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Abstract—Electricity authorities need capacity assessment and
expansion plans for efficiently charging the growing Electric vehi-
cle (EV) fleet. Specifically, the distribution grid needs significant
capacity expansion as it faces the most impact to accommodate
the high variant residential EV charging load. Utility companies
employ different scheduling policies for the maintenance of their
distribution transformers (hereinafter, XFR). However, they lack
scenario-based plans to cope with the varying EV penetration
across locations and time. The contributions of this paper
are twofold. First, we propose a customer feedback-based EV
charging scheduling to simultaneously minimize the peak load
for the distribution XFR and satisfy the customer needs. Second,
we present a deep reinforcement learning (DRL) method for
XFR maintenance, which focuses on the XFR’s effective age
and loading to periodically choose the best candidate XFR for
replacement. Our case study for a distribution feeder shows the
adaptability and success of our EV load scheduling method in
reducing the peak demand to extend the XFR life. Furthermore,
our DRL-based XFR replacement policy outperforms the existing
rule-based policies. Together, the two approaches provide a
complete capacity planning tool for efficient XFR maintenance
to cope with the increasing EV charging load.

Index Terms—electric vehicle charging, demand side man-
agement, deep reinforcement learning, distribution transformer
maintenance, predictive maintenance.

I. INTRODUCTION

Technological development throughout the previous decades
paved the way for electric vehicles (EVs) to replace gasoline-
based vehicles at an increasing rate. Specifically, the battery
capacity and cost, which are the major impediments to EV
adaptation, have been significantly improved.

As a result, today, governments, manufacturers, and cus-
tomers are more convinced about EVs’ environmental, com-
mercial, and economic benefits, escalating EV popularity
and adoption. According to Bloomberg New Energy Finance,
which provides a comprehensive analysis of predictions from
different entities like oil manufacturing companies and in-
dependent research groups [1], there are already 13 million
EVs on the road globally, with 2.7 million sales in 2021.
Following the planned expansion of charging infrastructure,
EV growth predictions are mostly optimistic. For instance, the
International Energy Agency predicts the total number of EVs
will go over 250 million by 2030 from the estimated 5 million
on the streets globally in 2018 [2].

While expanding the charging infrastructure is critical for
large-scale EV adoption, a significant portion of daily EV
charging occurs at homes and creates stress on distribution
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transformers (XFRs). Since EV charging requires significantly
higher power than the other loads in a household, a combina-
tion of effective demand-side management (DSM) techniques
for EV charge scheduling and utility-side management (USM)
policies to cope with the increasing stress on the XFRs
for XFR maintenance is needed. Utility companies try to
flatten the electricity demand curve to decrease the stress on
the distribution XFRs by providing day-ahead or hour-ahead
dynamic electricity pricing schemes for the customers [3].
Numerous existing works proposed scheduling techniques for
the time-shiftable appliances (e.g., Dishwasher, washer dryer,
EV charging, etc.) of a household to capitalize the dynamic
pricing [4]–[6].

Although such DSM techniques can flatten the demand
curve to an extent, they do not sufficiently address the increas-
ing stress of EV charging on the distribution XFRs since they
lack the utility-side management of the problem. Motivated
by this research gap, we take a comprehensive look at the
problem of increasing EV charging stress on the distribution
XFRs. Specifically, we consider both the demand-side (i.e.,
EV charge scheduling) and the utility-side (i.e., XFR mainte-
nance) management of the problem. While the proposed DSM
technique helps with load flattening to minimize transformer
aging, the proposed USM technique enables timely (proactive)
maintenance of distribution transformers to prevent costly
transformer failures and blackouts.

A. DSM for EV Charge Scheduling

Centralized collaboration among EV users served by the
same distribution XFR may provide the most effective way of
minimizing the peak demand of the XFR [7]–[9]. The work
[7] shows that coordination among the EV chargers under
a distribution XFR minimizes peak demand to extend the
XFR lifetime at the expense of consumers’ arbitrage benefit.
However, their approach lacks consumer comfort, ignoring
that delayed EV charging may compromise user comfort.
Another work [8] opts to minimize the EV owner’s energy
arbitrage benefit and distribution network maintenance cost
through an optimal charging schedule. However, the objective
function of this work also lacks user discomfort due to delayed
charging. The paper [9] proposes a fuzzy logic system for
the demand-side operator to devise a centralized EV charging
schedule. This approach is too strict to accommodate user
preferences and needs more adaptability to serve different
types of customers.

In short, these techniques lack integrating customer pref-
erences into their objective functions, hence may suffer in
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real-life implementation. We address this shortcoming by
directly considering customer preference for charging duration
and amount, and by introducing a monetary incentive to the
customers based on their charging preferences (see Section
II-C for details).

B. USM for XFR Maintenance

The distribution grid, especially the customer-end XFRs, is
susceptible to overloading and costly maintenance. Replace-
ment of gasoline cars by EVs urges installing charging stations
in place of gas stations and home charging arrangements. So,
the power system needs more energy generation, transmission,
and distribution capacity at all levels. Many works provide
charging station assessment, capacity, installation, and opti-
mization techniques [10], [11]. In this work, we focus on EV
charging at home, which EV users typically prefer due to the
convenience and cheaper charging cost [12]. Home charging
may significantly burden the customer-end distribution XFRs,
as modern EVs take more than 7kW power from type-2 home
chargers, higher than the average cumulative demand from
all other loads in a household. Overloading an XFR leads to
overheating and electrical insulation breakdown of an XFR
[13]. IEEE guidelines provide estimation for effective aging
due to overheating of the insulation [14]. The work [15]
develops a probabilistic failure distribution that depends on
the effective age of an XFR.

Transformer selection for replacement/upgrade is naturally
a sequential decision making problem, requiring a solution
that is adaptive to the observed states. Hence, dynamic pro-
gramming (DP) techniques, which can optimize transformer
selections according to the changing environmental factors
such as EV charging stress, suit better to this problem than
static optimization techniques. Since it is not tractable to
model the future state transitions (probabilistically or deter-
ministically) as the network consists of many transformers
and each action creates another branch of possible states, the
model-based DP techniques like value iteration and policy
iteration are not suitable. Reinforcement learning (RL) is a
model-free DP approach that utilizes a data-driven technique
of approximating a solution through sampling. Furthermore,
deep RL (DRL) methods capitalize neural network-based func-
tion approximation to deal with the continuous-valued large
input state (i.e., the current age and load of each transformer
for our problem). Recent advances in neural network-based
deep RL algorithms lead to widespread applications, including
gaming [16], finance [17], energy systems [18], transportation
[19], communications [20], environmental systems [21], and
healthcare systems [22].

C. Contributions

We propose an EV integration policy for the utility com-
pany that aims to minimize the long-term maintenance costs
for the electrical distribution grid. Our contributions can be
summarized as follows.

• The first comprehensive study of the problem of increas-
ing stress on the distribution XFRs due to EV charging.
Specifically, a combination of novel DSM and USM

techniques is proposed for flattening the load curve and
making timely maintenance of the distribution XFRs,
respectively.

• A novel utility-driven EV charging scheme to flatten
the load curve of the XFR. Different from the existing
EV charging methods, our method directly considers
customer preference for charging duration and amount,
and a proportional monetary incentive.

• A novel DRL-based policy for XFR replacement and
capacity upgradation to minimize the maintenance cost.

The remainder of the paper is organized as follows. Section
II presents the proposed utility-driven EV charging method.
Section III formulates the Markov decision process (MDP)
for the proposed DRL-based XFR maintenance policy. Exper-
imental results and analysis are presented in Section IV for a
distribution XFR feeder. We conclude the paper in Section V.

II. EV CHARGE SCHEDULING FOR DSM

Our utility-driven EV charge scheduling offers a reasonable
balance between peak load reduction and customer satisfac-
tion. Utility companies offer lower electricity prices during off-
peak hours to encourage consumers to shift their load towards
those hours. However, this can create extensive peak demand
during “off-peak” hours for a distribution XFR that serves
many EVs, especially when EV owners employ smart charging
to exploit low tariffs. Overloading the XFR results in expedited
aging and subsequent risk of expensive XFR maintenance
and power outage. So, we propose a utility-driven charging
technique that aims to minimize the maintenance cost by
flattening the load curve for the XFR while ensuring customer
satisfaction. The proposed DSM considers the other household
devices as base loads and schedules EV charging based on the
available power after providing power for the base loads. As
a result, the utility company faces fewer maintenance costs
thanks to peak load reduction. It incentivizes the consumers
using the profit it makes from reduced maintenance costs to
participate in the scheduling program.

A. Proposed Technique

In our proposed technique, as shown in Fig. 1 (left blue
box), the utility employs one charging agent for each XFR to
schedule and control the charging of the EVs. Whenever an
EV is plugged in for charging (EV arrival), the agent collects
the battery charge level En, the target charge level Etgt, and
calculates the charging time window,

Tw =

⌈
Etgt − En

τ × Pmax

⌉
+ Tb,

where Pmax is the maximum charging capacity of the par-
ticular EV and τ is the duration of timestep in hours. The
ceiling ⌈·⌉ of the fraction indicates the minimum number of
time units for completing the target charging, and Tb provides
buffer time to the agent to do the scheduling.

Then the agent updates its memory M by removing
the departed EVs and charged EVs (En = Etgt) infor-
mation and puts the arrived EV at the last position, V .
Here, V indicates the number of EVs awaiting charge
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Fig. 1. Proposed DSM flowchart (left) and DRL Model for USM (right). Note that the time units for DSM (hourly) and USM
(monthly) are different.
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Next, the agent proceeds to charge scheduling if there is
any EV in the pool (V > 0). The agent gathers electricity
price and household load forecast for the next H timesteps,
a decision time horizon which is bigger than the charging
time window of any EV (e.g., H = 16 hours). LSTM
algorithm fits well for the household sequential load prediction
[23]. We take the temperature forecast θn, the holiday flag
Hn ∈ {0, 1}, and the load data of the last m time steps
{Ln−m, . . . , Ln−2, Ln−1}, to predict the XFR load forecast
L̂n, L̂n+1, . . . , L̂n+H . Similarly, the agent uses LSTM to
forecast electricity prices {R̂n, R̂n+1, . . . , R̂n+H} from the
last m time steps data {Rn−m, . . . , Rn−2, Rn−1}.

The agent follows the first-come-first-serve approach and
starts scheduling the first EV (S = 1) in the pool. Algorithm
1 shows the EV charge scheduling technique for the Sth EV in
the pool. If the charge time window is not over, i.e., TS

w > 0,
the agent sorts electricity prices R in ascending order and store
the indices in vector I . The agent schedules charging for the
next TS

w timesteps, starting from the cheapest electricity tariff
hours to the costlier ones. The available power forecast L is
the difference between load capacity Lcap and load forecast
of the XFR for the corresponding hour (Line 5). Notably, the
utility decides on the load capacity Lcap of the XFR, typically
between 100-120 % of the nameplate kVA rating (e.g., 25-30
kVA for a 25 kVA rated XFR). The agent reads the battery
charge status Et from M and calculates the required charging
ER (Line 6). So, the EV charge allocation for the cheapest
hour is

P s
n+I(1) = min{PS

max, ER,L}.

The agent updates the charge level EL for the following
schedule step (Line 8). This process continues for charge
allocation for all the time steps from the second cheapest,
PS
n+I(2) till the costliest one PS

n+I(TS
w ). Finally, the algorithm

outputs charge allocation for the next TS
w time steps as

{P s
n+1, P

s
n+2, . . . , P

s
n+TS

w
} (line 10). However, if the charging

window is over (i.e., Tw ≤ 0), the agent implements charging
{P s

n+1} for the immediate time step, as explained next.
If Tw ≤ 0, but the target charge level is not achieved (Line

12), the agent offers compensation charging at a fixed rate
based on the battery charge status ES

n . We define two more
user input ES

safe and ES
crit that each consumer can initiate and

update as required. As the EV is expected to leave anytime
soon (TW ≤ 0), Algorithm 1 outputs allocated compensation
charging for the next time step as:

PS
n+1 =


min{PS

max,L}, ES
n ≤ ES

crit

min{0.5× PS
max,L}, ES

crit < ES
n ≤ ES

safe

0, ES
n > ES

safe,

(1)

where, L = Lcap − L̂n+1, is the estimated available power.
After the completion of charge scheduling for each EV, the
agent updates the load forecast by adding the scheduled
EV charges. This charge scheduling continues till all the V
EVs are scheduled through Algorithm 1. Upon completion of
scheduling, the charging for the nth time step is implemented.
Although the actual load may differ from the prediction, with
an appropriate method, the prediction error will be within the
range that causes insignificant aging difference to the XFR.
So, the agent implements the charging as per scheduled and
update the memory as:

ES
n+1 = ES

n + PS
n+1, T

S
w = TS

w − 1, ∀S.
The agent moves to the next time step with its memory update,
and this recursive loop continues as shown in Fig. 1.

B. Consumer Incentive
The consumers receive free smart EV charging service

and a monetary incentive for participating in the DSM. The
monetary incentive,

I =
κ

100
× Tb

Etgt
× EV charging bill, (2)
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Algorithm 1 Utility-Driven EV Charge Scheduling

1: Input: EL = ES
n , TS

b , ES
tgt, PS

max, R = {Rn+1

, . . . , Rn+H}, L̂ = {L̂n+1, . . . , L̂n+H}.
2: if TS

w > 0 then
3: Sort electricity prices R in ascending order and store

the indices in vector I .
4: for τ = 1, 2, ..., TS

w do
5: Estimate available power, L = Lcap − L̂n+I(τ).
6: Remaining charge, ER = ES

tgt − EL.
7: Scheduled charge, PS

n+I(τ) = min{PS
max, ER,L}.

8: Update EL = EL + PS
n+I(τ).

9: end for
10: Output: EV charge schedule

{PS
n+1, P

S
n+2, . . . , P

S
n+TS

w
}.

11: else
12: Output: EV charge compensation {PS

n+1} from Eq. (1).
13: end if

depends on their preferences for Tb and Etgt. Customers who
provide longer buffer time Tb and smaller target charge level
Etgt get more incentive. On the contrary, customers who
prioritize comfort by selecting Tb = 0 ensure the fastest
possible EV charging without any incentive. EV owners set
Tb and Etgt during system setup and can update their choices
from time to time. This setup offers the customer control
over their preferences and gives our method an edge over the
existing techniques. The utility selects the incentive coefficient
κ based on the savings in maintenance cost.

III. DRL BASED XFR REPLACEMENT FOR USM

We propose an RL framework shown in Fig. 1 (right blue
box), where the electricity utility company is the RL agent
that makes replacement and upgradation decisions for the
distribution XFRs.

A. Environment

The RL environment is the distribution feeder with X
customer-end XFRs and their connected loads. The XFRs
can be of different capacities (kVA rating), serving different
household numbers. The environment provides the peak load,
Lx
t , and the loss of life, ∆Dx

t , for the xth XFR during the tth

time step. We calculate the effective aging as per the IEEE
standard [14] as:

∆Dx
t =

∫ t+1

t

9.8× 10−18e
15000

TH+273 dt, (3)

where TH denotes the hotspot temperature of the XFR which
depends on the ambient temperature and the electrical load. We
approximate the effective ageing integral equation through fine
granularity (per minute) estimation. Apart from the scheduled
maintenance, the utility also bears unscheduled interruption
costs, mainly due to XFR failure and fuse blowing events. XFR
failure occurs due to insulation breakdown, which depends on
the used life

Dx
t = Dx

0 +

t∑
n=1

∆Dx
n = Dx

t−1 +∆Dx
t

of the XFR, where Dx
0 is the initial age of the XFR in days.

Weibull distribution is popular for forecasting the insulation
failure of a XFR [13]. Our preliminary work [18] shows the
XFR failure probability during the tth timestep is

Px
t = 1− exp

[(
Dx

t

α

)β

−
(
Dx

t + 1

α

)β
]

(4)

where α and β are the scale and the shape parameters
of the Weibull distribution, respectively. XFR failure brings
interruption cost Cx

t to cover XFR replacement, required labor,
and unplanned outages.

Fuse-blowing events are deterministic and protect the XFR
by disconnecting the circuit whenever the load exceeds the
rating of the fuse; typically, 180% of the XFR’s rated load
[24]. Since fuse is meant to protect the XFR, its replacement
brings minor labor and outage costs. Hence, the interruption
cost for fuse replacement is smaller than that of XFR failure.
While the monetary value of Cx

t varies with time and place,
a utility company can have a proper estimate of Cx

t for XFR
failure or blown fuse.

B. State, St

The agent makes replacement decisions based on the used
life (hereinafter, age) and peak load of a XFR. However, XFRs
with low age and peak load are not suitable candidates for
change; hence eliminating them from the RL decision process
creates a smaller state space and faster algorithm convergence
without performance compromise. So, the agent takes the most
loaded Yl and most aged Ya XFRs to make a pool of size
Y = Yl+Ya. The load and age of these XFRs create the state
for time step t,

St = (L1
t , D

1
t , L

2
t , D

2
t , . . . , L

Y
t , D

Y
t ).

The percentile load Ly
t , which is the ratio of peak load and

capacity of the yth XFR, does not require normalization. We
divide the age by the IEEE recommended lifetime of a XFR
(7500 days) for normalization.

C. Action, At

The utility needs to replace the overloaded and older XFR
to avoid failure and outage-related costs. However, under
budgetary constraints, the RL agent chooses one XFR for
replacement from the pool at each time step. Replacing the
XFR with a bigger one is more cost-effective if the existing
peak load is significantly higher than the capacity. So, our RL
agent’s action includes replacing the XFR with the same-sized
or double-sized (kVA) one. If there is no overloaded or old
XFR in the fleet, the optimal action might skip replacement
(At=0). As a result, our action space contains 2Y +1 options

At ∈ {0, 1, 2, . . . , 2y − 1, 2y, . . . , 2Y − 1, 2Y }

where, y ∈ {1, 2, . . . , Y } is the index of the XFR in the pool;
2y− 1 and 2y represent replacing the yth XFR with the same
and double capacity one, respectively.
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D. Cost, Ct

The monetary cost for maintenance constitutes the RL
framework’s cost function Ct (negative reward). The main-
tenance cost includes the replacement (or upgrade) cost Crep

t

(or Cupg
t ) and emergency interruption cost

∑X
x=1 C

x
t as in

Ct = Crep
t +

X∑
x=1

Cx
t .

Notably, as failure brings emergency labor and unplanned
longer outages, XFR failure is way costlier than a sched-
uled replacement for a same-sized XFR. Furthermore, an
undersized XFR brings huge maintenance costs by multiple
interruptions through fuse blows and eventual failure, which
can be negated by upgrading its size.

E. Next State, St+1

The selected action installs a new XFR (zero aged) in place
of the previous one. The replaced XFR’s index gets attributed
to the new one. The age of a XFR for the next time step is

Dx
t+1 =

{
0, At ∈ {2x− 1, 2x}
Dx

t +∆Dx
t , otherwise

where the environment provides the effective aging in time
step t, ∆Dx

t , from Eq. (3). Furthermore, the environment
provides the maximum load of the xth XFR during time step
t, which is used to estimate the peak load of the XFR as

Lx
t+1 =

Maximum Load
Rated Capacity

.

The rated capacity of the XFR is updated whenever it is
upgraded by a double-sized one.

F. Solution Approach

The RL agent aims to minimize the discounted cumulative
cost in T time steps:

CT =

T∑
t=0

λtCt, (5)

where λ is the discount factor, a critical parameter that
represents the weight of future cost in current decision.

In a data-driven approach, we minimize the expected cost
E[CT ] by selecting the best actions {At}. Central to this
problem is the following Bellman equation. In a recursive way,
the agent’s value function is given by

V (St) = min
{
E

[
X∑

x=1

Cx
t + λV (St+1)

]
︸ ︷︷ ︸

No replacement, At=0

,

E

[
Crep

t +

X∑
x=1

Cx
t + λV (St+1)

]
︸ ︷︷ ︸

Replace yth XFR by same capacity, At=2y−1

,

E

[
Cupg

t +

X∑
x=1

Cx
t + λV (St+1)

]
︸ ︷︷ ︸
Replace yth XFR by double capacity, At=2y

}
.

Algorithm 2 DRL for distribution XFR replacement schedule

Input: discount factor λ, learning rate, and number of
episodes E
Initialize actor network with random weights ϕ and critic
network with random weights θ
for episode = 1, 2, ..., E do

Initialize state S0 = (L1
0, D

1
0, L

2
0, D

2
0, . . . , L

Y
0 , D

Y
0 )

for t = 1, 2, ... do
Add EV charging load to Lt based on the EV diffusion
model in [27]
Calculate each XFR’s effective aging from (3).
Calculate cumulative operation cost of all XFR as
explained in Section III-D.
Select action At using policy πϕ.
Execute action At and observe cost Ct

Store transitions (St, At, Ct, St+1).
Update policy network ϕ via Eqs. (6) and (7).
Update value network θ through backpropagation.

end for
end for

For this challenging problem with continuous state space
and high-dimensional action space, policy gradient Deep RL
(DRL) methods provide an effective solution approach. Specif-
ically, the Advantage Actor-Critic (A2C) algorithm is known
to provide quick convergence in such problems [4], [18], [19],
[22], [25], [26]. Using two neural networks (actor and critic)
A2C reduces the variance of its predecessor policy gradient
algorithm the REINFORCE [25].

The actor network, also known as the policy network,
outputs the probability for each action through a softmax
function. To that end, it finds the gradient of expected return
J(πϕ) of the policy πϕ with respect to the weights ϕ of the
neural network through the following equation

∇ϕJ(πϕ) = Eπϕ
[∇ϕ log(πϕ(At|St))A(St;At)], (6)

where the advantage function is given by

A(St;At) = γV (St+1; θ)− V (St; θ). (7)

The critic network, also known as the value network, learns
the value function V (St; θ) by updating the weights θ of its
neural network. The pseudo-code for the proposed method is
given in Algorithm 2.

IV. EXPERIMENTS

A. Experimental Setup

From the 2009 RECS dataset for the Midwest region of
the United States [28], Muratori generates 200 household
load profiles, along with 348 predicted EV charging loads
connected to those households in [29]. The households vary
in size, occupancy, electricity consumption. Lisha et al. [30]
present an EV diffusion model for feeder level distribution
system that considers different socioeconomic factors of the
neighborhood. They provide an EV inclusion model for a 30-
year timeline based on the car age, neighborhood, economy,
and other critical features for an urban distribution feeder in
North Carolina [30]. We combine the load and EV charging
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Table I: Feeder Data. Numbers in parentheses indicate the
number of XFRs serving that many homes.

Number of private homes 1116
Number of XFRs 232

Number of homes per XFR 7 (30), 6 (30), 5 (80), 4 (50), 3 (42)
XFR rating 25 kVA, 480/208 V, 1 phase, ONAN

XFR characteristics Taken from [18]

Table II: Utility company’s equipment and labor cost for
different maintenance types.

Maintenance Cost ($) Outage
Work 25 kVA 50 kVA Time

XFR scheduled replacement 1500 3000 1 hr
XFR failure replacement 3000 4500 24 hr

Fuse blow restoration 500 6 hr

profile of [29] with the EV diffusion model of [30] to obtain
the load profile in our case study. Distribution feeder data are
summarized in Table I.

The distribution feeder maintenance includes scheduled and
unscheduled replacement (due to failure) of the XFR and
protective fuses in our setup. Based on our study of the
equipment cost and labor, we set the total cost for different
types of maintenance as shown in Table II. Fault-based mainte-
nance brings emergency outages and customer inconvenience
cost. We take the inconvenience cost for XFR failure and for
fuse blows as $1.3 per kWh and $2 per kWh, respectively,
according to the service value assessment in [31]. Since the
customers are notified beforehand, the inconvenience cost for
scheduled replacement is zero.

For the neural networks, we take the discount factor, γ =
0.95, and learning rate 3 × 10−4. The actor and the critic
networks have three hidden layers, each with 30, 120, and 48
neurons. The LSTM network for the load prediction has two
LSTM layers. We use Adam optimizer for both the LSTM and
DRL networks.

B. EV Charging (DSM)

We select the buffer time, Tb = 3 and target charge level,
Etgt = 0.9 for all the customers. [29] shows the impact of
uncoordinated charging on the distribution grid, in which the
EVs get charged to full capacity without any schedule. Our
proposed DSM reduces the peak load significantly, as shown
in Fig. 2. Out of the 232 XFRs, XFR-4 receives the most EVs
(14) during the 30-year timeline. For the 1st year, the proposed
and uncoordinated load profiles are the same, as there is no
EV inclusion in the beginning. With growing time and EV
inclusion, the proposed charging method reduces the peak load
increasingly. For the first week of 30th year, uncoordinated
charging results in a peak load above 33 kV compared to
the peak load of around 21.1 kV with the proposed utility-
driven charging. Similarly, for all the XFRs for the 30-year
timeline, uncoordinated charging yields as much as 49.73 kVA
load, compared to the 32.07 kVA max load of the proposed
charging method. This indicates that uncoordinated charging
incurs a significantly higher cost for XFR replacement and
upgradation compared to the proposed charging method.

Apart from uncoordinated charging, we examine the follow-
ing smart EV charging techniques from the literature.

(1) Rule-based in [7]: Sarker et al. [7] present a centralized
strategy for EV charging by co-optimization of distribution

XFR aging and energy arbitrage. The objective is to minimize
the total cost of electricity consumption and the damage cost
to the XFR. They estimate the damage cost by multiplying the
price of the XFR by its loss of life, using Eq. (3). The utility
pays incentives to compensate the customers, as charging often
happens during higher tariffs to minimize damage costs to the
XFR. This constraint optimization strategy for EV charging
satisfies constraints related to the battery’s state of charge to
represent user preference, which is too basic to capture a user’s
driving traits and routine.

(2) MARL in [27]: Li et al. [27] proposed a Multi-Agent
Reinforcement Learning (MARL) based EV charging strategy.
Each EV under a distribution XFR is an individual agent
that minimizes the total cost due to electricity bills and XFR
damage cost under a central agent, i.e., the distribution XFR.
The MARL state is defined by real-time electricity price, XFR
hotspot temperature, load forecast, EV state of charge, and
other parameters. The reward function includes the customer’s
EV range anxiety cost, representing the inconvenience cost due
to delaying charging to utilize lower tariff hours. The authors
model three different types of range anxiety (RA) cost as a
function of the EV’s state of charge at departure time, of which
we select Type-1 RA for the comparative analysis.

(3) CIBECS in [23]: The consumer input based EV charge
scheduling (CIBECS) [23] for a residential home can be
achieved by following Algorithm 1 with one modification of
making the scheduled charging free of estimated available
power L from Line 7 as:

PS
n+I(τ) = min{PS

max, ER}.

Table III shows the cost comparison among the different
charging methods for XFR-4 for two representative years,
the 15th and 30th years. The customer cost represents the
electricity cost, and the utility cost represents the XFR loss of
life, fuse-blowing costs, and customer incentive (if any). The
proposed charging method estimates the maintenance savings
with respect to the utility cost of the uncoordinated charging
method. We select the incentive coefficient κ = 1 for the
30th year, which correspond to 3.33% ($524) discount on the
customers’ EV charging bill. The Uncoordinated charging [29]
and CIBECS [23] prioritize EV charging, hence resulting in
high utility costs (due to frequent fuse blows). On the contrary,
MARL in [27] and Rule-based method in [7] maintain strict
peak load constraints to minimize the utility cost. However,
they are susceptible to undercharged EVs, which is not a
desirable solution for customers. The Rule-based method in
[7] provides the customer with an incentive from its main-
tenance savings, which contributes to its utility cost. Our
proposed DSM method capitalizes low-price hours, accom-
modates customer preference, and maintains load flattening
simultaneously. As a result, the customer cost for the proposed
DSM technique is the least among all the methods, and the
utility cost is only marginally higher than the MARL in [27].
Lastly, as there are no fuse blow events and negligible utility
cost saving for the 15th year, the proposed DSM offers zero
incentive for that year.
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Fig. 2. Comparison between the proposed utility-driven DSM and uncoordinated EV charging in terms of hourly load for
XFR-4 for the first week of Year-1, Year-10, Year-20, and Year-30 (from left to right).

Table III: Yearly cost ($) for XFR-4 to customers and the
utility for different charging techniques.

Charging 15th Year Cost 30th Year Cost
Technique Cust. Utility Total Cust. Utility Total

Uncoordinated [29] 14562 123 14685 18023 3285 21308
Rule based [7] 12765 130 12895 15980 1869 17849

MARL [27] 12640 147 12787 16674 487 17161
CIBECS [23] 12290 216 12506 15339 3630 18969

Proposed DSM 12297 104 12401 15221 772 15993
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Fig. 3. Convergence of the DRL based maintenance policy
(with proposed DSM).

C. DRL based maintenance (USM)

Based on the comparative analysis for EV charging in
the previous section, we focus on the proposed utility-driven
charging technique to implement our DRL-based XFR replace-
ment policy. Fig. 3 shows that our method learns the optimal
policy within 3000 episodes. Table IV shows the computation
time for the proposed method. It takes 2.4 seconds for the
proposed EV charge scheduling by using an Intel® Core i7,
3.60 GHz, 16 GB RAM computer. The DRL algorithm needs
180 minutes to perform the 3000 episodes for convergence.
Notably, the computational time for each decision is 0.01
second, negligible compared to maintenance policy-making
steps (i.e., 1 month).

We compare our method with an idle policy, two rule-based
methods from [32] and [33], and the popular statistical Markov
Chain Monte Carlo (MCMC) [34] method.

(1) Idle policy: In this policy, the utility waits till the failure
of a XFR for replacement. The utility would replace the XFR

Table IV: Computational details for the experiments.
Hardware Software Task Computation time

Intel® Core i7 Python 3.7 EV Charge Scheduling 2.4 sec
3.60GHz Pytorch 1.8.1 DRL Convergence 180 min

16 GB RAM DRL Decision 0.1 sec

with double capacity if it endured more than five fuse blowing
events during the previous twelve months; otherwise, replace
it with the same capacity one.

(2) Ranking-based method [32]: Vasquez et al. [32] pro-
poses a ranking-based approach for XFR replacement. The
ranking score is calculated based on the XFR’s probability of
failure (from Eq. (4)) and its failure replacement cost ξxt (from
Table II). The ranking score of the xth XFR for the tth time
step is given by

Rx
t = Px

t × ξxt .

The highest-ranked XFR is replaced if the ranking score
exceeds the threshold set through trial and error. The new
XFR will be double-sized if the peak load is more than 1.5
times, otherwise same sized as the replaced one. Notably, this
method portrays aggressive XFR replacement, hence functions
opposite the above-mentioned idle policy.

(3) Risk score based method [33]: The following equation
is used in [33] to estimate the risk score for a XFR,

ℜ = Cond× 60 + age (in yr)

60
× Peak Load

Capacity
× EF.

Since all the XFRs serve under similar environmental factor
(EF ) and have similar characteristic conditions (Cond), we
remove these two parameters when estimating the risk factor
ℜ for each XFR. At the end of the month, the XFR with the
highest risk factor ℜ is replaced. If the risk factor value is
lower than a threshold, no replacement occurs. We found 1.85
as the optimal threshold in our experiments. If the XFR’s peak
load is more than 150% of its capacity, it is replaced with a
double-sized one; otherwise, with a same-sized XFR.

(4) MCMC [34]: Markov Chain Monte Carlo (MCMC)
simulation is a popular tabular RL technique for problems with
discrete and tractable state and action spaces. We discretize the
state space (as opposed to the continuous-valued DRL states)
as the MCMC utilizes a tabular method to learn the value
function for the state. The granularity of the discretization is
a trade-off between the optimization results and computation
time. We discretized each input variable in m = 10 equally
spaced states for a manageable computation burden, which
requires the convergence for mr = 1012 states, where r = 12
is the number of input variables (i.e., age and load of the 3
oldest and the 3 most loaded XFRs in the network).

D. Comparative Analysis

We implement the above mentioned maintenance policies
for both uncoordinated and the proposed utility-driven charg-
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Table V: Cumulative EV Charging and maintenance cost for all 232 XFRs over a 30-year timeline.
DSM Uncoordinated Charging Proposed DSM
USM Idle Ranking Risk Score MCMC Proposed Idle Ranking Risk Score MCMC Proposed

Policy based [32] based [33] [34] DRL Policy based [32] based [33] [34] DRL
Fuse Blow 237 125 22 45 16 0 0 0 0 0

XFR Failure 130 102 127 100 95 125 99 125 98 89
XFR Replacement 0 28 10 26 23 0 26 0 25 22

XFR Upgrade 0 2 3 3 3 0 0 0 0 0
Outage (hr) 4534 3555 3399 2670 2376 3003 2383 3005 2352 2136

Outage (kWh) 36.49 28.10 22.34 20.67 17.04 18.03 14.36 18.03 14.15 13.29
Cost $ 571,738 494,273 472,728 427,851 386,356 398,772 356,212 399,159 349,797 317,308

ing for an ablation study. Table V shows the cumulative
maintenance cost to the utility for different EV charging and
maintenance policy combinations for the distribution feeder
over a 30-year timeline. Table VI further elaborates the results
in terms of the following metrices.

1) Fuse Blow: As the load (EV charging) grows, fuse
blow events occur more frequently during the late part of the
simulation timeline. Without any planned capacity upgrade (as
in Idle policy), it accumulates 237 such events in the 30-year
timeline. The Ranking method [32] ignores the peak load in its
decision criteria and performs worse than the other methods.
The Risk score method [33] puts significance on peak load and
reduces fuse blow events through XFR upgrades. The proposed
DRL method learns the correlation and minimizes the fuse
blows; however, the MCMC method lags due to discretized
state space. The proposed DSM approach flattens the load to
such an extent that none of the policies experience any fuse-
blowing events.

2) XFR Failure: The XFR failure events can not be nullified
as it follows the Weibull distribution in (4). However, the pro-
posed DRL method minimizes XFR failure by approximately
30% followed by the MCMC method. The Ranking method
performs well as it prioritizes XFR age in its maintenance
decision. On the contrary, the Risk score method underestimate
XFR age in risk calculation to reduce XFR failure.

3) Planned Maintenance: The DRL method implements 23
replacements and 3 upgrades in the Uncoordinated charging
case. In the proposed DSM case, the proposed DRL requires
22 replacements and no upgrades. Its optimal selections yield
minimum XFR failure, outage, and cost compared to the
benchmark methods.

4) Monetary Cost: Cumulative cost includes the planned
and unplanned maintenance costs, which is the actual objective
of the utility company to minimize. Our proposed DRL,
accompanied by the proposed DSM, is the best performing
combination.

E. Key Insights

• In MCMC-based RL, discretized states for feasible train-
ing time result in significant performance degradation
with respect to the DRL method.

• The rule-based methods are too simple to set the appro-
priate balance between XFR age and load in decision-
making. Hence, they either suffer many fuse blows
(Ranking [32]) or XFR failures (Risk score [33]).

• The DRL policy learns the optimal weight of age and
peak load of the candidate XFRs for selecting the most
appropriate XFR for maintenance, which is evident by

the reduction in XFR failure, fuse blows, and subsequent
outages. As there are many aged XFRs in the network
initially, our policy aggressively replaces the aged and
overloaded XFRs with newer ones. These proactive ac-
tions reduce the number of XFR failures and fuse blows.

• The proposed EV charging technique substantially boosts
the DRL-based policy to minimize the long-term main-
tenance cost.

V. CONCLUSION

This work offers insight and solutions for maintaining the
distribution system to accommodate EV charging load. It
demonstrates a complete EV adoption strategy for the utility
company considering long-term planning for both demand side
management (DSM) and utility side management (USM). For
DSM, the proposed utility-driven EV charge scheduling based
on customer preferences offers a reasonable balance between
peak load reduction and customer satisfaction. Consequently,
the utility company faces less maintenance costs due to peak
load reduction. The utility compensates the customers using its
profit from reduced maintenance costs to keep them interested
in participating in the scheduled EV charging program. For
USM, our DRL-based XFR maintenance policy chooses the
best XFR for replacement or upgrade. Experiments show that
the combination of the proposed DSM and USM methods
outperforms the existing optimization techniques by a wide
margin in terms of long-term maintenance cost and power
outage.
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