follows:

gft =

(
gft−1 +

L∑
`=1

β`q,t

)+

. (45)

If the LCSH is used as the sampling scheme, the interval
between β`min and β`max is uniformly partitioned into subinter-
vals with spacing ∆. Let the most recently crossed amplitude
level by the local statistic in terms of ∆ be ψ` and let the
most recent sampling time be %`i . The next sampling instant

Fig. 3: LCSH scheme at the `th local center. The pairs
of sampling times and the corresponding crossed levels are
indicated with red points.

is determined as

%`i+1 = min
{
t ∈ N | t > %`i , |β`t − ψ`∆| ≥ ∆

}
.

At t = %`i+1, the corresponding sign bit is given by

π`t , sgn
(
β`t − ψ`∆

)
, (46)

where sgn(·) is the sign function, the number of level crossings
is given by

φ`t ,

⌊
|β`t − ψ`∆|

∆

⌋
≥ 1, (47)

and the number of transmitted bits equal to the following:

$`
t ,

⌈
φ`t − 1

2

⌉
+ 1. (48)

Furthermore, the most recently crossed amplitude level is
updated as ψ` ← ψ`+π`tφ

`
t at both the `th local center and the

global center. LCSH scheme at the `th local center is illustrated
in Fig. 3. The global center, upon receiving the bit sequences
from the local centers, updates the global decision statistic at
time t based on (21) as follows:

gft =

(
gft−1 + ∆

L∑
`=1

ψ`

)+

. (49)

In both sampling schemes, if gft = 0 at any time t, the
change-point estimate is updated and hence the Kalman filter
for the alternative hypothesis need to be updated. In order
to notify the local state estimators, the global center sends a
feedback signal to the all local centers such that upon receiving
this signal, each local center updates its information vector for
the alternative hypothesis as being equal to the information
vector for the null hypothesis. The proposed algorithms for
a local center and for the global center are summarized in
Algorithm 2 and Algorithm 3, respectively.

D. Distributed Detector for DoS Attacks

For the `th local center, measurement model in case of DoS
attack is given by

yk,t =

{
nk,t, if k ∈ Sd,`t
h`k

T
x`t + wk,t, if k /∈ Sd,`t ,

(50)
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Algorithm 2 The distributed attack detector: procedure at the `th
local center

1: Initialization: t← 0, ψ` ← 0

2: while t < T f do
3: t← t+ 1

4: Implement the prediction step of the local information filter

using (36) and (40).

5: Compute â`
t based on (19) and β`

t as in (42).

6: if the US scheme is used, then
7: Compute ζ`t as in (43) and transmit its binary equivalent in

ν bits to the global center.

8: else if the LCSH scheme is used, then
9: if |β`

t − ψ`∆| ≥ ∆ then
10: Compute π`

t and φ`
t as in (46) and (47), respectively.

11: Transmit π`
t and φ`

t to the global center using $`
t bits.

12: ψ` ← ψ` + π`
tφ

`
t .

13: end if
14: end if
15: Calculate and send {υυυ0,j,`

t ,υυυf,j,`
t }j to the corresponding local

centers.

16: Receive {υυυ0,`,j
t ,υυυf,`,j

t | j ∈ C`}.
17: Implement the measurement update step of the local informa-

tion filter using (37) and (41).

18: if a feedback signal is received from the global center, then
19: zf,`t|t ← z0,`t|t

20: end if
21: end while

where k ∈ R` and Sd,`t denotes the set of attacked meters
inside the `th subregion.

Let the vector of processed measurements at the jth local
center, j ∈ C`, for the state estimator of the `th local center
under the alternative hypothesis (Hd1) be denoted with ỹd,`,jt ,
which consists of {ỹd,`,jk,t | k ∈ Rj , yk,t ∈ y`,jt } where

ỹd,`,jk,t =

{
nk,t, if k ∈ Ŝd,jt
yk,t − h

¯̀,j
k

T
x̂d,

¯̀,j
t|t−1, if k /∈ Ŝd,jt ,

(51)

where Ŝd,jt is the MLE of Sd,jt and given in (55). Moreover,
x̂d,

¯̀,j
t|t−1 is the estimate of x

¯̀,j
t , calculated at the jth local center

under the alternative hypothesis.

Let the information vector under the alternative hypothesis
at time t for the `th local center be denoted with zd,`t|t′ . More-
over, let the corresponding information matrix be denoted with
Zd,`t|t′ . Together with (36) and (37), the following equations
form the local information filter equations:

Prediction:

Zd,`t|t−1 = (IN` − Fd,`t−1)Ed,`t−1,

zd,`t|t−1 = (IN` − Fd,`t−1)A`−T zd,`t−1|t−1, (52)

Algorithm 3 The distributed attack detector: procedure at the global
center

1: Initialization: t← 0, gf0 ← 0, ψ` ← 0

2: while t < T f do
3: t← t+ 1

4: if the US scheme is used, then
5: Compute {ζ`t , ` = 1, . . . , L} based on the received bit

sequences and {β`
q,t, ` = 1, . . . , L} using (44).

6: gft ←
(
gft−1 +

∑L
`=1 β

`
q,t

)+
7: else if the LCSH scheme is used, then
8: if a new bit sequence is received during (t− 1, t] from the

`th local center, ` = 1, . . . , L then
9: ψ` ← ψ` + π`

tφ
`
t , ` = 1, . . . , L.

10: gft ←
(
gft−1 + ∆

∑L
`=1 ψ

`
)+

11: end if
12: end if
13: if gft = 0 then
14: Send a feedback signal to all the local centers.

15: else if gft ≥ hf then
16: T f ← t

17: Declare the attack and send a stop signal indicating the

stopping time T f to all the local centers.

18: end if
19: end while

Measurement update:

Zd,`t|t = Zd,`t|t−1 + H`TΛΛΛ`t
−1

H` +
∑
j ∈C`

H`,jTΛΛΛ`,jt
−1

H`,j ,

zd,`t|t = zd,`t|t−1 + H`TΛΛΛ`t
−1

(y`t + b`t)

+
∑
j ∈C`

H`,jTΛΛΛ`,jt
−1

(ỹd,`,jt + bjt )︸ ︷︷ ︸
υυυd,`,jt

,

Ed,`t = A`−TZd,`t|tA
`−1

,

Fd,`t = Ed,`t (Ed,`t + (1/σ2
v)IN`)

−1
, (53)

where υυυd,`,jt , H`,jTΛΛΛ`,jt
−1

(ỹd,`,jt + bjt ). Note that ΛΛΛ`t ∈
RK`×K`

is a diagonal matrix with the diagonal elements
{λk,t, k ∈ R`} obtained as in (25) after replacing Ŝdt with
Ŝd,`t . Furthermore, b`t is a vector consisting of {bk,t, k ∈ R`}
and computed as follows:

bk,t =

{
h`k

T
x̂d,`t|t−1, if k ∈ Ŝd,`t

0, if k /∈ Ŝd,`t .
(54)

At the `th local center, after the prediction step, state
estimates are computed as x̂0,`

t|t−1 = Z`
−1

t|t−1z
0,`
t|t−1 and x̂d,`t|t−1 =

Zd,`
−1

t|t−1z
d,`
t|t−1, and the MLE of the attacked subset of meters

for the `th local center is determined based on (27) as follows:
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Ŝd,`t =

{
k :

1

σ2
n

y2
k,t−

1

σ2
w

(
yk,t − h`k

T
x̂d,`t|t−1

)2
< log

(
σ2
w

σ2
n

)
, k ∈ R`

}
, (55)

Every local center j ∈ C` needs to compute and send the
information entities υυυd,`,jt to the `th local center. Moreover,
the information filter at the `th local center needs to calculate
{H`,jTΛΛΛ`,jt

−1
H`,j , j ∈ C`} in the measurement update step.

The local center already knows {H`,j , j ∈ C`} but the
information regarding ΛΛΛ`,jt must be sent from the jth local
center. Note that ΛΛΛ`,jt is a diagonal matrix with diagonal
elements {λk,t | k ∈ Rj , yk,t ∈ y`,jt }. Hence,

H`,jTΛΛΛ`,jt
−1

H`,j =
∑

k: k∈Rj , yk,t ∈y`,jt

(
h`,jk h`,jk

T )
/λk,t,

where λk,t is equal to σ2
n if k ∈ Ŝd,jt and σ2

w, otherwise.
Since the number of possible values of λk,t is only two, this
information can be sent with one bit for each λk,t. Hence, the
jth local center first computes Ŝd,jt , then for the measurements
corresponding to h`,jk vectors, transmits 1 if k ∈ Ŝd,jt and
0, otherwise. Upon receiving the corresponding bit sequence,
the `th local center forms ΛΛΛ`,jt matrix. Note that {ΛΛΛ`t}L`=1 and
{ΛΛΛ`,jt }`,j are invertible since they are diagonal matrices with
nonzero diagonal elements.

Based on (28), the local statistic at the `th local center at
time t is determined as follows:

ρ`t =
1

2

(
K` log(σ2

w) +
1

σ2
w

∑
k∈R`

(
yk,t − h`k

T
x̂0,`
t|t−1

)2
−

∑
k∈ Ŝd,`t

log(σ2
n) +

1

σ2
n

y2
k,t

−
∑

k∈R`\Ŝd,`t

log(σ2
w) +

1

σ2
w

(
yk,t − h`k

T
x̂d,`t|t−1

)2)
. (56)

Then, each local center performs either conventional sampling
or level-crossing sampling on ρ`t , as described in Section IV-C
(for β`t ). The global center, upon receiving bit sequences from
the local centers, updates the decision statistic. If the decision
statistic crosses the test threshold, it declares an attack. If the
decision statistic gets the value of zero after an update, it
immediately sends feedback signals to all the local centers.
A local center, upon receiving this signal, equates its local
information matrix and vector for the alternative hypothesis to
the local information matrix and vector for the null hypothesis,
respectively. The proposed procedure for a local center is
summarized in Algorithm 2 after a few changes. In particular,
T f is changed with T d, β`t is changed with ρ`t , and lines 4-5,
15-17, and 19 are changed with the following lines.
Furthermore, the procedure in the global center is summarized
in Algorithm 3 after replacing T f with T d, gft with gdt , and
hf with hd.

V. NUMERICAL RESULTS

In this section, performance of the proposed centralized and
distributed cyber-attack detectors are evaluated in simple case
studies. Throughout the section, simulations are performed on

4: Implement the prediction step of the local information filter using

(36) and (52).

5: Compute Ŝd,`
t , ΛΛΛ`

t , b`
t , and ρ`t based on (55), (25), (54), and (56),

respectively.

15: Calculate and send {υυυ0,j,`
t }j , {υυυd,j,`

t }j , and the bit sequence

corresponding to {λk,t | k ∈ R`, yk,t ∈ yj,`
t ,hj,`

k 6= 0}j to the

corresponding local centers.

16: Receive υυυ0,`,j
t ,υυυd,`,j

t , and the bit sequence corresponding to

{λk,t | k ∈ Rj , yk,t ∈ y`,j
t ,h`,j

k 6= 0} from every j ∈ C`.

17: Implement the measurement update step of the local information

filter using (37) and (53).

19: zd,`t|t ← z0,`t|t , Ed,`
t ← E0,`

t , Fd,`
t ← F0,`

t

Fig. 4: IEEE-14 Bus Power System. Four subregions and the
global control center are shown. Communication channels are
illustrated with dashed lines. The circles on the branches repre-
sent the power-flow measurements, and the squares represent
the power injection measurements. Bus 6 is chosen as the
reference bus.

an IEEE-14 bus power system consisting of four subregions
(see Fig. 4) and the measurement matrix H is determined
accordingly. The system matrix A is chosen to be an identity
matrix. In this system, K = 23 and N = 13. The initial
state variables are obtained with the DC optimal power flow
algorithm for case-14 in MATPOWER [43]. Noise variances
are selected as σ2

v = 10−4, σ2
w = 2 × 10−4, and σ2

n = 4 ×
10−4. Moreover, γ is selected to be 0.18. The cyber-attacks
are launched at t = 100.

We consider two types of false data: randomly created and
carefully designed. If the attacker has incomplete knowledge
about the network topology, it may randomly create the attack
data. On the other hand, if it perfectly knows the topology,
then it can perform structured attacks with false data lying on
the column space of the measurement matrix, also known as
stealth FDI attack. Further, in case of a DoS attack, the attacker
can randomly choose the attacked meters. Next, we present
performance of the proposed detectors in case of a random
FDI attack, a structured FDI attack, and a random DoS attack,
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Fig. 5: Average detection delay versus average false alarm
period in case of a random FDI attack for the proposed cen-
tralized and distributed FDI attack detectors and the detectors
in [20] and [23].

respectively and discuss the performance of the proposed
centralized detectors. We then discuss the performance of the
proposed distributed detectors.

A. Case 1: Random FDI Attack

Firstly, we consider a time-varying random FDI attack.
Considering that the meters under the control of the attacker
may be limited due to security measures, we specify 10 meters
as subject to attacks out of 23 meters in the system. To
make the attack randomized and time-varying, at each time
the attacker first randomly determines the meters to attack
(it chooses a meter with probability 0.5) and then injects
realizations of a uniform random variable U [−0.2, 0.2] to the
measurements of the compromised meters.

In Fig. 5, we present the delay vs. false alarm curves
for the (centralized) detectors in [20] and [23] and our pro-
posed centralized and distributed detectors. The detector in
[20] is considered as a representative of LS-based detectors.
Moreover, the detector [23] is considered as a representative
of outlier detection techniques based on the Kalman filter.
We observe that compared to [20], the average detection
delays are significantly smaller in the proposed centralized
detector for the same levels of false alarm period. This is
due to (i) by using a dynamic state estimator, system/attack
dynamics can be more effectively captured/detected compared
to the conventional LS estimator, (ii) state forecasts/predictions
provided by the Kalman filter are exploited to improve attack
detection performance, and (iii) the detector in [20] is designed
based on the assumption of a constant set of compromised
meters over time where in the considered attack case, at each
time possibly a different subset of compromised meters are
selected by the attacker.

On the other hand, the Euclidean detector in [23] slightly
outperforms the proposed detectors due to estimation errors
incorporated into the proposed detection mechanisms. How-
ever, as explained before, detection-only schemes such as
[23] do not provide any estimates about which part of the
grid is attacked and in which magnitude. We note that it is,
in fact, unfair to compare detection-only schemes with the
schemes involving an estimation mechanism. Furthermore, for

0 0.5 1 1.5 2 2.5 3

104

0

10

20

30

40

50

60

A
ve

ra
ge

 D
et

ec
tio

n 
D

el
ay

Centralized
Detector in [20]
Euclidean Detector

Fig. 6: Performance of the proposed centralized FDI attack
detector and the detectors in [20] and [23] in case of a low-
magnitude random FDI attack.
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Fig. 7: Sample responses of the proposed centralized detector
and the Euclidean detector in case of a random FDI attack,
where rt , yt−Hx̂0

t|t−1. The dashed lines (in red) indicate the
test thresholds and the attack launch time. For both detectors,
the thresholds are selected such that the average false alarm
period is approximately 103.

lower magnitude attacks, the proposed detectors outperform
the outlier detection schemes as we accumulate change (attack)
statistics over time. We present in Fig. 6 the performance of
the centralized proposed and benchmark detectors in case of
a random FDI attack with attack magnitudes being realiza-
tions of U [−0.1, 0.1]. Moreover, the outlier detection schemes
may not be reliable due to sample-by-sample decisions, i.e.,
ignoring the accumulation of evidence obtained based on the
history of measurements. To verify this claim, we present Fig.
7 where the sample responses of our centralized detector and
the Euclidean detector are shown up to time t = 120 where the
attack is launched at t = 100. Through the figure, we observe
that the decision statistic of the Euclidean detector falls below
its threshold during the attack period, indicating no attack and
hence the corresponding measurements are declared as normal.

Further, in Fig. 8, we present the performance of the
proposed centralized detector as the magnitude of the injected
false data (amount of deviation from the null hypothesis
H0) varies. We consider the random FDI attacks described



14

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 D
et

ec
tio

n 
D

el
ay

Centralized FDI Attack Detector

Fig. 8: Average detection delay versus magnitude of the
injected false data in case of a random FDI attack for the
proposed centralized detector, where E∞[T f ] ' 103 and
γ = 0.18.

above but only vary the attack magnitude. Particularly, the
attacker injects the realizations of U [−ς, ς] where ς takes
values between 0.08 and 0.24. As expected, average detection
delay gets smaller as ς increases. Note that the critical level
for detection purposes is γ = 0.18. Hence, as ς gets smaller
below the level of γ, the average detection delay significantly
increases.
B. Case 2: Structured FDI Attack

Secondly, we evaluate the proposed centralized and dis-
tributed detectors under a time-varying structured FDI attack.
In particular, the attacker chooses the false data at time t as
at = Hct where ct = [c1,t, c2,t, . . . , cN,t]

T and {cn,t, n =
1, 2, . . . , N} are realizations of U [−0.1, 0.1]. Note that the
attacker is assumed to have the capability of compromising any
meter in the system and based on the realizations {cn,t, n =
1, 2, . . . , N}, the set of attacked meters can change over time.
We present the delay vs. false alarm curves for the proposed
centralized and distributed detectors in Fig. 9, which verifies
that adapting a state-space model to the formulation and using
the Kalman filter for state estimation enables the detection of
the structured FDI attacks. Note that the detector in [20] and
other LS-based detectors are only able to detect the part of the
false data lying on the null space of the measurement matrix
and hence they are unable to detect such structured attacks.
C. Case 3: Random DoS Attack

Finally, we consider a time-varying DoS attack where the
attacked meters are randomly determined. In particular, at each
time after the DoS attack is launched, any meter in the system
is attacked with probability 0.1. We present the delay vs. false
alarm curve in Fig. 10. Comparing the performance curves for
the FDI and DoS attacks, we observe that the DoS attacks are
relatively easier/quicker to detect compared to the FDI attacks.
This is because in case of a DoS attack, measurements deviate
more from the null hypothesis compared to an FDI attack with
small to moderate attack magnitudes (cf. (6) and (12)).
D. Discussion on Performance of the Distributed Detectors

There are two sources of performance degradation in our
distributed implementation: shared state variables between lo-
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Fig. 9: Average detection delay versus average false alarm
period in case of a structured FDI attack for the proposed
centralized and distributed FDI attack detectors.
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Fig. 10: Average detection delay versus average false alarm
period in case of a random DoS attack for the proposed
centralized and distributed DoS attack detectors.

cal centers and the quantization of local statistics. As explained
in the distributed state estimation mechanism in Sec. IV,
due to the shared states, a local center may need to use
some information entities computed at the other local centers.
However, computing such information entities contains loss
of information since some state variables are replaced with
their estimates. Furthermore, the global decision statistics are
computed using the quantized versions of the local statistics,
which leads to another loss of information. Hence, for a dis-
tributed detector, its centralized counterpart can be considered
as a performance upper bound.

Performance of the distributed detectors with US is ex-
pected to improve as the number of transmitted bits per time
increases. However, in a distributed setting, practically the
number of transmitted bits need to be limited due to resource
constraints. Hence, we present results only for US with ν = 1
(US-1) and ν = 2 (US-2) cases. In the US-1 scheme, a local
center transmits 1 bit per unit time and since there are 4 local
centers in the power system (cf. Fig. 4), totally 4 bits are
transmitted per unit time. Similarly, in the US-2 scheme, 8
bits are transmitted per unit time. Via an offline simulation, the
∆ level in the LCSH scheme is determined such that 1 bit is
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transmitted on average during the no-attack period. We observe
through Figures 5, 9, and 10 that the distributed detectors with
LCSH significantly outperform the distributed detectors with
the conventional US-1 and US-2 schemes. This is due to the
fact that the LCSH scheme is adaptive to the local statistics
and hence provides a better summary of local statistics to the
global center compared to the conventional sampling scheme.

VI. CONCLUSIONS

In this paper, we have studied real-time detection of cyber-
attacks in the smart grid. We have used the Kalman filter for
state estimation and the generalized CUSUM algorithm for
a timely and reliable detection. We have proposed detection
mechanisms in both centralized and distributed settings. The
proposed detectors are robust to time-varying states, attack
magnitudes, and the set of attacked meters, hence ideally
suited for the smart grid which is a highly dynamic system.
We have also provided closed-form online MLE estimates of
the unknown attack variables. In the distributed setting, we
have proposed a fully distributed dynamic state estimation
procedure, and for resource concerns, we have proposed to
use LCSH for the sampling and transmission of local decision
statistics. We have illustrated via extensive simulations that
the proposed detectors have quick and reliable responses to
random and structured FDI attacks and DoS attacks. Moreover,
we have shown that the proposed distributed detectors with
LCSH perform quite closely to its centralized counterparts.

APPENDIX

A. Proof of Proposition 1

Proof. Based on the normal measurement model (cf. (2)),
yt ∼ N (Hxt, σ

2
w IK) and based on the measurement model

in case of an FDI attack (cf. (3)), yt ∼ N (Hxt + at, σ
2
w IK).

Then, based on (15) and noting that (i) for the set of meters
{k /∈ Sft }, ak,t = 0 and (ii) taking supremum of a quantity is
equivalent to taking infimum of the negative of the quantity,
βt can be written as in (57) (shown at the top of next page).
The MLE of the attack vector, i.e., ât = [â1,t, . . . , âK,t]

T is
then calculated as follows:

âk,t = argmin
|ak,t|≥γ, k∈Sft

(ek,t − ak,t)
2

=


ek,t, if |ek,t| ≥ γ, k ∈ Sft
γ, if 0 ≤ ek,t < γ, k ∈ Sft
−γ, if − γ < ek,t < 0, k ∈ Sft
0, if k /∈ Sft .

(58)

Then the MLE of Sft is given by

Ŝft = argmin
Sft ⊂{1,...,K}

∑
k∈Sft

(ek,t − âk,t)
2 +

∑
k/∈Sft

e2
k,t. (59)

Based on (58) and (59), the most likely set of attacked meters
can be determined as

Ŝft = {k : |ek,t| >
γ

2
, k = 1, . . . ,K}, (60)

and combining (58) and (60), the MLE of the attack vector is
obtained as follows:

âk,t =


ek,t, if |ek,t| ≥ γ
γ, if γ

2 < ek,t < γ

−γ, if − γ < ek,t < −γ2
0, else.

Finally, we have

βt =
1

2σ2
w

K∑
k=1

(
(yk,t − hTk x̂

0
t|t−1)2

− (yk,t − hTk x̂
f
t|t−1 − âk,t)

2

)
.

B. Proof of Proposition 2

Proof. Based on (22) and the measurement models given in
(2) and (11), ρt can be written as in (61) (shown at the top of
next page). The MLE of Sdt is then given as

Ŝdt = arg min
Sdt ⊂{1,...,K}

{ ∑
k∈Sdt

log(σ2
n) +

1

σ2
n

y2
k,t

+
∑
k/∈Sdt

log(σ2
w) +

1

σ2
w

(yk,t − hTk x̂
d
t|t−1)2

}

=

{
k :

1

σ2
n

y2
k,t−

1

σ2
w

(yk,t − hTk x̂
d
t|t−1)2

< log

(
σ2
w

σ2
n

)
, k = 1, . . . ,K

}
.

Then, based on Ŝdt and (61), ρt takes the following form:

ρt =
1

2

(
K log(σ2

w) +
1

σ2
w

K∑
k=1

(yk,t − hTk x̂
0
t|t−1)2

−
∑
k∈Ŝdt

log(σ2
n) +

1

σ2
n

y2
k,t

−
∑
k/∈Ŝdt

log(σ2
w) +

1

σ2
w

(yk,t − hTk x̂
d
t|t−1)2

)
.
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