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Home Energy Recommendation System (HERS):
A Deep Reinforcement Learning Method Based

on Residents’ Feedback and Activity
Salman Sadiq Shuvo , Graduate Student Member, IEEE, and Yasin Yilmaz , Senior Member, IEEE

Abstract—Smart home appliances can take command and act
intelligently, making them suitable for implementing optimization
techniques. Artificial intelligence (AI) based control of these
smart devices enables demand-side management (DSM) of elec-
tricity consumption. By integrating human feedback and activity
in the decision process, this work proposes a deep Reinforcement
Learning (RL) method for managing smart devices to optimize
electricity cost and comfort residents. Our contributions are
twofold. Firstly, we incorporate human feedback in the objec-
tive function of our DSM technique that we name Home Energy
Recommendation System (HERS). Secondly, we include human
activity data in the RL state definition to enhance the energy
optimization performance. We perform comprehensive experi-
mental analyses to compare the proposed deep RL approach
with existing approaches that lack the aforementioned critical
decision-making features. The proposed model is robust to vary-
ing resident activities and preferences and applicable to a broad
spectrum of homes with different resident profiles.

Index Terms—Home energy management, demand side man-
agement, customer comfort, residents’ activity label, deep rein-
forcement learning, artificial intelligence.

NOMENCLATURE

Devices

AC Air Conditioning
DW Dish Washer
WD Washer and Dryer
EV Electric Vehicle.

Parameters at Time Step t

Xi
t Activity label of the ith resident.

Hi
t Previous activity labels of the ith resident.

ωi
t Duration of current activity in hours of the ith

resident.
ρt Real-time electricity price in $/kWh.
f d
t ∈ {0, 1}, Human feedback for device d.

Pd
t Power consumption in kW for device d.
βd

t ∈ [0, 1], Battery charge level of device d.
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Other Symbols

D Total number of smart devices.
d Device index.
δd Discomfort cost coefficient for device d.
ψd Scheduling time steps for device d (Type-2).
Ed Charging power levels for device d (Type-3).
κ Duration of time step in hours.

I. INTRODUCTION

A. Home Energy Management (HEM) for Smart Homes

SMART home systems can enhance human comfort and
optimize electricity usage in an automated setup. While

many devices have included sensor-based control for a long
time, such as microwave ovens, air conditioning, etc., with the
Internet of Things (IoT) revolution [1], many other smart appli-
ances are entering our homes. Most of the devices will soon
have such intelligence that will unlock the true potential of the
smart home concept. Specifically, recent smart Home Energy
Management (HEM) technologies can leverage state-of-the-art
artificial intelligence (AI) techniques. As a result, residents can
enjoy all the comfort smart devices offer according to their
preferences in an automated way. In addition to personalized
comfort, the HEM system can significantly reduce the elec-
tricity cost and flatten the demand curve by scheduling some
devices to run during off-peak hours.

B. Demand-Side Management (DSM) Techniques for HEM

Utility companies employ Demand Response (DR) based
techniques to encourage customers to shift their load to off-
peak hours [2]. It serves two purposes: avoiding electricity
purchases from expensive peaking power plants and keeping
the system’s maximum demand at check to avoid capacity
expansion costs. They provide time-based pricing schemes
for the customers, known as Time of Use (TOU) [3], such
as real-time pricing, critical peak pricing, etc. Numerous
researches have proposed appliance scheduling techniques for
HEM systems [4] to capitalize TOU tariffs. Such Demand
Side Management (DSM) techniques aim to modify the con-
sumer’s energy activities, e.g., shifting customers’ electricity
usage towards off-peak hours [5]. For instance, a hierarchi-
cal HEM system within a home microgrid is proposed in [6]
that integrates photovoltaic (PV) energy into day-ahead load
scheduling and aims to reduce the monthly peak demand and
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peak demand charges.1 A state-space approximate dynamic
programming (SS-ADP) approach is proposed in [7] to pro-
vide a fast real-time control strategy under uncertainty using
the Bellman optimality condition. The work in [8] includes
consumer input in their proposed EV charge scheduling tech-
nique. The uncertainties in electricity usage of smart building
HEM as a nonlinear optimization problem is addressed in [9].
A microgrid where the users minimize cost by trading energy
between each other before buying from the grid is presented
in [10], where PV energy, home battery, and EV battery serve
as intermittent sources.

The majority of the DSM techniques for HEM are based
on a rule-based schedule for device usage, undermining con-
sumers’ comfort. Rule-based scheduling often suffers from the
randomness inherent in human preference, weather, and other
interventions, especially in realistic scenarios with multiple
residents and multiple appliances. To this end, the works
in [11]–[13] aim to dissolve the rigid scheduling of devices
by including distributed energy generation and distributed
energy storage devices in their HEM system. To realize the
far-reaching potential of smart home technology, researchers
have opted from rule based approaches to recent data-driven
machine learning techniques for DSM.

C. Reinforcement Learning (RL) Based DSM Techniques

Electricity consumption patterns are evolving with the fast-
improving smart device technologies, which requires adapt-
ability in HEM for scheduling devices. Reinforcement learning
(RL) techniques are typically preferred for their data-driven
online decision-making capability. Recent advances in neu-
ral network-based deep RL algorithms lead to widespread
applications, including gaming [14], finance [15], energy
systems [16], transportation [17], communications [18], envi-
ronmental systems [19], and healthcare systems [20]. An
extensive review of RL for DSM in [21], showcases the suit-
ability of RL for DSM techniques. Berlink and Costa [22]
were among the first to investigate RL-based DSM techniques
for a smart home. The work [23] utilizes the inherent adapt-
ability in deep RL algorithms by maintaining thermal comfort
and optimal air quality while minimizing electricity usage. A
large-scale HEM is proposed in [10] using a multi-agent deep
RL framework.

D. Human Feedback and Activity for HEM

The authors, in their review of RL for demand response [21],
emphasize the importance of incorporating human feedback
in RL-based DSM techniques. Pilloni et al. [24] proposed
a smart HEM system in terms of the quality of experience,
which depends on the information of consumers’ discontent
for changing home devices’ operations. To replicate human
feedback, they surveyed 427 people to generate residents’
annoyance profiles for delayed scheduling of different appli-
ances. Then, they incorporate a cost apart from the electricity
price based on the annoyance levels from these profiles. In
their following research [25], they used sensor-based activity

1Not every utility charges for peak demand.

recognition to predict future activities for appliance schedul-
ing. The authors in [26] define human dissatisfaction by the
difference between the maximum power rating and the deliv-
ered power rating of a device, an oversimplified way of
representing human feedback for their RL-based HEM system.
Khan et al. [27] calculated dissatisfaction if HEM turns off
a device using an equation with different priority factors for
different devices. Several other works, e.g., [28], [29], fol-
low a similar approach to estimate discomfort cost rather than
using actual feedback from residents. All these techniques lack
adaptability to consumer preference, i.e., they may work well
for certain types of users, but they are not general enough
to ensure user convenience. Park et al. [30] provide theory
and implementation for adaptive and occupant-centered light-
ing optimization in an office setup. They interpret switching
on and off the lights by office employees as human feedback.
This work has successfully incorporated human feedback for
their RL algorithm; however, their scope is limited to light-
ing. Hence, the necessity for a human feedback-based HEM
system still remains open.

The work in [31] proposes a deep sequential learning-based
human activity recognition in smart homes. The benefits of
labeled activity to analyze and assess the smart home resi-
dents’ physical and psychological health has been reviewed
in [32]. Chen et al. [33] analyzed behavior patterns to predict
energy consumption profile. Since the smart home concept
has the inherent capability of activity labeling, including the
activity data as a feature for the DSM technique can greatly
facilitate the RL agent’s learning capacity. The work [34]
reviews sensor-based activity recognition techniques to imple-
ment in a smart home setup. Given the technology, our work
includes human activity labels in the RL state definition for
the first time to the best of our knowledge.

Although the smart home concept is originally introduced
for the residents’ benefit, their comfort is often ignored
in many existing methods. In this work, we propose a
deep RL method that takes the residents’ feedback as a
reward factor, apart from electricity prices and device sta-
tus. We consider resident activities as part of the system
state to better understand human comfort and feedback. Our
work incorporates residents’ feedback every time they over-
ride the HEM system’s commands, a practical and novel
way of extending the success of recommender systems
(e.g., movie, book, shopping, video) to HEM. Recommender
systems learn from customer usage patterns to recommend
items/services [35]. A similar approach can be integrated
into a HEM system by accommodating human input in a
meaningful way.

E. Contributions

Our contributions lie in addressing two challenges in RL
for HEM. Specifically,

• We propose a novel home energy recommender system
(HERS) based on a Markov decision process (MDP) for-
mulation and a deep RL solution to jointly minimize
the electricity consumption cost and discomfort to the
residents;
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Fig. 1. Proposed MDP model.

• HERS incorporates direct human feedback for discom-
fort in the objective function through residents’ manual
overrides to the recommended device operations to learn
residents’ preferences; and

• HERS uses resident activities in the state definition to
learn device usage patterns.

We evaluate the performance of the proposed HERS
method by comparing with a manually controlled, two rule-
based [13], [24], and an RL-based approach [26].

The remainder of the paper is organized as follows. The
MDP model is formulated in Section II, and the deep RL
algorithm for the optimal policy is given in Section III. The
experimental setup is presented in Section IV. Results are dis-
cussed in Section V. Finally, after the key features of the paper
and the future research scope are discussed in Section VI, the
paper is concluded in Section VII.

II. MODEL DEVELOPMENT

We propose an MDP framework shown in Fig. 1, where the
smart home device manager is the MDP agent, called HERS.

A. Environment

The residents, activity recognizers, and devices form the
MDP environment. The homes can be of different sizes,
with multiple residents living in them. We assume access to
the utility company’s real-time pricing scheme, ρt ($/kWh
at time t), and activity recognition through multiple sensors
placed throughout the home. Affordable and reliable activ-
ity recognition from sensor data has been studied by several
works [31]–[33], which is out of the scope of this paper. We
assume the presence of an activity recognition set up, which
provides the activity label X1

t ,X2
t , . . . ,XR

t for all R residents
at home.

HERS employs different methods to operate each of the
d ∈ {1, 2, . . . ,D} smart devices that we divide into three cat-
egories, as shown in Table I. When switched on by a human
or sensor, the device goes into the active status and will be
considered for decision-making only during active status.

1) Priority Devices (Type-1): These devices provide essen-
tial comfort to the residents, and they are not available

TABLE I
DEVICE TYPES

for deferring. HERS can keep the active devices off inter-
mittently without compromising the devices’ functionality.
Regular lights, TV, CCTV camera, alarm system, and air con-
ditioner (AC) are examples of this type of appliance. Choosing
the relevant data for the MDP state is a challenge for this task.
For instance, if the resident is browsing the Internet while the
TV is on, turning it off may create discomfort. However, if
the resident goes to sleep, keeping the TV on, turning it off
may reduce electricity costs without compromising comfort.
AC is the heaviest load for this device type, hence we focus
on it in our experiments.

2) Deferrable Devices (Type-2): These devices can be
scheduled later to off-peak hours, reducing electricity cost and
maintaining the peak demand lower than the threshold (if any).
Dish Washer (DW) and Washer & Dryer (WD) fall in this cat-
egory. These devices typically can evade human discomfort if
it completes the task before the subsequent activation by the
residents. So, the dynamic electricity price ρt and activation
time are critical features for scheduling the deferrable devices.

3) Flexible Devices (Type-3): These devices are flexible in
terms of time scheduling and power level. EV, cell phone, and
laptop chargers are examples of these types of devices. These
devices can consume different power levels {0, 1, 2, . . . , Ed},
which changes their battery charge level βd

t . Residents’ activ-
ity patterns and βd

t are important features in HERS for these
devices.

B. Action, Ad
t

Our MDP model in Fig. 1 starts with the agent selecting
actions At = (A1

t ∪A2
t ∪· · ·∪ADact

t ) about setting the operation
mode for each of the smart devices in active status Dact (≤
D = m + n + o). So, the total number of possible actions are

2m
︸︷︷︸

m Type−1 Devices

× (ψ1 + 1)× (ψ2 + 1)× · · · × (ψn + 1)
︸ ︷︷ ︸

n Type−2 Devices

× (E1 + 1)× (E2 + 1)× · · · × (Eo + 1)
︸ ︷︷ ︸

o Type−3 Devices

, (1)

where, m is the total number of Type-1 devices.
ψ1, ψ2, . . . , ψn are scheduling time ranges for the n
type-2 devices, and E1, E2, . . . , Eo are charging power levels
for the o type-3 devices. Fig. 2 shows the action flowchart
for each type of devices at each time t.
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Fig. 2. Action flow chart for active devices at each time t.

TABLE II
STATE INPUT

For the type-1 devices, there are two actions possible
(on/off) for the device. For Ad

t = off, the agent changes its
action if the residents’ perform manual override. HERS sched-
ules a Type-2 device when it is ready for a new run. No further
decision is made until the current operation is finished, either
scheduled or manually overridden. The device becomes ready
again when the resident activates it for a new run. For Type-3
devices, HERS decides on a charge level Ad

t for each time t.
If there is any manual override, then the charge level is set to
full capacity Ed to finish charging as soon as possible. Every
manual override causes the discomfort cost through feedback
f d
t = 1 to the RL agent for the corresponding device.

The actual number of possible actions will typically be
smaller than Eq. 1 during a time step due to inactive devices.
For example, when the residents are not at home, the AC will
remain off and will not be considered for the agent’s action.
Similarly, the idle status of many devices can be determined to
limit the number of actions. Furthermore, a deferrable device
only remains active for one time step when HERS schedules
its operation.

C. State, Sd
t

The MDP agent takes action based on the environment state.
Appropriate design of the state is fundamental to the success
of the MDP model. As the devices provide comfort to the
residents, we hypothesize their activity data to be critical to
define the states. An activity recognition system uses various
home sensor data to label the residents’ activity Xt. Apart from
the activity, the real-time electricity price ρt and clock time
of the day (CLK) are other essential features that we include
in the state definition, as shown in Table II. The state at time
t is defined as:

Sd
t = Device data ∪ Activity ∪ ρt ∪ CLK,

where Activity = (X1
t ,H1

t , ω
1
t ) ∪ · · · ∪ (XR

t ,HR
t , ω

R
t ) includes

the current activity Xi
t , previous activities Hi

t , and duration

of the current activity ωi
t for all R residents. Device data

includes information like how long ago the device was acti-
vated, the number of dirty dishes or clothes for the Dishwasher
and Washer Dryer, the charge level of the type-3 devices, that
can be included in the state definition, as shown in Table II.
In practice, activity labels can be generated from activity
recognition sensors as discussed in [31].

D. Cost, Cd
t

The MDP agent tries to maximize a reward or minimize a
cost by taking optimal actions for a given state. For instance,
the RL-based Youtube video recommendation systems are
rewarded when the user opens a recommended video [36].
Similarly, HERS receives cost (negative reward) whenever a
resident is not happy with the selected action and changes
the mode of a device. This human feedback f d

t = 1 is inter-
preted as discomfort and converted to a cost to the MDP agent
through separate cost coefficients δd for each device d for each
manual override. The devices’ operations are meant for human
comfort, so HERS’ objective is to minimize discomfort.

The total cost for the MDP agent is the sum of energy cost
and human discomfort cost. The utility informs the agent of
the electricity price for the current time step ρt, and future
time step ρt+1. The energy usage at time t is obtained from
the smart device’s power consumption Pd

t and used to calculate
the total cost for each active device for time step t as

Cd
t = Pd

t × κ × ρt + f d
t × δd, (2)

where κ is the unit step time in hours. Cost coefficient δd

for each device is a critical modeling parameter that converts
discomfort into monetary value. f d

t represents the discomfort
feedback of the residents, where 0 and 1 respectively indicates
no override or override. The goal of the MDP agent is to
minimize the following discounted cumulative cost for each
device in T time steps:

Cd
T =

T
∑

t=0

λtCd
t , (3)

where λ ∈ [0, 1] is the discount factor for future decisions.

E. Next State, Sd
t+1

At the end of a time step, the device state Sd
t changes accord-

ing to the action At; however, human activity data, electricity
price data, etc., change stochastically. These features define
the next state Sd

t+1, and the dynamic system moves to the next
time step for the agent to act. These transitions satisfy the
Markovian property of the MDP framework.

III. SOLUTION APPROACH

HERS employs one separate MDP agent for each of the D
devices to minimize the discounted total costs Cd

T in Eq. (3). To
achieve the optimal policy arg min{Ad

t } Cd
T , we need to solve the

following Bellman equation. We drop the device index from
here on for brevity. The agent’s value function at time step t is

V(St) = min
At

{

E
[

Ct + γV(St+1)
]}

.
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Fig. 3. Advantage Actor-Critic (A2C) Network.

The above equation presents a solution dilemma in priori-
tizing between the immediate cost Ct and future expected cost
γV(St+1). Since the agent’s action changes the next state of the
devices, the future discounted cost through the value function
of the next state V(St+1) depends on the action of the agent.
Since in high-dimensional problems like the considered one
here, it is not feasible to compute the expected future cost
explicitly and find the value function for each possible state,
deep neural networks are typically used in the modern prac-
tice of RL (known as deep RL) to learn the optimal policy of
actions either directly (policy-based methods) or through the
value function (value-based methods).

The Advantage Actor-Critic (A2C) algorithm, which is a
hybrid (both value-based and policy-based) adaptation of pol-
icy gradient-based algorithm REINFORCE [37], is a popular
choice for continuous state space, e.g., electricity price and
battery charge level in our setup. We also considered using
Deep Q Network (DQN), another popular deep RL algo-
rithm, but A2C performed better in the proposed state space,
as expected. A2C uses the advantage functions for policy
update, which reduces the REINFORCE algorithm’s variance
as shown in Fig. 3.

The actor network, also known as the policy network,
outputs probability for each action value πφ(At) through a
softmax function. Then the agent samples an action At based
on the policy πφ and the environment moves to the next state
St+1 and provides the immediate cost Ct. The actor network
aims to find the gradient of expected return J(πφ) of the pol-
icy πφ with respect to the weights φ of the neural network
through the following equation:

∇φJ
(

πφ
) = Eπφ

[∇φ log
(

πφ(At|St)
)A(St; At)

]

, (4)

where the advantage function A is given by

A(St; At) = Ct + γVθ (St+1)− Vθ (St). (5)

The critic-network learns the value function Vθ (St) for each
state. It uses the advantage function A as the critic loss to
update its network parameters θ through back propagation.
A pseudo code for the proposed A2C algorithm is given in
Algorithm 1.

IV. EXPERIMENTAL SETUP

The ideal experimental setup would be implementing the
HERS algorithm in an existing smart home. However, a fully
equipped smart home capable of taking human feedback is yet

Algorithm 1 A2C Algorithm for Each Device in HERS
Input: discount factor λ, discomfort cost coefficient {δd}
Initialize: Actor network with random weights φ and critic
network with random weights θ
for episode = 1, 2, . . . ,E do

for t = 1, 2, . . . ,T do
Collect activity data from Activity Recognizer, real-
time electricity price ρt from Utility.
Select action Ad

t using Actor Network (Fig. 3).
Execute action Ad

t and observe human discomfort
feedback f d

t .
Calculate cost Cd

t using Eq. (2).
Store transitions (Sd

t ,Ad
t ,Cd

t , Sd
t+1).

end for
Update actor network φ via Eq. (4).
Update critic network θ through back propagation.

end for

TABLE III
ARAS ACTIVITY DATASET [39]

to be available. We will hypothetically generate human feed-
back and interactions with the devices based on the residents’
activity data. HERS select different features for operating dif-
ferent devices, as shown in Table II. We include clock time
in minutes and real-time electricity price ρt as the common
states for all the devices. The New York Independent System
Operator (NYISO) provides real-time electricity prices; we use
Long Island, NY prices for March 13 and 19, 2021 as the
electricity price respectively for weekends and weekdays in
our simulation [38]. We find that κ = 0.25 hour (15 minutes)
is suitable for the experimental setup.

A. Activity Label

For residents’ indoor activity data, we use the ARAS
dataset [39]. The attributes of the dataset for the two homes are
shown in Table III. The dataset contains 27 types of activities
labeled by sensors and validated by the residents. This dataset
is comparatively newer and has more activity types than other
datasets in the literature.We choose House B for the experi-
ments. HERS takes the current activity label, duration, and the
last activity label for each resident (6 inputs in total for the two
residents in the house). Apart from providing the dataset, [39]
also gives a guideline about the sensors required for activity
recognition. To collect the activity data, they used a total of
20 binary sensors of 7 types: (1) force sensor, (2) photocell,
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(3) contact sensors, (4) proximity sensors, (5) sonar distance
sensors, (6) temperature sensors, and (7) infrared sensors.

B. Devices

HERS can provide optimal control for all the smart devices
in a home. However, we limit our case study to high power
loads that renders significant energy cost. Specifically, we
choose the following four devices for our experiments.

1) Type-1, Central AC: We estimate a 12000 BTU
(3.5 kWh) AC capacity for the 90 m2 (968.75 ft2) area of
the home, located in a mild temperature zone. In reality, the
average AC load is typically half of the capacity [40], so we
model the AC load with the following normal distribution:

PAC ∼ N (μ = 1.8 kW, σ = 0.5 kW).

The AC will be in the idle status (sAC
t = 0) if none of the

residents are at home or active (sAC
t = 1) otherwise. The

agent may keep the AC off intermittently under active sta-
tus; however, the resident will manually turn the AC on if
it causes discomfort. We generate this feedback f AC

t if AC
goes off within TAC minutes of being turned on. In that case,
the residents turn on the AC manually, which penalizes the
HERS agent by $ δAC. We model TAC with a uniform distri-
bution between 45 to 90 minutes and intermittent off duration
as 15 minutes. We include the on duration as a state for AC.

2) Type-2, DW and WD: The activity pattern of house B
indicates the lack or no usage of a dishwasher (DW). We gen-
erate the dishwashing events to be activated, i.e., sDW

t = 1,
TDW minutes after any resident finishes dinner. We model the
delay time TDW with the Poisson distribution with 60 min-
utes mean value. There will be no dishwashing events for the
days when none of the residents have cooked, as there will not
be a significant load for the dishwasher. The analysis in [41]
estimates 152-minute automatic dishwashing for a comparable
load to the considered household. Hence, we model the dish-
washing event as a 2.5-hour continuous operation with 1.1 kW
power. The Bosch 500 series smart dishwashers are among the
most popular models of the year 2020 and serve as the DW
model in our experiments [42]. The agent needs to complete
dishwashing before the subsequent switching by the residents;
otherwise, it receives the discomfort cost δDW , and the DW is
turned on manually to clean the previous dishes.

House B has a regular heavy load washer & dryer (WD),
so following its laundry schedule would not be practical. The
future smart homes will utilize the high-tech WD combos like
the LG WM3900HBA, a single compartment light-duty device
that takes around 1 hour for washing and 1.5 hours for drying
for an average cloth load. We estimate that the residents pro-
duce this cloth load every three baths, hence fill and switch
the WD in active mode on average 30 minutes (Poisson mean)
after their second or third bath (with equal probability) from
the previous laundry. Then the RL agent has to turn the WD on
for a 1-hour continuous washing cycle, followed by 1.5-hour
drying cycles with 1.2 kW power to complete the laundry. If
the agent does not complete the process before the next switch-
ing by the residents, the resident provides negative feedback
δWD and turns on the WD immediately to clean the previous
cloths.

TABLE IV
EV USAGE DATA GENERATION

3) Type-3, EV Charging: The residents’ activity pat-
tern shows that they mostly go out of the home together.
Considering an EV in the house, we assume that the sec-
ond resident drives it. The EV driver’s work pattern seems
to consist of long hours with some off days throughout the
week. We set his one-way drive to work as 20 miles; 69th
percentile driving distance from the data collected by The
American Time Use Survey (ATUS) [43], which includes over
13,000 respondents. The activity data provides us with the
duration the resident is away from home. Based on the dura-
tion, we label such away time as leisure, office time, and travel
as in Table IV. We assume the EV is always connected to the
charger when the resident is at home.

For weekdays, if the resident stays away for less than 8
hours, it is labeled as a leisure activity, which includes going
shopping, visiting friends, short trips, theater, etc. Residents
spend more time in leisure activities during the weekend,
extending the leisure activity labeling time to 10 hours for
the weekend. Driving distance in miles during leisure trip for
ta time duration is approximated as;

M = f (ta) = tdriving × vavg = α × ta × vavg.

where, α = tdriving/ta is the ratio of time spent for driving
and the total time spent away. We model it with a normal
distribution

α ∼ N (μ = 0.33, σ = 0.1).

Average speed vavg is taken as 30 mph. The instances in which
the resident spends 8-16 hours out of home is labeled as office
and leisure activity during weekdays. Round trip to the office is
taken as 40 miles, additional time after 10 hours is considered
a leisure activity, and driving distance is calculated as M =
40 + f (ta − 10).

2021 Tesla Model 3 Standard Range is one of the most pop-
ular latest EV models with a 450 hp (336 kW) engine 50 kWh
battery. The level–2 charging of 7.68 kW (240 V 32 A) capac-
ity would require 6.5 hours to charge the completely depleted
EV battery fully. Battery status after a trip is the initial battery
status when going out of home β minus M

220 as the Tesla 3
model has a standard driving range of 220 miles. The resident
does not use the EV if β is less than 40% before starting a
trip. The resident takes some other transportation mode and
assigns a discomfort cost δEV1 to the RL agent. If the resident
stays more than 16 and 10 hours out of home, respectively,
on weekdays and weekends, we label this activity as travel
that may require outside charging. We do not calculate driv-
ing distance for traveling; however, we set battery status after
the travel to be 5-20%, as home charging is the cheapest and
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the resident would try outside (paid) charging as little as nec-
essary to reach home. The resident requires a higher initial
charge for traveling. We set a higher discomfort cost δEV2 if
β < 70% before travel. As the initial charge level is higher
for travel, we include the next trip type as an input state for
the EV.

C. Discomfort Cost, δd

Discomfort costs δd for each device are critical parameters
in the HERS setup. So, we model it as user-defined numbers
that the residents can set initially and update while the HERS
is at service. The discomfort costs also represent the comfort
and device priority mindset of the residents as low discom-
fort cost will emphasize electricity cost, and high discomfort
cost will prioritize human feedback. In case of an update to
the discomfort costs δd, thanks to its adaptive nature, the RL
agent will update the policy in an online fashion. For the
experimental purpose, we performed a survey among twenty
participants with different backgrounds (e.g., student, home-
maker, engineer, etc.) to set the discomfort cost for each of
the four devices. Survey results suggest EV charging failure
creates the maximum discomfort. Other discomfort costs in
decreasing order are for WD, DW, and AC. We select dis-
comfort cost coefficients as δAC = 20, δDW = 40, δWD =
50, δEV1 = 100, δEV2 = 300 in USD.

V. RESULTS

A. Benchmark Policies

1) Manually Controlled Policy: In this policy, the residents
operate the devices themselves, so a device turns on immedi-
ately upon its activation without any scheduling consideration.
We assume the residents turn off the AC when both of them
are out of home and turn it on upon returning. This policy
ignores the benefit of smart scheduling, and we will refer to it
as the baseline policy to evaluate the other policies’ success.

2) Rule Based HEM in [13]: Shirazi and Jadid [13]
present a home energy management with DERs and appliance
scheduling (HEMDAS). The energy management problem in a
house is modeled as a mixed-integer nonlinear programming
(MINLP) that includes constrained optimization for manag-
ing DERs and appliance usage. More precisely, the devices
are scheduled based on real-time pricing of electricity during
a time window. They define separate earliest starting times
(EST) and latest finish times (LFT) for DW, WD, and EV to
ensure user convenience. Each device is scheduled based on
the real-time electricity price during its operating time win-
dow. The AC maintains the desired temperature decided by
the customer, which our smart home agent ensures by keeping
the AC on for 90 minutes before every 15-minute interruption.

3) Rule-Based HEM in [24]: Pilloni et al. [24] survey 427
people about their degree of annoyance if a device performs
under-capacity or is scheduled for later periods. The survey
responses are used for generating different types of resident
profiles. During training, the smart home residents’ usage pat-
tern is matched to one of those profiles. Once the resident’s
appliance usage profile is assigned, the algorithm minimizes

TABLE V
MONTHLY COST ($) COMPARISON FOR DIFFERENT POLICIES

the cost for each device,

Cd
t = Pd

t × κ × ρt

σ(�X)

where the numerator represents the electricity cost and
σ(�X) ∈ (0, 1] is the relative satisfaction level of the home
residents for the device. This rule-based method accommo-
dates user preference and provides a good analogy to our
discomfort feedback-based RL approach. The resident feed-
back pattern in our setup for the AC, DW, and WD matches
most of the resident profiles in the survey. Since [24] does not
provide an EV charging profile, we assume that this policy
schedules EV only if its battery is more than 50% charged,
otherwise charges at full capacity.

4) RL-Based HEM in [26]: In [26], Xu et al. utilized hour-
ahead electricity price as a state to minimize electricity cost.
We tailor their approach to fit this comparative analysis with
the following modifications: (i) Agent makes decisions every
15 minutes instead of hourly decisions. (ii) There is no PV
generation in our setup, so the MDP state consists of elec-
tricity price of the next 24 hours, with 4.67% prediction error
following the case-1 (best prediction) in that paper. (iii) We
consider the AC as a priority device that maintains the user set
the temperature on its own. Hence, the possible actions for the
AC remain turn on or off instead of different power ratings,
(iv) We include EV battery depletion, which is overlooked
in [26].

B. Scenarios

1) Scenario 1 (Unlimited Peak Demand): There is no
restriction for keeping the electricity usage within a limit in
this scenario. Fig. 4 shows the daily cumulative cost com-
parison among policies for different devices, and Table V
summarizes the results. The manually controlled policy has
the maximum monthly total cost of $193. Among the rule-
based approaches, the Pilloni et al. method [24] costs $166 and
performs better than the Shirazi and Jadid method [13] with
$180 monthly cost. The RL-based approach in [26] attains
$172 monthly, and the proposed deep RL-based HERS policy
achieves the lowest cost with $149 and minimizes the cost by
23% from the baseline manual control policy. The manually
controlled policy starts operation immediately, thus does not
take advantage of the lower electricity rate at off-peak hours,
unlike the rule-based ones. However, the rule-based policy fol-
lows a conservative approach for optimization by searching
low tariffs in a smaller time window to avoid creating resi-
dent discomfort. Especially, the EV charging time window in
method [13] overlaps with the peak hours. So, these policies
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Fig. 4. Daily cumulative cost in Scenario 1 for devices: AC (top left), DW (top right), WD (bottom left), and EV (bottom right) for 1-month duration.

Fig. 5. Daily cumulative cost comparison for all devices among the considered policies for Scenario 1 (left) and Scenario 2 (right).

minimize the cost for all appliances on a smaller scale. The
RL-based approach in [26] achieves comparable results with
the rule-based policies. The success of this policy is limited
due to only including electricity price in its state definition
and overlooking many critical features that the HERS policy
capitalizes on (see Table II). The HERS policy focuses on
human feedback in its cost and runs the devices optimally.
For instance, HERS keeps the AC off for shorter intervals
during midnight without causing any resident discomfort. The
proposed deep RL-based policy is expected to decrease the
cost further for a system with more devices.

2) Scenario 2 (Limited Peak Demand): To avoid overload-
ing a distribution system, the utility company often restricts
users to keep energy usage under a threshold. Under this sce-
nario, we limit the peak electricity usage to 10 kW to obey
such restrictions. The EV charging can take up to 7.68 kW of
electricity, even greater than the sum of other loads. So, all

the devices other than the EV receive their unrestricted elec-
tricity. Hence, the other devices’ electricity cost is the same
for both scenarios. The EV charging gets the least priority
and can consume up to the remaining electricity. Fig. 5 com-
pares the total cost among different policies for both of the
scenarios. In Scenario 2, all the policies attain similar results
as in Scenario 1, however with a small increase in cost due
to the restrictions. With more devices or lower peak limiting,
the results may vary more compared with Scenario 1.

C. Computational Statistics

Fig. 6 shows that the proposed deep RL algorithm learns
the optimal policy within 600 episodes. Table VI shows
that training convergence takes 128 minutes and online deci-
sion making requires only 4 seconds in our computer (Intel
Core i7,3.60 GHz, 16 GB RAM), exhibiting the real-world
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TABLE VI
COMPUTATIONAL STATISTICS FOR THE EXPERIMENTS

Fig. 6. Convergence of the proposed deep RL algorithm for HERS for
scenario-1 total cost.

Fig. 7. HERS scheduling results for a day under scenario-2 (peak demand
limit 10 kW). The black curve shows the electricity price.

applicability. The high cost in the early episodes indicates
discomfort among residents; however, it ceases very fast.
The trained HERS will take feedback from the consumer to
optimize the electricity cost of the house. We examine the
above policies for two scenarios.

D. HERS Schedule Demonstration

Fig. 7 shows the implemented schedule by HERS for a par-
ticular day. From the residents’ feedback, HERS learns that
switching the AC off for 15 minutes after 1 hour of continu-
ous operation is its optimal schedule that minimizes electricity
cost and does not create any discomfort. Hence, HERS fol-
lows this pattern and keeps the AC off when no one is home
(9:30 am-5:45 pm). The EV is charged at maximum capac-
ity (7.68 kW) during the low tariff early hours (12 am-3 am)
and its remaining charge at 75% capacity (5.76 kW) during
a slightly higher tariff (3 am-4 am). The EV returns home
at 5:45 pm; however, it waits for lower electricity tariffs at
11 pm-12 am. The DW and WD require 2.5 hours of con-
tinuous power that the HERS schedules for the low-demand
low-tariff hours during mid-day (12:30 pm-3 pm). Notably,
HERS chooses this schedule instead of 12:00 pm-2:30 pm as

the electricity price is lower during 2 pm-3 pm compared to
12 pm-1 pm. This sample schedule shows that HERS learns to
minimize electricity cost and resident discomfort by utilizing
the human feedback and activity labels in the proposed deep
RL setup.

VI. DISCUSSION

This work focuses on key features derived from residents’
activity for operating smart devices. The reward of the RL
agent accommodates direct human feedback, thus provid-
ing a setup similar to the popular recommendation systems
(e.g., video, book, music, etc.). We understand that any other
approach incorporating more customized features for differ-
ent appliances may achieve further improved results. So,
the RL-based recommendation approach for device-specific
policy-making has a high potential. This work demonstrates
the benefit of including human activity-based states and human
feedback-based rewards for adaptive HEM. Our model pro-
vides usage control of devices that do not include PV sources,
energy storage, microgrid, and data sharing with other homes
or a multi-agent setup. However, our core architecture can
accommodate these features in the future to open up further
research opportunities in this domain.

VII. CONCLUSION

This work presents a deep Reinforcement Learning (RL)
based recommendation system for smart home energy man-
agement (HEM). Residents’ manual override for a device is
interpreted as a negative reward to the RL agent that oper-
ates the device. So, the goal of the RL agent is to capitalize
low-tariff electricity without creating human discomfort. To
the best of our knowledge, this is the first work that takes
direct human feedback for device management in a general
smart home setup. Intuitively, this method works similarly to
the popular recommendation applications that suggest a video,
book, music, etc., based on a user’s usage pattern, so we call it
Home Energy Recommendation System (HERS). Furthermore,
the RL agent considers the human activities for state definition,
another novelty the existing literature lacks. The experimental
results show that the human activity pattern plays a vital role
in device operation, in comparison with the RL approach of
Xu et al. [26] that only considers electricity price for state def-
inition. Our comparative analysis shows that HERS minimizes
the electricity cost significantly with respect to the manually
controlled policy, rule-based policies in [13], [24], and the
RL-based policy presented in [26].
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