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Abstract— Smart grid is a large complex network with a
myriad of vulnerabilities, usually operated in adversarial settings
and regulated based on estimated system states. In this study,
we propose a novel highly secure distributed dynamic state
estimation mechanism for wide-area (multi-area) smart grids,
composed of geographically separated subregions, each super-
vised by a local control center. We firstly propose a distributed
state estimator assuming regular system operation, that achieves
near-optimal performance based on the local Kalman filters
and with the exchange of necessary information between local
centers. To enhance the security, we further propose to (i) protect
the network database and the network communication channels
against attacks and data manipulations via a blockchain (BC)-
based system design, where the BC operates on the peer-to-peer
network of local centers, (ii) locally detect the measurement
anomalies in real-time to eliminate their effects on the state
estimation process, and (iii) detect misbehaving (hacked/faulty)
local centers in real-time via a distributed trust management
scheme over the network. We provide theoretical guarantees
regarding the false alarm rates of the proposed detection schemes,
where the false alarms can be easily controlled. Numerical studies
illustrate that the proposed mechanism offers reliable state
estimation under regular system operation, timely and accurate
detection of anomalies, and good state recovery performance in
case of anomalies.

Index Terms— Smart grid, distributed, secure, dynamic state
estimation, Kalman filter, blockchain, real-time anomaly detec-
tion, trust management.

I. INTRODUCTION

The next-generation electrical power grid, i.e., the smart
grid, is vulnerable to a variety of cyber/physical system faults
and hostile cyber threats [1]–[4]. In particular, random anoma-
lies such as node and topology failures might occur all over
the network. Moreover, malicious attackers can deliberately
manipulate the network operation and tamper with the network
data, from sources such as sensors, control centers, network
database, and network communication channels (see Fig. 1).
False data injection (FDI), jamming, and denial of service
(DoS) attacks are well-known attack types [2], [5]–[8]. Further,
Internet of Things (IoT) botnets can be used to target against
critical infrastructures such as the smart grid [9]–[11].

In the smart grid, online state estimates are utilized to
make timely decisions in critical tasks such as load-frequency
control and economic dispatch [12]. Hence, a fundamental
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Fig. 1: An illustration of the vulnerabilities of wide-area smart grids against
malicious adversaries. The solid lines illustrate the network communication
channels and the dashed lines illustrate possible attacks. The attacker can (i)
manipulate, jam or block the communication channels (A1, A2), (ii) hack a
local control center to manipulate its operation or to tamper with the network
database (A3), and (iii) hack a sensor to corrupt its online measurements (A4).

task in the grid is reliable state estimation based on online
measurements. On the other hand, the main objective of
the adversaries is to damage/mislead the state estimation
mechanism in order to cause wrong/manipulated decisions,
resulting in power blackouts or manipulated electricity prices
[13]. Additionally, random system faults may degrade the state
estimation performance. Our objective in this study is to design
a highly secure and resilient state estimation mechanism for
wide-area smart grids, that provides reliable state estimates in
a fully-distributed manner, even in the case of cyber-attacks
and other network anomalies.

A. Background and Related Work

1) Secure Dynamic State Estimation: Feasibility of dy-
namic modeling and efficiency of dynamic state estimation
have been widely discussed and various dynamic models have
been proposed for the power grids [14]–[18]. The general
consensus is that the dynamic modeling better captures the
time-varying characteristics of the power grid and dynamic
state estimators are more effective to track the system state
compared to the conventional static least squares (LS) esti-
mators. Moreover, state forecasting capability achieved with
dynamic estimators is quite useful in real-time operation and
security of the grid [5], [14], [15].

In the literature, various techniques have been proposed to
make the dynamic state estimation mechanism secure/robust
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against outliers, heavy-tailed noise processes, model uncertain-
ties including unknown noise statistics, rank-deficient observa-
tion models, and cyber-attacks, etc., [19]–[34]. For instance,
robust statistics-based approaches [19]–[22] aim to suppress
the effects of outliers by assigning less weights to more signifi-
cant outliers. As the outliers are still incorporated into the state
estimation process, their effects are not completely eliminated,
and due to the recursive nature of dynamic state estimators,
errors are accumulated over time and the corresponding state
estimator breaks down at some point, i.e., fails to keep track of
the system operating point. The estimator also breaks down in
case of gross outliers. Furthermore, this approach is based on
the solution of an iterative weighted LS problem, repeated at
each time, that might be prohibitive for real-time processing.

To deal with outliers, another method is modeling the
system noise as a heavy-tailed, e.g., Student’s t or Laplace, dis-
tribution [23]–[25]. This method can handle (nominal) outliers
observed during the regular system operation, however, it is
expected to be ineffective against attacks and faults that behave
significantly different from nominal outliers. Further, some
studies are based on the assumption that attacks are sparse
over the network or with bounded magnitudes [26]–[30],
which significantly limits the robustness of the corresponding
state estimators. This is because imposing restrictions on the
capabilities or strategies of attackers make the corresponding
state estimation mechanism robust against only a certain subset
of attacks. Yet another approach is to completely ignore the
outliers in the state estimation process [31]–[33], [35]. In the
literature, this approach is usually based on the sample-by-
sample classification of observations as either outlier or non-
outlier. Although it might be useful to detect and eliminate
the effects of gross outliers, the corresponding state estimator
is expected to fail if small/moderate-level (difficult-to-detect)
outliers are observed in a persistent manner. Moreover, it might
fail even in the nominal case due to the rejection of nominal
outliers. Finally, several dynamic state estimation techniques
are evaluated in [34] for the nonlinear power system model
and it is shown that the cubature Kalman filter is more robust
to model uncertainties and attacks/anomalies compared to the
extended Kalman filter and the unscented Kalman filter.

Distributed dynamic state estimation has been also studied
extensively, see e.g., [36] for a review of the distributed
Kalman filtering techniques. Particularly, two main architec-
tures are considered: hierarchical and fully-distributed. In the
former, there exists a central controller coordinating multiple
local controllers, while in the latter, no central controller exists.
In the hierarchical schemes, the information filter, an algebraic
equivalence to the centralized Kalman filter, can be useful
to fuse the information processed across the local controllers
in a simple manner [37], [38]. The fully-distributed schemes
usually require an iterative consensus mechanism to reduce
the disagreement of the local controllers on the estimates of
common state variables [36], [39]. More recently, a distributed
extended Kalman filter is proposed in [40] based on the
internodal transformation theory, not requiring iterative data
exchanges. A recent survey of model-based distributed filtering
and control including the distributed Kalman filtering and se-
cure control algorithms for large-scale cyber-physical systems

is presented in [41]. For instance, [42] studies the secure
control of stochastic linear systems against deception attacks,
that manipulate sensor measurements or control inputs.

2) Secure Distributed System Design: Traditionally,
through the supervisory control and data acquisition (SCADA)
system, the power grid is controlled in a centralized manner.
In particular, the system-wide data are collected, stored, and
processed at a single node. Considering the increasing speed
and size of the measurement data, collecting and processing
such large volume of data in real-time at a single center
seem practically infeasible in the modern power grids [40].
Moreover, the traditional implementation is based on the
assumption that the centralized node is completely trustable.
In practice, however, the centralized node can be the weakest
point of the network in terms of security. This is because by
hacking only the centralized node, adversaries can arbitrarily
modify the control decisions and the network database. On
the contrary, hacking a distributed system is usually more
difficult for attackers, especially for the smart grid that is
distributed over a geographically wide region. Therefore,
distributing the computation and the trust over the network
can be useful to achieve a more feasible and a more secure
grid.

Blockchain (BC) is an emerging secure distributed database
technology, operating on a peer-to-peer (P2P) network with
the following key components [43]–[45]: (i) a distributed
ledger (chronologically ordered sequence of blocks) that is
shared and synchronized over the network where each block
is cryptographically linked to the previous blocks and the
ledger is resistant/immune to modifications, (ii) advanced
cryptography enabling secure data exchanges and secure data
storage, and (iii) a mutual consensus mechanism, that enables
collective verification/validation on the integrity of exchanged
and stored data, and thereby distributes trust over the network
instead of relying on a single node/entity. BC technology was
firstly used in financial applications [46], [47] but due to its
security-by-design and the distributed nature without needing
any trusted third party, it has been applied to diverse fields such
as vehicular networks, supply chain management, cognitive
radio, and insurance [48]–[50].

The smart grid critically relies on a database and network
communication channels, both are quite vulnerable to attacks
and manipulations. As a countermeasure, an effective approach
is the detection and then mitigation of such threats. On the
other hand, a significantly better approach is the prevention
of the threats as much as possible. In this direction, the
BC technology has a great potential due to its advanced
data protection/attack prevention capabilities. Hence, we aim
to integrate some salient features of the BC technology to
the smart grid in order to improve the resilience of the
system, particularly to protect the system database and the
communication channels.

Research on the integration of BC to smart grids has mainly
focused on secure energy transactions/trade so far [4], [51]–
[53], and only a few studies have examined the integration
of BC to make the power supply system more secure, see
[54] and [55], where in both studies, the grid is protected by
securely storing all the system-wide measurements at every
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meter. However, this seems infeasible in many aspects, e.g.,
meters are small-size devices with limited memory, power, and
processing capabilities [52] and hence not suitable to perform
advanced computations such as encryption/decryption, to store
the distributed ledger, and to constantly communicate with all
other meters in the network. Moreover, since the measurements
are collected mainly to estimate the system state, the BC-
based system can be designed to protect the state estimation
mechanism in a more direct way, rather than to protect the
entire history of raw measurement data, that then enables
secure state estimation.

Although BC can be useful to secure the network database
and the communication channels, the online sensor measure-
ments are still vulnerable to attacks and faults. We would like
to design a state estimation mechanism that is secure against
all types of anomalies. Towards this goal, as a complement to
the BC-based data protection, robust bad data detection and
mitigation, i.e., state recovery, schemes need to be integrated
into the state estimation mechanism. We have recently pro-
posed in [7] a robust dynamic state estimation scheme for the
smart grid, in case the attack models are known (with some
unknown parameters). In practice, unknown attacks/anomalies
may occur in the smart grid as it has many vulnerabilities and
attackers might have arbitrary strategies. Hence, in general,
anomaly/attack models need to be assumed unknown and the
state estimation mechanism should be designed accordingly.
Furthermore, in a BC-based distributed system, there is no
centralized trusted node to check and recover a node that is
faulty or hacked by a malicious entity. Hence, a distributed
trust management mechanism needs to be employed over the
network to evaluate the trustability of each node against the
possibility of misbehaving nodes.

B. Contributions

In this study, we propose a novel BC-based resilient system
design to achieve secure distributed dynamic state estimation
in wide-area smart grids. Our aim is to reduce the risks at
each part of this highly complex network, specifically, the
network database, sensors, local control centers, and network
communication channels (see Fig. 1).

Firstly, assuming regular system operation (no anomaly),
we propose a novel fully-distributed dynamic state estimation
scheme that achieves near-optimal performance thanks to the
local Kalman filters and with the exchange of necessary infor-
mation between local centers. Then, to improve the resilience
of the proposed mechanism, we further propose to
• use salient features of the emerging BC technology to

secure both the network database and the network com-
munication channels against attacks and manipulations,

• embed novel online anomaly detection schemes into the
state estimation mechanism to make it secure against
measurement anomalies, and

• detect and eliminate the effects of misbehaving nodes
in real-time via a novel distributed trust management
mechanism over the network.

We provide theoretical guarantees regarding the false alarm
rates of the proposed online detection schemes, where the false

alarms can be easily controlled by the system designer. Finally,
since the proposed anomaly detection, trust management, and
state recovery schemes do not assume any knowledge about
the type/cause of the anomaly/misbehavior, they are all robust
to unknown attacks/anomalies.

C. Organization and Notations

The remainder of the paper is organized as follows. Sec. II
presents the system model. Sec. III describes the proposed BC-
based secure system design. Sec. IV discusses the proposed
distributed state estimation mechanism under regular (non-
anomalous) network operation. Sec. V explains the proposed
online anomaly detection scheme against measurement anoma-
lies and the corresponding state recovery scheme. Sec. VI
discusses the proposed distributed trust management scheme
against misbehaving nodes. Sec. VII then summarizes the
proposed mechanism. Sec. VIII illustrates the advantages of
the proposed mechanism over a simulation setup. Finally,
Sec. IX concludes the paper.

Notations: Boldface letters denote vectors and matrices. R
denotes the set of real numbers. N (µµµ,ΣΣΣ) denotes the Gaussian
probability density function (pdf) with mean µµµ and covariance
matrix ΣΣΣ. Im denotes an m×m identity matrix. P(·) and
E(·) denote the probability and the expectation operators,
respectively. I(·) denotes the indicator function. log(·) denotes
the natural logarithm and e denotes the Euler’s number. | · |
denotes the cardinality of a set. ∅ denotes an empty set. S1\S2

denotes the set of elements belonging to S1 but not belonging
to S2. inf , sup, and max denote the infimum, supremum,
and maximum operators, respectively, and (·)+ , max{·, 0}.
Finally, ·T denotes the transpose operator.

II. SYSTEM MODEL

We consider a smart power grid with N buses and K
sensors. System state at time t, xt = [x1,t, . . . , x2N−1,t]

T,
represents voltage magnitudes and phase angles of the buses,
where a bus is chosen as the reference for the phase an-
gles. The measurements are real and reactive power flow,
power injection, and voltage magnitude measurements. The
measurement taken at sensor k ∈ {1, . . . ,K} at time t is
denoted with yk,t and the measurement vector is denoted with
yt = [y1,t, . . . , yK,t]

T. We model the grid as a discrete-time
linear dynamic system as follows [14], [15], [32], [56], [57]:

xt = Axt−1 + vt, (1)
yt = Hxt + wt, (2)

where A ∈ R2N−1×2N−1 is the state transition ma-
trix, H ∈ RK×2N−1 is the measurement matrix,
vt = [v1,t, . . . , v2N−1,t]

T is the process noise vector, and
wt = [w1,t, . . . , wK,t]

T is the measurement noise vector. We
assume that vt and wt are independent AWGN processes
where vt ∼ N (0, σ2

v I2N−1) and wt ∼ N (0, σ2
w IK).

A. State-Space Model

To model the time behavior of the power system state,
several attempts have been made. Firstly, considering small
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time intervals between consecutive measurements, a linear
state transition model is assumed [15], [32]. Further, a quasi-
static state model is commonly employed where the system
state is periodic over a day since the system loads typically
have a daily cycle [14], [32]. Moreover, a linear exponential
smoothing model is proposed in [17], where the effects of past
measurements on the state estimates are reduced over time. In
the simplest case, the system state is assumed to be the same
with the previous time step, up to a random uncertainty [14],
i.e.,

xt = xt−1 + vt,

where the process noise vt corresponds to the random uncer-
tainty. In a more general form, we can write

xt = Axt−1 + vt.

In the actual power system operation, the relationship be-
tween the measurements and the system state is nonlinear.
Hence, we have

yt = h(xt) + wt,

where h(·) is a nonlinear function. Linearizing the system
around an operating point x0, we obtain

yt = Hxt + wt,

where
H =

∂h(x)

∂x

∣∣∣∣
x=x0

is the Jacobian matrix.
The parameters of the state-space model, particularly the

state transition matrix and the process and measurement noise
variances can be determined from power system data obtained
under regular operating conditions [14], [15].

B. Wide-Area Monitoring Model

The wide-area smart grid is composed of geographically
separated subregions (see Fig. 5). Each subregion contains a
set of sensors, supervised by a local (control) center. Since
the sensors are distributed over the network, each local center
partially observes the measurement vector yt. Assuming that
the grid is composed of L subregions and the subset of sensors
in the `th subregion is denoted by R`, the measurement vector
yt is decoupled into L sub-vectors y`t ∈ RK`

, ` = 1, . . . , L,
where y`t , {yk,t | k ∈ R`} denotes (with an abuse of
notation) the measurement vector of the `th local center at
time t and K` , |R`| is the number of sensors in the `th
subregion. Since each sensor belongs to only one subregion,
for any two subregions ` and j, y`t and yjt do not overlap and
we have

∑L
`=1K

` = K.
The smart grid is an interconnected system, where there

exist tie-lines between neighboring subregions (see Fig. 5)
that leads to some common (shared) state variables between
neighboring local centers. Hence, denoting the state vector
of the `th local center at time t by x`t ∈ RN`

, for any two
neighboring local centers ` and j, x`t and xjt might overlap.
This implies

∑L
`=1N

` ≥ 2N − 1. In general, if the state
transition matrix A is non-diagonal, additional state variables
might be shared between neighboring or non-neighboring local

centers due to dependencies between state variables over time
through the state transition matrix. In this study, for the
simplicity of the presentation, we assume A is diagonal. Under
this assumption, we next determine the state vector of a local
center, say the `th one. For the derivation of local state vectors
in the case of non-diagonal A, please see [5, Sec. IV-A].
Note that in the non-diagonal case, the proposed system design
directly extends, where the only difference is that the size of
the local state vectors might be larger.

Let hT

k = [hk,1, . . . , hk,2N−1] be the kth row of the
measurement matrix H, i.e., HT = [h1, . . . ,hK ]. Then, using
(2), each measurement yk,t, k ∈ {1, . . . ,K} can be written as
follows:

yk,t = hT

kxt + wk,t. (3)

Based on (3), we can argue that yk,t depends on, equivalently
bears information about, the following state variables:

Xyk , {xn,t |hk,n 6= 0, n = 1, . . . , 2N − 1}.

Then, the local state vector x`t consists of the union of all such
state variables for all the sensors k in the subregion `:

x`t =
⋃

k∈R`

Xyk .

For each local center ` ∈ {1, . . . , L}, we then have the
following local state transition model:

x`t = A`x`t−1 + v`t , (4)

and the following local measurement model:

y`t = H`x`t + w`
t , (5)

where the local state transition matrix, A` ∈ RN`×N`

,
and the local measurement matrix, H` ∈ RK`×N`

, can be
easily obtained from A and H, respectively. Moreover, the
local process noise vector, v`t ∈ RN`

, is a sub-vector of vt
corresponding to x`t . Similarly, the local measurement noise
vector, w`

t ∈ RK`

, is a sub-vector of wt corresponding to y`t .

III. BLOCKCHAIN-BASED SECURE SYSTEM DESIGN

A. Overview of the Proposed System

We consider a distributed P2P network of local centers
where each node (local center) can communicate with all
other nodes (see Fig. 1). We aim to design a system in which
the nodes collaborate with each other to perform the state
estimation task in a safe and reliable manner. For a reliable
distributed dynamic state estimation, particularly the Kalman
filter, we need safe updates and hence the following three items
must be secure/reliable at each time t:
• state estimates of the previous time t− 1,
• sensor measurements acquired at the current time t, and
• the nodes functioning in the state estimation process, i.e.,

the local centers.
In other words, at each time, we need to make sure that the
previous state estimates are not modified, the online sensor
measurements are not anomalous, and the nodes are working
according to predesigned network rules. Furthermore, in case
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of an anomaly over the network, the state estimates can
be recovered using the previous reliable state estimates, that
requires us to also protect the previous state estimates against
tampering. Considering these requirements, our proposed sys-
tem is composed of the following three main components:
• BC-based data protection/attack prevention: BC en-

hances the security of the grid by reducing the risk of
manipulations at the network database and the network
communication channels. In particular, to protect the
previous state estimates against tampering and make
them widely available and accessible over the network
against the possibility of node failures and hacking,
we record them in a shared distributed ledger that is
resistant to alterations. Moreover, we secure the inter-
node data exchanges via cryptography against attacks and
manipulations.

• Secure state estimation against measurement anomalies:
Each local center quickly and reliably detects local mea-
surement anomalies and then employs an online state
recovery mechanism.

• Distributed trust management: All nodes collectively (via
voting-consensus) evaluate the trustability of each node,
specifically whether the local state estimates provided by
a node exhibit an anomalous pattern over time.

Firstly, the following subsection explains how we use the BC
technology to enhance the security of the state estimation
mechanism.

B. Blockchain Mechanism

The BC operates on the P2P network of local centers. Since
each node is pre-specified and pre-authenticated, we have a
permissioned (private) BC mechanism [52], [54]. In BC-based
systems, duties of each node and interactions between nodes
are determined via a smart contract, which is a software code
that specifies the predefined rules of network operation. In
our proposed mechanism, each node collects and analyzes
the sensor measurements in its subregion, estimates its local
state vector, exchanges information with other nodes, performs
encryption/decyrption, participates in voting-consensus proce-
dures, and stores the distributed ledger in its memory. The
details regarding the duties of the nodes will be more clear
in the subsequent sections. Next, we explain the proposed BC
mechanism in more detail.

1) Data Exchanges: In all inter-node data exchanges, we
use asymmetric encryption based on the public key infras-
tructure (see Fig. 2). In this mechanism, each node owns a
public-private key pair that forms the digital identity of the
node. The public key is available at every node. On the other
hand, the private key is available only at its owner. Moreover,
a secure hash algorithm (SHA), e.g., SHA-256, SHA-512, etc.
[58], [59], is used in the data encryption process. Particularly,
in every data exchange, the sender node firstly processes its
message via the SHA and obtains the message digest. It
then encrypts the message digest via its private key using
a signature algorithm, e.g., Elliptic Curve Digital Signature
Algorithm [44], [51], and obtains the digital signature. Finally,
it transmits the data package consisting of the message and

Message Digital Signature

SHA Private Key

Public Key

Sender

Receiver

Message
Digest

Message Digital Signature

Message
Digest 1

Message
Digest 2

SHA

Verification

Communicaton Channel

Fig. 2: Inter-node data exchanges based on the asymmetric encryption
mechanism.

the corresponding digital signature. The receiver node then
decrypts the received digital signature via the public key of
the sender node and obtains a message digest. Moreover,
it processes the received message via the SHA and obtains
another message digest. Only if these two message digests
exactly match, the integrity of the received message is verified.

In this procedure, the SHA provides security since it is
computationally intractable to obtain the same message digest
from two different messages [58], [59]. The SHA is a one-
way function that outputs a fixed-length message digest for an
arbitrary-size input message. Let H(·) denote the SHA and the
output of the H(·) be n bits. Then, given a message m, the
time complexity of finding m′ 6= m such that H(m′) = H(m)
is O(2n) via brute-force search. This property implies that
over a data exchange, if a malicious adversary aims to replace
the actual message m with a fake message m′ without being
noticed (H(m′) = H(m) so that the receiver verifies the
integrity of the message), and moreover if the adversary has a
computational power of querying 2θ possible fake messages,
then the probability of a successful fake message is 2θ−n.
Here we assume that the adversary knows the SHA so that
it can check whether H(m′) = H(m) while trying different
fake messages m′. The probability of success is negligible in
practical settings where n = 256, n = 512, etc. For example,
if an adversary can query 280 fake messages and n = 256, the
probability of success is 2−176 for a single data package.

Furthermore, since the received digital signature can only be
decrypted via the public key of the sender node, the receiver
can verify the identity of the sender. Assuming (reasonably)
that the private keys are kept secret and the digital signatures
are k bits, the time complexity of generating a successful fake
signature is O(2k) via brute-force search [44]. Then, if an
adversary does not know the public key of the sender (so that
it cannot check whether a fake signature is decrypted via the
public key), the probability of generating a successful fake



1556-6013 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2928207, IEEE
Transactions on Information Forensics and Security

6

Bt−M Bt−M+1 Bt−M+2 Bt−1 Bt

H(Bt−1)
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Fig. 3: The block structure and the distributed ledger at time t. Bt denotes
the block generated at time t and H(·) denotes the cryptographic SHA. Each
block contains a header and the estimates of the all local state vectors of the
corresponding time. The ledger is composed of the M recent blocks where
the oldest block, Bt−M , is pruned at each time t.

signature for a chosen fake message is 2−k. On the other
hand, obtaining public keys might be easier than private keys
because the public keys are distributed over the network and
all public keys can be accessed by hacking only one node.
Then, if an adversary knows the public key of the sender, it
can try different fake signatures for a chosen fake message
and check whether the fake message is verified. In this case,
if the adversary has the computational power of querying 2θ

possible fake signatures, then the probability of success is
2θ−k. Again choosing k sufficiently high, such as k = 256,
makes the success probability practically negligible. Notice
that, however, if the private key of the sender is stolen, then
the fake messages cannot be noticed at the receiver.

Over a data exchange, in case either the integrity of the
received data package or the identity of the sender cannot
be validated, then the received message is ignored and a
retransmission can take place. Thereby, thanks to the asym-
metric encryption procedure, the inter-node data exchanges are
secured against attacks that manipulate either the message or
the identity of the sender, such as man-in-the-middle and IP
spoofing attacks.

2) Distributed Ledger and Consensus Mechanism: The
ledger is a chronologically ordered sequence of blocks, stored
at every node and synchronized over the network. In BC-based
systems, the block content is application-specific. In our case
(see Fig. 3), at each measurement sampling interval, a new
block is produced, that includes (i) the state estimates of the
current time and (ii) a header consisting of the discrete times-
tamp, hash value of the previous block that cryptographically
links the current block to the previous block, and a random
number called the nonce, which is the solution to a puzzle
problem. Particularly, the nonce is determined, via brute-force
search, such that the hash value of the current block satisfies
a certain condition [44], [54]. We next explain the process of
producing a new block and the corresponding update in the
distributed ledger.

At each time t, after computing the local state estimates,
each node ` broadcasts a data package, containing its local
state estimates, x̂`t , as the message, to the entire network. Then,
as explained above, every node checks the validity of each
received data package. A broadcasted data package is verified
over the network only if the majority of the nodes validate

it. After all the broadcasted data packages are verified, all the
local state estimates of the current time are recorded into a
new block at each node.

In this process, to alleviate inconsistencies in the distributed
ledger, we need to make sure that the ledger is synchronously
updated over the network. Moreover, we seek a mutual con-
sensus over the network for the update of the ledger. Using
the common Proof-of-Work consensus mechanism [44], some
nodes act as “miners”, where the miners compete with each
other to solve the puzzle and obtain the nonce value. Public
BC-based systems such as Bitcoin [46] provides an incentive
to miners, where the miner solving the puzzle first, gets
a financial reward. In our case, however, this procedure is
completely autonomous in that at each time, among all the
local centers, a few nodes are randomly assigned as the miners.
Then, the miner solving the puzzle first broadcasts the nonce
value to the entire network. Each node then checks the puzzle
solution. If the majority of nodes verify the solution, then the
new block is produced and simultaneously connected to the
existing ledger at every node. Here, random assignment of the
miners enables a higher level of security to the BC mechanism
compared to permanently assigning the miner nodes, that
would then be the open targets for adversaries.

As explained before, for a reliable dynamic state estimation,
we require that the most recent state estimates are secure.
Moreover, in case of an anomaly over the network, e.g., a
failure or an attack, we can recover the system state from
the recent reliable state estimates (the details are presented
in Sec. V and Sec. VI). For these reasons, in the distributed
ledger, we propose to store a finite number of blocks that
contain the recent state estimates in order to protect them
against all kinds of manipulations. Let the number of blocks
in the ledger be M ≥ 1. Then, at each time, while a new block
is connected to the existing ledger, the oldest block is pruned
(see Fig. 3). This, in fact, solves the problem of monotonically
increasing storage costs in the conventional BCs as well. We
will explain how to choose M in the subsequent sections.
Further, in our case, at each time interval, only one new block
is generated and we have a main chain of blocks without
any forks, unlike the well-known public BCs such as Bitcoin
[46] and Ethereum [47], in which the ledger keeps record of
the transactions between nodes and it is possible to observe
multiple transactions at the same time. Finally, we assume that
the update of the ledger is completed within one measurement
sampling interval.

The distributed ledger is resistant to modifications due to
the following reasons: (i) since each block is cryptographically
linked to the previous block, to modify a single block without
being noticed, all the subsequent blocks must be modified
accordingly, and (ii) since updating the ledger requires mutual
consensus over the network, in order to modify the ledger,
malicious entities need to control the majority of nodes in
the network. This also implies that the security improvements
introduced with the BC-based system design are valid only
if the majority of the nodes in the network are reliable. We
expect that this condition is easily satisfied in large-scale
smart grids with many nodes distributed over a geographically
wide region, for which hacking the majority of the nodes
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is practically quite difficult. From an attacker’s perspective,
letting S , dL/2e be the minimum number of nodes to be
hacked in order to control the majority and hence to be able
to arbitrarily modify the ledger, the best strategy would be
attacking on the least costly set (in terms of the required
efforts and resources for hacking) among the

(
L
S

)
possible sets

of nodes. Furthermore, an attacker may replace a block, say
Bt, with a fake block B′t such that H(B′t) = H(Bt) with
a practically negligible probability (similar to the analysis in
Sec. III-B.1), however, the fake block can still be noticed by
comparing the modified ledger with the other copies of the
ledger in the network. Hence, for a successful fake block, the
attacker still needs to control the majority of the nodes.

Remark 1: Private BC mechanisms can be much more
efficient compared to public BCs [52], [54]. Moreover, re-
cent research shows promising improvements in the speed
of BC system operation, see e.g., [60], indicating that the
BC efficiency can be safely improved in the near future, that
enables using BC in time-sensitive real-time applications such
as dynamic state estimation. Hence, in our mechanism, the
update of the ledger can be completed within one measurement
sampling interval using a fast private BC mechanism.

IV. DISTRIBUTED STATE ESTIMATION ASSUMING
REGULAR SYSTEM OPERATION

In this section, assuming that the grid operation always fits
to the nominal system model (see (1) and (2)), we aim to
perform optimal state estimation in a fully-distributed manner,
where each node ` only estimates its local state vector x`t .

For an optimal state estimation, the node ` needs to use
all the measurements that bear information about x`t , either
fully or partially. The node ` has access to only the local
measurements, y`t , that are clearly informative about x`t (see
(5)). On the other hand, due to the shared state variables,
some measurements collected at the other nodes may also be
informative about x`t . Let

C` , {j |xjt ∩ x`t 6= ∅, j ∈ {1, . . . , L}\{`}}
be the set of nodes that share at least one state variable with
the `th node. Let j ∈ C` and y`,jt be the sub-vector of yjt that
is informative about x`t , i.e.,

y`,jt , {yk,t | k ∈ Rj ,Xyk ∩ x`t 6= ∅}.

Moreover, let x
¯̀,j
t , xjt\x`t . Then, we can decompose y`,jt as

y`,jt = H`,jx`t + H
¯̀,jx

¯̀,j
t + w`,j

t , (6)

where the matrices H`,j and H
¯̀,j are easily determined such

that the equality in (6) is satisfied for all t. Moreover, w`,j
t is

the sub-vector of wt corresponding to y`,jt .
In (6), the term H

¯̀,jx
¯̀,j
t is clearly non-informative and

irrelevant to the state estimator of the `th node. On the other
hand, the jth node estimates xjt (and hence x

¯̀,j
t ) at each time

t. Then, denoting the estimate of x
¯̀,j
t by x̂

¯̀,j
t , based on (6),

we can write

ỹ`,jt , y`,jt −H
¯̀,jx̂

¯̀,j
t

= H`,jx`t + H
¯̀,j(x

¯̀,j
t − x̂

¯̀,j
t ) + w`,j

t

= H`,jx`t + w̃`,j
t , (7)

where
w̃`,j
t , H

¯̀,j(x
¯̀,j
t − x̂

¯̀,j
t ) + w`,j

t . (8)

We propose that the jth node subtracts H
¯̀,jx̂

¯̀,j
t from y`,jt to

compute ỹ`,jt and then transmits it to the `th node at each
time t in order to facilitate the local state estimation at the `th
node. Henceforth, we call ỹ`,jt as the processed measurements
(at the jth node for the `th node).

Notice that for each node `, (4) defines the local state
transition model. Moreover, the local measurements (see (5))
and the processed measurements to be received from the other
nodes together form the overall measurement vector of the
`th node (for the local state estimation task). Let the overall
measurement vector of the `th node be denoted with ỹ`t and
as an example, let C` = {i, j}. Then, ỹ`t is simply obtained
as follows:

ỹ`t ,

 y`t
ỹ`,it
ỹ`,jt

 .
For the `th node, we then have the following linear state-space
equations:

x`t = A`x`t−1 + v`t ,

ỹ`t = H̃`x`t + w̃`
t , (9)

where H̃` is determined based on H`, H`,i, and H`,j , and w̃`
t

is the noise vector corresponding to ỹ`t (see (5) and (7)):

H̃` ,

 H`

H`,i

H`,j

 , w̃`
t ,

 w`
t

w̃`,i
t

w̃`,j
t

 . (10)

The Kalman filter is an iterative real-time estimator con-
sisting of prediction and measurement update steps at each
iteration. For the linear system given in (9), the following
equations describe the Kalman filter iteration at time t, where
x̂`t|t′ denotes the state estimates of the `th node at time t
(t′ = t − 1 for prediction and t′ = t for measurement
update) under the assumption that the correlation between state
variables belonging to different local centers is zero, that leads
to the independence of x`t from w̃`,i

t and w̃`,j
t (and hence from

w̃`
t):
Prediction:

x̂`t|t−1 = A`x̂`t−1|t−1,

P`t|t−1 = A`P`t−1|t−1A
`T + σ2

v IN` , (11)

Measurement Update:

G`
t = P`t|t−1H̃

`T(H̃`P`t|t−1H̃
`T + R`

t)
−1,

x̂`t|t = x̂`t|t−1 + G`
t(ỹ

`
t − H̃`x̂`t|t−1),

P`t|t = P`t|t−1 −G`
tH̃

`P`t|t−1, (12)

where P`t|t−1 and P`t|t denote the estimates of the state
covariance matrix of the `th node at time t based on the
measurements up to t − 1 and t, respectively. Moreover, G`

t

is the Kalman gain matrix of the `th node at time t and R`
t

denotes the covariance matrix of w̃`
t .

We now go back to the process of obtaining ỹ`,jt at the jth
node. We see through (7) that this process contains estimation
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errors due to the term x
¯̀,j
t − x̂

¯̀,j
t . Our aim is to statistically

characterize the estimation errors in order to compute the
statistics of w̃`,j

t (see (8)), which is, in fact, required for an
optimal state estimation at the `th node. Note that the jth node
estimates its local state vector xjt (and hence x

¯̀,j
t ) via its local

Kalman filter. We propose that

x̂
¯̀,j
t = x̂

¯̀,j
t|t−1,

where x̂
¯̀,j
t|t−1 is the sub-vector of x̂jt|t−1 corresponding to x

¯̀,j
t .

Then, the following lemma states the distribution of w̃`,j
t .

Lemma 1:
w̃`,j
t ∼ N (0,∆∆∆`,j

t ), (13)

where
∆∆∆`,j
t , H

¯̀,jP
¯̀,j
t|t−1H

¯̀,jT + σ2
w IK`,j , (14)

where P
¯̀,j
t|t−1 is the estimate of the state covariance matrix of

x̂
¯̀,j
t , that can be obtained from Pjt|t−1 and K`,j denotes the

size of the vector w̃`,j
t .

Proof. See Appendix A.

Through (4) and (5), we know that v`t and w`
t are in-

dependent zero-mean multivariate Gaussian noise vectors.
Furthermore, from Lemma 1, we know that the noise term
w̃`,j
t for the processed measurements (see (7)) is also zero-

mean multivariate Gaussian. That implies w̃`
t is a zero-mean

multivariate Gaussian vector (see (10)). Then, since all the
noise terms are Gaussian for the linear system in (9), the
local Kalman filter given in (11)–(12) is the optimal state
estimator for the `th node in minimizing the mean squared
state estimation error [61].

Based on Lemma 1, we can write (see (10))

w̃`
t ∼ N (0,R`

t),

where

R`
t =

 E
[
w`
tw

`T

t

]
E
[
w`
tw̃

`,iT

t

]
E
[
w`
tw̃

`,jT

t

]
E
[
w̃`,i
t w`T

t

]
E
[
w̃`,i
t w̃`,iT

t

]
E
[
w̃`,i
t w̃`,jT

t

]
E
[
w̃`,j
t w`T

t

]
E
[
w̃`,j
t w̃`,iT

t

]
E
[
w̃`,j
t w̃`,jT

t

]


=

σ
2
w IK` 0 0

0 ∆∆∆`,i
t E

[
w̃`,i
t w̃`,jT

t

]
0 E

[
w̃`,j
t w̃`,iT

t

]
∆∆∆`,j
t

 . (15)

Here, we observe that the computation of R`
t requires the

correlation between w̃`,i
t and w̃`,j

t . Using (8), we can write

E
[
w̃`,i
t w̃`,jT

t

]
= H

¯̀,i E
[(
x

¯̀,i
t − x̂

¯̀,i
t

)(
x

¯̀,j
t − x̂

¯̀,j
t

)T]
H

¯̀,jT ,

which requires the correlation between the state estimation
errors for x

¯̀,i
t and x

¯̀,j
t . However, since it is possible that

x
¯̀,j̄,i
t , x

¯̀,i
t \x

¯̀,j
t 6= ∅ or x

¯̀,̄i,j
t , x

¯̀,j
t \x

¯̀,i
t 6= ∅ and the cor-

relations for such state variables that belong to different local
centers are not computed over the network, we approximate
the correlation terms involving the state variables in x

¯̀,j̄,i
t and

x
¯̀,̄i,j
t as zero. Notice that the same assumption is made in the

local Kalman filter equations above and in fact, it is the only
assumption consistently made in this study, that looses the

optimality of the proposed solution. Through simulations, we
observe that it only slightly increases the state estimation error
compared to the optimal centralized Kalman filter. Hence, in
the rest of the design and analysis (in Sec. V and Sec. VI), we
assume that the proposed distributed dynamic state estimator
achieves near-optimal performance. Finally, we note that the
main contributions of the proposed distributed dynamic state
estimator are in the processing of the measurements that are
acquired at the other local centers j ∈ C` and only partially
relevant to the local state vector x`t .

Remark 2: Each node ` needs the knowledge of R`
t for

the measurement update step of its local Kalman filter, where
computing R`

t requires ∆∆∆`,j
t ,∀j ∈ C` (see (15)). We observe

through (14) that ∆∆∆`,j
t depends on H

¯̀,j and P
¯̀,j
t|t−1. Here,

H
¯̀,j is determined based on the network topology, which

is available at every node. On the other hand, P
¯̀,j
t|t−1 is

extracted from the state covariance matrix of the jth node,
Pjt|t−1, which is primarily computed at the jth node. Nev-
ertheless, we see through (11) and (12) that the (iterative)
computation of Pjt|t−1 does not depend on online sensor
measurements and hence it can be computed offline at each
node in the network. Moreover, in the proposed distributed
trust management scheme (see Sec. VI), each node needs
to compute the state covariance matrices of all other nodes.
Hence, the proposed state estimation mechanism does not
introduce further computational complexity beyond the trust
management scheme.

V. SECURE STATE ESTIMATION AGAINST MEASUREMENT
ANOMALIES

The state estimator proposed in the previous section is based
on the assumption that the network operation always fits to the
nominal system model. However, in practice, various kinds of
anomaly might appear all over the network, e.g., measurement
anomalies, due to cyber-attacks or network faults. In order to
achieve secure state estimation against measurement anoma-
lies, we propose to quickly and reliably detect them and then
eliminate their effects as much as possible.

Considering that the attackers can be advanced, strategic,
or adaptive to the system and detector dynamics, it is hard
to model all attack types [7], [8]. Moreover, considering the
complex cyber-physical nature of the smart grid, it is also
difficult to model all types of network faults. Hence, in this
study, we do not focus on particular anomaly types and rather
we assume the anomaly type is totally unknown. On the
other hand, once we detect an anomaly, this prevents us to
recover the useful part of the anomalous measurements (if
any). Our anomaly mitigation strategy is then to reject/neglect
the anomalous measurements in the state estimation process
and predict the system state, until the system is recovered
back to the regular operating conditions, based on (i) the
previous reliable state estimates, securely recorded in the
distributed ledger and (ii) the nominal system model. As the
sensors are distributed over the network, each node analyzes
only its local measurements. We next explain the proposed
measurement anomaly detection scheme at the `th node and
then the corresponding state recovery over the network.
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A. Real-time Detection of Local Measurement Anomalies

During the regular system operation, it is possible to observe
infrequent outliers and the Kalman filter is known to be
effective to compensate (suppress) small errors due to such
infrequent outliers [62]. Hence, we are particularly interested
in long-term anomalies where there exist a temporal relation
between anomalous measurements. Our aim is to detect such
anomalies timely and reliably using the measurements that
become available sequentially over time. In this problem,
although we can statistically characterize the nominal mea-
surements sufficiently accurately based on the nominal system
model and the online state estimates under regular system
operation, measurements can take various unknown statistical
forms in case of an anomaly. Hence, we follow a solution
strategy in that we derive and monitor (over time) a univariate
summary statistic that is informative about a possible deviation
of the online measurements from their nominal model, as
detailed next.

At each time t, the `th node locally observes y`t (see (5)).
Moreover, based on the local Kalman filter, we have

x`t − x̂`t|t−1 ∼ N (0,P`t|t−1). (16)

Using (5) and (16), we can write

y`t −H`x̂`t|t−1 = H`(x`t − x̂`t|t−1) + w`
t

∼ N (0,ΣΣΣ`t), (17)

where

ΣΣΣ`t , H`P`t|t−1H
`T + σ2

w IK` .

Then, based on (17),

χ`t ,
(
y`t −H`x̂`t|t−1

)T
ΣΣΣ`t
−1(

y`t −H`x̂`t|t−1

)
(18)

is a chi-squared random variable with K` degrees of freedom.
Notice that χ`t has a time-invariant (stationary) distribution
under regular system operation.

Let FK`(·) be the cumulative distribution function (cdf) of
a chi-squared random variable with K` degrees of freedom. If
the p-value (right tail probability) corresponding to χ`t satisfies

p`t , 1− FK`(χ`t) < α, (19)

then the corresponding local measurement vector y`t is con-
sidered as an outlier for the significance level of α. In case of
an anomaly, we expect that the chi-squared statistic χ`t takes
higher values compared to its nominal values and hence, we
expect to observe more frequent outliers. Then, we can model
an anomaly as persistent outliers, as in [63] and [64].

Based on (19), for an outlier y`t , we have

s`t , log

(
α

p`t

)
> 0, (20)

and similarly, for a non-outlier y`t , we have s`t ≤ 0. Hence,
we can consider s`t as a (positive/negative) statistical evidence
for anomaly at time t. Then, similar to the accumulation of
the log-likelihood ratios in the well-known cumulative sum
(CUSUM) test, we can accumulate s`t’s over time and declare

a measurement anomaly only if there is a strong/reliable
evidence, that results in the following CUSUM-like test [63]:

Γ` = inf{t : g`t ≥ h},
g`t = max{0, g`t−1 + s`t}, (21)

where g`0 = 0 and Γ` denotes the stopping time at which an
anomaly is detected at the `th node.

Let τ ` be the unknown change-point at which a local
measurement anomaly happens at the `th node and continues
thereafter. The CUSUM test always keeps the maximum
likelihood estimate of the change-point and update it as the
measurements become available over time [65, Sec. 2.2].
Let τ̂ ` be the change-point estimate of the proposed test.
Initializing τ̂ ` = 0 at t = 0, whenever the decision statistic
g`t reaches zero, we make the following update: τ̂ ` ← t.
In other words, τ̂ ` is the latest time-instant at which the
decision statistic reaches zero. The final change-point estimate
is determined when an anomaly is declared at the stopping
time Γ`. Hence, we have

τ̂ ` , max{t : g`t = 0, t < Γ`}.

The change-point estimate will be useful for state recovery
(see Sec. V-B).

For the CUSUM-like test in (21), to achieve a lower false
alarm rate (equivalently a larger average false alarm period),
the significance level α is chosen smaller and/or the test
threshold h is chosen higher, that, on the other hand, leads
to larger detection delays (see (20) and (21)). Let E∞[Γ`] be
the average false alarm period, i.e., the average stopping time
in the absence of anomalies (τ ` =∞). The following corollary
(to Theorem 2 of [63]) describes how to choose α and h to
obtain a desired lower bound L on the average false alarm
period.

Corollary 1: For a chosen α < 1/e and

h ≥ log(L)

1−W (α log(α))/log(α)
, (22)

we have

E∞[Γ`] ≥ L,

where W (·) denotes the Lambert-W function1.

Proof. See Appendix B.

B. State Recovery

Once the proposed CUSUM-like detection scheme in (21)
declares an anomaly, our purpose is to recover the current
(and the future) state estimates. Since the local measurements
observed after the (unknown) change-point, i.e., y`t , t > τ `, are
not reliable, we can recover the state estimates from the latest
reliable state estimates computed at the change-point estimate
τ̂ `.

The smart grid is a highly interconnected network, as in
the proposed mechanism, the local state estimation is per-
formed using the local measurements as well as the processed
measurements received from some other nodes. Hence, if an

1There exists a built-in MATLAB function lambertw.
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anomaly happens at a node, the whole network is affected by
the anomaly to some extent. Then, whenever a measurement
anomaly is detected at a node, say the `th one at time t, the `th
node immediately broadcasts τ̂ ` to the entire network. Then
every node j ∈ {1, . . . , L} makes the following state recovery:

x̂jt|t = Aj(t−τ̂`)
x̂j
τ̂`|τ̂` , (23)

that essentially corresponds to the case where we replace all
the measurements ỹjt during the anomaly interval (τ̂ `, t] with
the corresponding pseudo measurements ŷjt , H̃jx̂jt|t−1, that
makes the measurement innovation signal zero (see (11) and
(12)).

The regular network operation requires the participation of
every node in the state estimation process. Hence, whenever a
measurement anomaly is detected at the `th node, we propose
to raise an alarm flag, calling for further investigation at the `th
subregion and the neighboring subregions j ∈ C` considering
the possibility that the processed measurements received from
the neighboring nodes may also lead to an anomaly in the
local state estimation process. The investigation should be
performed considering also the possibility of false alarms.
After the investigation process and a possible recovery of the
system, the predesigned regular network operation is restarted.
Our main purpose here is to decrease the state estimation
errors due to anomalies and hence to provide more reliable
state estimates during the anomaly mitigation/system recovery
period.

Remark 3: For the state recovery, the distributed ledger
consisting of the M recent blocks needs to include the state
estimates computed at the change-point estimate τ̂ `, where τ̂ `

is not known ahead of time. However, since we expect quick
detection, we do not expect to observe a τ̂ ` that is quite far
away to the stopping time Γ`. Hence, in practice M can be
chosen reasonably small. In the case where the ledger does
not contain the state estimates of the time τ̂ `, we can recover
the state estimates from the oldest state estimates available in
the ledger considering that they are more reliable compared to
the other alternatives.

VI. DISTRIBUTED TRUST MANAGEMENT

In BC-based distributed networks, malicious adversaries
may obtain illegitimate access to the system, e.g., via stealing
the digital identity of some nodes, malware propagation, etc.,
[11], [66], and additionally some nodes may get faulty during
the system operation. Moreover, as the network is fully-
distributed, there is no centralized trusted node to check
whether all nodes are safe and trustable, i.e., whether the
nodes are functioning according to the predesigned network
rules. Therefore, against the possibility of misbehaving nodes,
we need a distributed trust management mechanism over the
network, in which all nodes collectively verify the trustability
of each node. Recall that every node knows (i) the nominal
system model and the network configuration, and (ii) a finite
history of recent state estimates of all the nodes stored in
the shared distributed ledger (see Sec. III-B.2). Using only
(i) and (ii), each node votes on the trustability of all other
nodes. Then, at each time, trustability of each node is decided

via majority-voting. We explain below how the `th node is
evaluated by the other regular (non-misbehaving) nodes.

Suppose that at an unknown time η`, an unexpected event
happens at the `th node: the node gets faulty or an attacker
hacks and takes control of the node. Then, we can no longer
expect that the behavior of the `th node fits to its pre-defined
regular operation. Furthermore, similar to the measurement
anomalies, it is quite difficult to model the (anomalous)
behavior of the `th node after time η`. We would like to detect
misbehaving nodes as quickly as possible to timely mitigate
the corresponding effects on the state estimation process.
Hence, for the evaluation of the `th node, we propose that each
node decides whether the state estimates provided by the `th
node exhibit an anomalous pattern over time. In this direction,
we next derive the nominal evolution (over time) model of the
local state estimates of the `th node. Then, similar to Sec. V-
A, we derive a univariate summary statistic that is informative
about a possible deviation of the local state estimates of the
`th node from their nominal evolution model and monitor this
statistic over time.

Based on the local Kalman filter iteration of the `th node
at time t (see (11) and (12)), we can write

x̂`t|t = x̂`t|t−1 + G`
t

(
ỹ`t − H̃`x̂`t|t−1

)
= A`x̂`t−1|t−1 + G`

t

(
H̃`(x`t − x̂`t|t−1) + w̃`

t

)
(24)

∼ N
(
A`x̂`t−1|t−1,ΨΨΨ

`
t

)
, (25)

where

ΨΨΨ`
t , G`

t

(
H̃`P`t|t−1H̃

`T + R`
t

)
G`T

t . (26)

Here, (24) is obtained using (9) and (11). Moreover, ΨΨΨ`
t is

obtained using x`t − x̂`t|t−1 ∼ N (0,P`t|t−1) (see (16)), w̃`
t ∼

N (0,R`
t), and approximating the correlation terms involving

the state variables belonging to different local centers as zero,
as in Sec. IV.

Notice that (25) statistically characterizes the local state
estimates at time t, given the local state estimates at time
t− 1, under regular system operation. Based on (25), we can
write

x̂`t|t −A`x̂`t−1|t−1 ∼ N (0,ΨΨΨ`
t),

that implies

π`t ,
(
x̂`t|t −A`x̂`t−1|t−1

)T
ΨΨΨ`
t

−1(
x̂`t|t −A`x̂`t−1|t−1

)
(27)

is a chi-squared random variable with N ` degrees of freedom
under regular system operation.

If node ` is misbehaving, we expect that the local state esti-
mates provided by it deviate from the nominal evolution model
in (25), that makes π`t larger than its nominal values. Then,
similar to the real-time detection of measurement anomalies in
Sec. V-A, the following CUSUM-like test can be employed at
a regular node j to decide on the trustability of the `th node:

Γ`j = inf{t : g`j,t ≥ h`}, g`j,t = max{0, g`j,t−1 + s`j,t},
s`j,t = log

(
α`/p`j,t

)
, p`j,t = 1− FN`(π`t ), (28)

where g`j,t is the decision statistic at time t, g`j,0 = 0,
h` > 0 is the test threshold, s`j,t is the statistical evidence
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(for misbehavior) at time t, α` is the significance level, p`j,t is
the p-value corresponding to π`t , and FN`(·) denotes the cdf
of a chi-squared random variable with N ` degrees of freedom.
A regular node j then evaluates the `th node as trusted until
time Γ`j , and misbehaving after Γ`j . Furthermore, as before,
the unknown change-point η` is estimated by the jth node as
the latest time-instant at which the decision statistic reaches
zero before the stopping time Γ`j :

η̂`j , max{t : g`j,t = 0, t < Γ`j}.

The overall decision on the trustability/misbehavior of the
`th node is made by the majority of the nodes. Let the vote
of the jth node on the trustability of the `th node at time
t be denoted with a binary variable d`j,t, where d`j,t = 0 or
d`j,t = 1 if the jth node evaluates the `th node as trusted
or misbehaving, respectively. Notice that if the jth node is
regular, then it votes based on the designed test in (28) that
gives rise to

d`j,t = I(Γ`j ≤ t).

The time at which the `th node is declared misbehaving over
the network is then determined as follows:

Γ`net , inf

{
t :

∑
j ∈{1,...,L}\{`}

d`j,t >
L− 1

2

}
. (29)

Notice that this decision mechanism works as intended unless
the majority of the nodes are misbehaving. In other words,
as long as the majority of the nodes regularly employ the
proposed misbehavior detection scheme in (28) and vote
accordingly, then the trustability of the `th node is reliably
evaluated over the network, for every node `.

Under the nominal system operation, all nodes are regular
and hence the misbehavior detector (for the `th node) in (28) is
identical at all the nodes j in the network. Then, the false alarm
rate of (29) is equal to the false alarm rate of (28). Hence,
the proposed trust management scheme achieves the same
false alarm guarantees through Corollary 1 (after replacing
the parameters α and h in the corollary with α` and h`,
respectively).

If (29) declares the `th node as misbehaving, an alarm flag
is raised, calling for an investigation at the `th node and the
neighboring nodes j ∈ C`. Moreover, due to the inter-node
data exchanges, a node misbehavior affects all the nodes in
the network to some extent. Then, as before, until the system
is recovered back to the regular operating conditions, the local
states of each node j ∈ {1, . . . , L} can be predicted based on
the nominal system model and the latest reliable estimates
computed at the change-point estimate η̂`j as follows:

x̂jt|t = Aj(t−η̂`j)
x̂j
η̂`j |η̂`j

,

where x̂j
η̂`j |η̂`j

can be obtained from the distributed ledger.
The proposed trust management scheme requires that each

node j ∈ {1, . . . , L}\{`} computes π`t and ΨΨΨ`
t for every other

node ` ∈ {1, . . . , L}\{j} (see (26)–(29)). Since the nominal
system model is known by every node and the local state
estimates provided by the other nodes are available (via the
distributed ledger) to every node, the node j already knows

A`, H̃`, x̂`t|t, and x̂`t−1|t−1 at each time t for every node `. On
the other hand, R`

t , G
`
t , and P`t|t−1 are not directly available to

the jth node. Fortunately, the Kalman gain matrix G`
t and the

estimate of the state covariance matrix P`t|t−1 can be com-
puted offline without requiring online sensor measurements.
Moreover, R`

t is computed based on the estimates of the state
covariance matrices (see also Remark 2). Hence, at each node
j, we propose to compute G`

t and P`t|t−1 (iteratively through
(11) and (12)) for every other node ` in the network.

Remark 4: Both the local measurement anomaly detection
and the distributed trust management schemes depend on
a CUSUM-like anomaly detection algorithm, whose general
form is first presented in [63] along with an asymptotic per-
formance analysis. On the other hand, the summary statistics
used in the both schemes are designed in a novel task-specific
manner. Further, although voting-based consensus is not new,
achieving consensus based on the real-time misbehavior de-
tection algorithms employed at every regular node is novel.
Finally, the proposed state recovery scheme is novel, as after
an anomaly/misbehavior is detected in real-time based on
the sequence of the derived summary statistics, the change-
point is estimated and then the state estimates are recovered
accordingly from the latest reliable state estimates without
assuming any anomaly/misbehavior model.

VII. SUMMARY OF THE PROPOSED MECHANISM

We summarize the proposed procedure at the `th node
in Fig. 4, where the procedure is identical at every node.
Since the proposed mechanism requires an investigation after
the detection of a measurement anomaly at any node or a
misbehavior of any node, the overall stopping time of the
network is given by

Γnet , inf{Γ`,Γ`net, ` = 1, . . . , L}. (30)

If several detection mechanisms simultaneously give alarms,
we can recover the state estimates based on the oldest among
the corresponding change-point estimates. Moreover, if the
state estimates corresponding to the (oldest) change-point
estimate are not included in the distributed ledger consisting
of the M recent blocks, then we can choose tR = t−M + 1
as the state recovery point, that corresponds to the oldest state
estimates available in the ledger, where the state recovery point
is denoted with tR in Fig. 4. In case an anomaly is declared
over the network, after an investigation and possibly the
recovery of the system, the proposed mechanism is restarted.

VIII. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
mechanism via simple case studies over an IEEE-14 bus power
system. We consider a special case where system state includes
the voltage phase angles only and the measurements are the
real power flow and power injection measurements (assuming
the voltage magnitudes are known). The system consists of 4
subregions, N = 14 buses, and K = 23 sensors (see Fig. 5).
The bus 6 is chosen as the reference bus, the state transition
matrix is chosen to be an identity matrix, and the measurement
matrix H is determined based on the network topology. The
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Implement the prediction step of the local Kalman filter

Collect the local measurements

Analyze the local measurements and update the decision statistic g`t

Exchange the processed measurements with nodes j 2 C`:

Implement the measurement update step of the local Kalman filter

Broadcast the local state estimates x̂`
tjt to the network

Participate in the consensus mechanisms and update the ledger

Analyze the local state estimates of the other nodes

and update the decision statistics g
j

`;t, 8j 2 f1; : : : ; Lgnf`g

Vote on the trustability of all other nodes j 2 f1; : : : ; Lgnf`g

Predict the system states based on the state recovery point (tR):

Re-initialize and restart the algorithm

x̂
j

tjt
= Aj(t{ tR)

x̂
j

tRjtR
; 8j 2 f1; : : : ; Lg

0 ≤ g`t < h

If any node is declared misbehavingOtherwise

If the system is investigated (and recovered)

g`t ≥ h

t t+ 1

or
If any node raises an alarm flag

Send ~y
j;`
t and receive ~y

`;j
t

Fig. 4: Flowchart of the proposed procedure at the `th node. The green,
orange, blue, and red rectangles mainly refer to the components of the
proposed solution design discussed in Sec. III, Sec. IV, Sec. V, and Sec. VI,
respectively. Moreover, the turquoise rectangle refers to the state recovery
mechanism discussed in Sec. V and Sec. VI.

noise variances are chosen as σ2
v = σ2

w = 10−4, and the
initial state variables (voltage phase angles) are determined
via the DC optimal power flow algorithm for case-14 in
MATPOWER [67]. For the proposed detection schemes, to
achieve E∞[Γ`],E∞[Γ`net] ≥ 106,∀` ∈ {1, 2, 3, 4}, we choose
α = α1 = · · · = α4 = 0.2 and h = h1 = · · · =
h4 = 21.3527 (see (22)). Then, we obtain via a Monte Carlo
simulation that the average false alarm period of the network
(see (30)) is E∞[Γnet] w 1.26 × 106. Moreover, we choose
the number of blocks in the distributed ledger as M = 200.
In the following, we present simulation results firstly for a
measurement anomaly case and then for a node misbehavior
case.

A. Case 1: Measurement Anomaly

As an example, we consider FDI attacks against the sensor
measurements in the subregion `:

y`t = H`x`t + a`t + w`
t , t ≥ τ `, (31)

where a`t = [a`1,t, . . . , a
`
K`,t]

T denotes the injected false data at
time t. We assume that subregions 1 and 2 are under FDI attack
after time τ , τ1 = τ2 with a`i,t ∼ U [0, ρ], ∀i ∈ {1, . . . ,K`},
∀` ∈ {1, 2}, ∀t ≥ τ , where U [0, ρ] denotes a uniform random
variable in the range of [0, ρ].

6 11

12 13 14

10

9

1

3

5

8

4

2

7

Subregion 4

Subregion 1 Subregion 2

Subregion 3

Fig. 5: Wide-area monitoring model of the IEEE-14 bus power system. Four
subregions are illustrated with dashed rectangles. The circles on the branches
represent the power flow measurements, and the squares represent the power
injection measurements.
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Fig. 6: Mean squared state estimation error vs. time in case of an FDI
attack (with ρ = 0.3) performed after time τ = 200 targeting the sensor
measurements in the subregions 1 and 2.

Firstly, assuming τ = 200 and ρ = 0.3, we present in Fig. 6
the sum of the mean squared state estimation errors over all
local centers for both the pre-attack period, i.e., t < 200, and
for the attacking period of t ∈ [200, 250]. We present the
performance of the proposed distributed secure state estima-
tion mechanism, the centralized Kalman filter, the centralized
cubature Kalman filter [68] (since it is reported to be robust
against attacks [34] although mainly designed for nonlinear
systems), and the robust centralized Kalman filter that rejects
gross outliers and replaces the corresponding measurements
with the pseudo measurements, similar to [32]. In particular,
the robust Kalman filter computes a chi-squared statistic at
each time t using all the measurements yt, similar to (18), and
compute the corresponding p-value based on the chi-squared
distribution with K degrees of freedom. The significance level
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Fig. 7: Average state estimation error over an attacking period vs. attack
magnitudes in case of FDI attacks to the sensor measurements in the
subregions 1 and 2.

for outliers is chosen as 0.01. Then, if the p-value is less than
0.01, the corresponding measurements yt are replaced with the
pseudo measurements ŷt , Hx̂t|t−1 in the robust centralized
Kalman filter where x̂t|t−1 denotes the predicted states at time
t. We observe via Fig. 6 that the proposed estimator performs
near-optimally in the pre-attack period and reduces the state
estimation errors in the attacking period. Since the proposed
mechanism does not use any measurements after the anomaly
detection, state estimation/prediction error increases over time
in the attacking period, as expected. Hence, after anomaly
detection, the anomaly needs to be quickly mitigated to prevent
large errors. We also observe that although the cubature
Kalman filter shows some performance improvement over the
Kalman filter in the attacking regime, it still significantly
deviates from the actual system state after the attack is being
launched. Moreover, although the robust Kalman filter reduces
errors over the attacking period, it deviates from the system
state under regular conditions due to the rejection of nominal
outliers.

Next, we present in Fig. 7 the average state estimation per-
formance over an attacking period as the FDI attack magnitude
ρ varies. Particularly, we assume τ = 1 and compute the
sum of the mean squared state estimation errors over local
centers, averaged over an attacking period of t ∈ [1, 50]. Recall
that after the detection of measurement anomalies and until
the system is back to the regular conditions, the proposed
mechanism predicts the system state based on the nominal
system model and the previous reliable state estimates. Hence,
after the detection, the state estimation/prediction performance
of the proposed mechanism does not depend on the attack
magnitudes. On the other hand, for the centralized Kalman
filter and the distributed state estimator designed assuming
ideal operating conditions (see Sec. IV), the state estimation
error increases with the attack magnitude as there are no
anomaly detection/state recovery mechanisms integrated into
them.

Finally, we illustrate in Fig. 8 how the average detection
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0

5

10

15

20

25

30

Fig. 8: Average detection delay vs. attack magnitudes in case of FDI attacks
targeting the subregions 1 and 2.

delay varies as the attack magnitude/intensity changes, as-
suming τ = 1, that results in the worst-case detection delays
since gt = 0 at t = 0. As expected, for stronger attacks, we
observe more significant outliers (smaller p-values) that leads
to quicker detection (see (20) and (21)).

B. Case 2: Node Misbehavior

We assume that at time η, the node 3 is hacked and
controlled by a malicious entity that injects false data to the
local measurements and also does not employ the local mea-
surement anomaly detection mechanism. Similar to the Case 1
above, we consider the FDI attack in (31) with a3

i,t ∼ U [0, ρ],
∀i ∈ {1, . . . , 5}, ∀t ≥ η. The difference is that the node 3 does
not notify the other local centers about the local measurement
anomaly at all. In this case, we expect that the misbehavior is
detected over the network via the distributed trust management
scheme. Assuming η = 1, we firstly present in Fig. 9 the
average detection delay versus the attack magnitude curve.
Then, we present in Fig. 10 the average state estimation per-
formance over an attacking period of t ∈ [1, 50]. We observe
that via the trust management scheme and the state recovery
mechanism employed after misbehavior detection, the state
estimation error can be significantly reduced compared to the
estimators with no recovery mechanisms.

IX. CONCLUDING REMARKS

We have studied the secure distributed dynamic state es-
timation in the wide-area smart grids. We have proposed
a novel BC-based resilient mechanism in which each local
center supervises a subregion and collaborates with the other
local centers to perform reliable state estimation in a fully-
distributed manner under adversarial settings. We have pro-
posed to enhance the security of each part of the network
against attacks and data manipulations. Particularly, we reduce
the risk of manipulations in the network database and the net-
work communication channels via cryptography and voting-
consensus mechanisms. Moreover, we timely and reliably
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Fig. 9: Average detection delay vs. attack magnitudes. False data are injected
at the local measurements of the node 3 and no anomaly detection mechanism
is employed at the node 3.
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Fig. 10: Average state estimation error over an attacking period vs. attack
magnitudes in case of a node misbehavior.

detect and eliminate the effects of measurement anomalies and
misbehavior of the local control centers. Numerical studies
illustrate the promising performance of the proposed mecha-
nism.

We consider this work as a proposal for secure distributed
state estimation in the wide-area smart grids, where all
parts of the solution design, namely the BC mechanism,
the distributed state estimation mechanism, the measurement
anomaly detection scheme, the trust management scheme,
and the state recovery scheme are open to improvements.
Moreover, although we have specifically focused on the power
networks, the proposed mechanism can be used for any linear
dynamic networked control system after simple modifications.
Particularly, the following future research directions can be
considered:

• The proposed BC-based mechanism introduces many
advantages in terms of data security, availability, acces-
sibility, and process transparency, etc., however, some

new challenges arise such as storage redundancy over
the network, higher network congestion, synchronization
issues due to possible communication delays, higher
computational complexity over the network, etc. Hence,
the applicability of the proposed mechanism should be
analyzed with proper metrics that quantify the benefits
and the costs associated with the proposed mechanism
and the traditional SCADA-based centralized implemen-
tation.

• After early anomaly/misbehavior detection, identification
of anomalies (types and causes) and the development
of the corresponding mitigation/recovery strategies are
needed to achieve a completely autonomous network
operation.

• Secure resilient wide-area distributed dynamic state esti-
mation needs to be studied for the nonlinear AC power
system model with the extensive use of Phasor Measure-
ment Units, as the future grid operation is expected to
be more complex, dynamic, and uncertain with the broad
integration of renewable and distributed energy resources
[69], [70].

APPENDIX

A. Proof of Lemma 1

In the Kalman filter, given the measurements up to time
t− 1, we have

xjt ∼ N (x̂jt|t−1,P
j
t|t−1),

that implies

xjt − x̂jt|t−1 ∼ N (0,Pjt|t−1). (32)

Hence, similarly to (32), we can write the following:

x
¯̀,j
t − x̂

¯̀,j
t ∼ N (0,P

¯̀,j
t|t−1). (33)

Notice that (33) statistically characterizes the estimation
error term, x

¯̀,j
t − x̂

¯̀,j
t . Based on (8) and (33), we then have

w̃`,j
t ∼ N (0,∆∆∆`,j

t ),

where

∆∆∆`,j
t , H

¯̀,jP
¯̀,j
t|t−1H

¯̀,jT + σ2
w IK`,j .

B. Proof of Corollary 1

Since χ`t is a continuous random variable, its cdf and hence
the tail probability, p`t , are uniformly distributed U [0, 1] [71].
Then, for the rest of the proof, we refer the reader to [63,
Theorem 2]. The only difference in the proofs is that in [63],
the tail probability is uniformly distributed in an asymptotic
regime, while it is exactly uniform here.
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