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Sequential Joint Detection and Estimation:

Optimum Tests and Applications
Yasin Yılmaz, Shang Li, and Xiaodong Wang

Abstract

We treat the statistical inference problems in which one needs to detect the correct signal model

among multiple hypotheses and estimate a parameter simultaneously using as small number of samples

as possible. Conventional methods treat the detection and estimation subproblems separately, ignoring the

intrinsic coupling between them. However, a joint detection and estimation problem should be solved to

maximize the overall performance. We address the sample size concern through a sequential and Bayesian

setup. Specifically, we seek the optimum triplet of stopping time, detector, and estimator(s) that minimizes

the number of samples subject to a constraint on the combined detection and estimation cost. A general

framework for optimum sequential joint detection and estimation is developed. The resulting optimum

detector and estimator(s) are strongly coupled with each other, proving that the separate treatment is

strictly sub-optimum. The theoretical results derived for a quite general model are then applied to several

problems with linear quadratic Gaussian (LQG) models, including dynamic spectrum access in cognitive

radio, and state estimation in smart grid with topological uncertainty. Numerical results corroborate the

superior overall detection and estimation performance of the proposed schemes over the conventional

methods that handle the subproblems separately.

Index Terms

joint detection and estimation, sequential methods, stopping time, dynamic spectrum access, state

estimation with topological uncertainty
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I. INTRODUCTION

Detection and estimation problems appear simultaneously in a wide range of fields, such as wireless

communications, power systems, image processing, genetics, and finance. For instance, to achieve effec-

tive and reliable dynamic spectrum access in a cognitive radio system, a secondary user needs to detect

primary user transmissions, and if detected to estimate the cross channels that may cause interference

to primary users [1]. In power grid monitoring, it is essential to detect the correct topological model,

and at the same time estimate the system state [2]. Some other important examples are detecting and

estimating objects from images [3], target detection and parameter estimation in radar [4], and detection

and estimation of periodicities in DNA sequences [5].

In all these applications, detection and estimation problems are intrinsically coupled, and are both

of primary importance. Hence, a jointly optimum method, that maximizes the overall performance, is

needed. Classical approaches either treat the two subproblems separately with the corresponding optimum

solutions, or solve them together, as a composite hypothesis testing problem, using the generalized

likelihood ratio test (GLRT) or its alternatives such as the Rao test, the Wald test, the Durbin test,

and the Terrell test [6]. However, such approaches do not yield the overall optimum solution [8], [9]. In

the former approach, for example, the likelihood ratio test is performed by averaging over the unknown

parameters to solve the detection subproblem optimally; and then based on the detection decision, the

Bayesian estimators are used to solve the estimation subproblem. On the other hand, in GLRT, the

maximum likelihood (ML) estimates of all unknown parameters are computed, and then using these

estimates, the likelihood ratio test is performed as in a simple hypothesis testing problem. In GLRT,

the primary emphasis is on the detection performance and the estimation performance is of secondary

importance. GLRT is very popular due to its simplicity and asymptotic optimality [7]. However, even

its detection performance is not optimal in the Neyman-Pearson sense [10], and neither is the overall

performance under mixed Bayesian/Neyman-Pearson [11] and pure Bayesian [8] setups.

The first systematic theory on joint detection and estimation appeared in [8]. This initial work, in

a Bayesian framework, derives optimum joint detector and estimator structures for different levels of

coupling between the two subproblems. [12] extends the results of [8] on binary hypothesis testing to

the multi-hypothesis case. In [13], different from [8], [12], the case with unknown parameters under the

null hypothesis is considered. [13] does not present an optimum joint detector and estimator, but shows

that, even in the classical separate treatment of the two subproblems, likelihood ratio test implicitly uses

the posterior distributions of unknown parameters, which characterize the Bayesian estimation. [14] deals
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with joint multi-hypothesis testing and non-Bayesian estimation considering a finite discrete parameter set

and the minimax approach. [11], [15]–[17] study Bayesian estimation under different Neyman-Pearson-

like formulations, and derive the corresponding optimum joint detection and estimation schemes. [5],

in a minimax sense, extends the analysis in [15] to the general case with unknown parameters in both

hypotheses. [2] handles the joint multi-hypothesis testing and state estimation problem for linear models

with Gaussian noise. It finds the joint posterior distribution of the hypotheses and the system states, which

can be used to identify the optimum joint detector and estimator for a specific performance criterion in

a unified Bayesian approach.

Most of the today’s engineering applications are subject to resource (e.g., time, energy, bandwidth)

constraints. For that reason, it is essential to minimize the number of observations used to perform a

task (e.g., detection, estimation) due to the cost of taking a new observation, and also latency constraints.

Sequential statistical methods are designed to minimize the average number of observations for a given

accuracy level. They are equipped with a stopping rule to achieve optimal stopping, unlike fixed-sample-

size methods. Specifically, we cannot stop taking samples too early due to the performance constraints,

and do not want to stop too late to save critical resources, such as time and energy. Optimal stopping

theory handles this trade-off through sequential methods. For more information on sequential methods

we refer to the original work [18] by Wald, and a more recent book [19]. The majority of existing works

on joint detection and estimation consider only the fixed-sample-size problem. Although [13] discusses

the case where observations are taken sequentially, it does not consider optimal stopping, limiting the

scope of the work to the iterative computation of sufficient statistics. The only work that treats the joint

detection and estimation problem in a “real” sequential manner is [9]. It provides the exact optimum

triplet of stopping time, detector, and estimator for a linear scalar observation model with Gaussian

noise, where there is an unknown parameter only under the alternative hypothesis.

In this paper, we solve the optimum sequential joint detection and estimation problem under the most

general setup, namely for a general non-linear vector signal model with arbitrary noise distribution and

unknown parameters under multiple hypotheses. We also do not assume a specific estimation cost function.

The remainder of the paper is organized as follows. In Section II, we derive the optimum procedure

for sequential joint detection and estimation under a general setup. We then apply the theory developed

in Section II to a general linear quadratic Gaussian model in Section III, dynamic spectrum access in

cognitive radio networks in Section IV, and state estimation in smart grid with topological uncertainty

in Section V. Finally, concluding remarks are given in Section VI.
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II. OPTIMUM SEQUENTIAL JOINT DETECTION AND ESTIMATION

A. Problem Formulation

Consider a general model

yt = f(x,Ht) +wt, t = 1, 2, . . . , (1)

where yt ∈ RM is the measurement vector taken at time t; x ∈ RN is the unknown vector of parameters

that we want to estimate; Ht is the observation matrix that relates x to yt; f is a (possibly nonlinear)

function of x and Ht; and wt ∈ RM is the noise vector.

In addition to estimation, we would like to detect the true hypothesis (Hi, i = 0, 1, . . . , I) in a multiple

hypothesis testing setup, in which x is distributed according to a specific probability distribution under

each hypothesis, i.e.,

Hi : x ∼ πi, i = 0, 1, . . . , I. (2)

We assume that the two processes {wt}, {Ht} are independent and independent from the random

vector x. The function f , which is possibly nonlinear, represents the dependencies between yt and Ht,

and yt and x. For generality we do not specify f , and also the probability distributions for x, Ht, wt.

We also assume that {yt,Ht} are observed at each time t, and we know the probability distributions

{πi}, the probability density function p({wt}), and the link function f . Note that we allow for correlated

noise wt and correlated Ht, both temporally and spatially, as well as correlated x. Note also that

observable random Ht is a more general model than deterministic and known Ht. In (2), there is no

assumption on Ht; hence, different hypotheses may lead to quite different Ht observations. The linear

model yt = Htx+wt is commonly used in many applications. For example, in system identification, x

is the unknown system coefficients, Ht is the (random) input applied to the system, and yt is the output

at time t. Another example is the estimation of wireless channel coefficients, in which x is the unknown

channel coefficients, Ht is the transmitted (random) pilot signal, yt is the received signal, and wt is the

additive channel noise.

We denote with Ft and {Ft} the sigma-algebra and filtration generated by the history of the observation

matrices {H1, . . . ,Ht}, respectively. Similarly, Gt and {Gt} denote the sigma-algebra and filtration

generated by {(y1,H1), . . . , (yt,Ht)}. Since we want to both detect and estimate, similar to [8], [11],

[12], we use a combined cost function

C (T, dT , {x̂iT }) =

I∑
i=0

aiPi(dT 6= i|FT ) +

I∑
i=0

I∑
j=0

bijEi

[
J(x̂jT ,x)1{dT=j}|FT

]
(3)
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where T is the stopping time, dT is the detection function, x̂jT is the estimator when we decide on Hj ,

J(x̂T ,x) is a general estimation cost function, e.g., ‖x̂T −x‖2, Pi and Ei are the probability measure and

expectation under Hi, and {ai, bij}i,j=0,...,I are some constants. The estimation cost function J(x̂t,x)

is assumed known, but not specified for generality. The indicator function 1{A} takes the value 1 if the

event A is true, or 0 otherwise. In (3), the first summation is the detection cost, and the remaining ones

are the estimation cost. Writing (3) in the following alternative form

C (T, dT , {x̂iT }) =

I∑
i=0

Ei

biiJ(x̂iT ,x)1{dT=i} +

ai +

I∑
j=0,j 6=i

bijJ(x̂jT ,x)1{dT=j}

1{dT 6=i}

∣∣∣FT

(4)

it is clear that our cost function corresponds to the Bayes risk given {H1, . . . ,Ht}.

The combined cost in (3) can also be seen as a scalarization of multiple detection and estimation costs,

which gives a Pareto optimal solution [20]. It is natural to combine the detection and estimation costs

since they both penalize the wrong decision event. Specifically, as can be seen in the curly brackets in

(4), the wrong decision event is penalized with the constant ai by the detection cost; and with a cost that

depends on the estimator x̂jT , the real parameter values x, and the decision dT by the estimation cost.

Hence, as in [8, Section IV], [11, Section III], and [12, Section II], combining the detection and estimation

costs we define a Bayesian cost for the overall problem that involves detection and estimation. Note that

the detection and estimation costs have different ranges: detection error probabilities are restricted to

[0, 1], whereas the estimation cost (e.g., mean squared error) could be any nonnegative real number. An

upper bound η for the estimation cost, which can be estimated through training data or determined using

the domain knowledge about the unknown parameter vector x, can be used, as in [21, eq. (22)], to

normalize the estimation cost to [0, 1], i.e., bij = cij
η , ∀i, j. Then, the choice of {ai, cij} strikes a balance

between the detection and estimation costs. If it is desired to satisfy a given set of separate constraints

on the detection and estimation costs, a feasible point can be searched on a grid composed of a discrete

set of {ai, cij} values, similar to the numerical computation of Lagrange multipliers, e.g., [22, Algorithm

3], [23, Algorithm 4].

In a sequential setup, in general, the expected stopping time (i.e., the average number of samples) is

minimized subject to a constraint on the cost function. In the presence of an ancillary statistic, such as FT ,

that does not depend on the unknown parameters x, conditioning is known to have significant advantages

[24], hence the cost function in (3) is conditioned on FT . Intuitively, there is no need to average the

performance measure C (T, dT , {x̂iT }) over FT , which is an observed statistic. This is known as the

conditionality principle [25]. Conditioning on FT also frees our formulation from assuming statistical
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descriptions (e.g., probability distribution, independence, stationarity) on the observation matrices {Ht}.

From an operational point of view, we start with the following stopping rule: stop the first time the

target accuracy level α is achieved, i.e., the inequality C (T, dT , {x̂iT }) ≤ α is satisfied. This operational

problem statement gives us the problem formulation

min
T,dT ,{x̂

i

T }
T subject to C (T, dT , {x̂iT }) ≤ α, (5)

which in turn defines an {Ft}-adapted stopping time T . This is because T is solely determined by

C (T, dT , {x̂iT }), which, as seen in (3), averages over {yt} and thus is a function of only {Ht}. The

stopping rule considered here is a natural extension of the one commonly used in sequential estimation

problems, e.g., [28], [30], and is optimum for {Ft}-adapted stopping times, as shown in (5). Note that

the solution sought in (5) is optimum for each realization of {Ht}, and not on average with respect to

this sequence.

Recall that Gt and {Gt} denote the sigma-algebra and filtration generated by the complete history

of observations {(y1,H1), . . . , (yt,Ht)}, respectively, thus Ft ⊂ Gt. In the pure detection and pure

estimation problems, it is well known that serious analytical complications arise if we consider a general

{Gt}-adapted stopping time, that depends on the complete history of observations. Specifically, in the

pure estimation problem, finding the optimum sequential estimator that attains the sequential Cramer-

Rao lower bound (CRLB) is not a tractable problem if T is adapted to the complete observation history

{Gt} [26], [27]. Similarly, in the pure detection problem with an {Gt}-adapted stopping time, we end up

with a two-dimensional optimal stopping problem which is impossible to solve (analytically) since the

thresholds for the running likelihood ratio depend on the sequence {Ht}. Alternatively, in [9], [28]–[30],

T is restricted to {Ft}-adapted stopping times, which facilitates obtaining an optimal solution. In this

paper, we are interested in {Ft}-adapted stopping times as well. Hence, E[T |FT ] = T and we aim to

solve the optimization problem in (5).

B. Optimum Solution

Optimum Estimators: Let us begin our analysis with the optimum estimators.

Lemma 1. For the problem in (5), the optimum estimator x̂iT when Hi is decided is given by

x̂iT = arg min
x̂

Ēi [J(x̂,x)|GT ] , i = 0, 1, . . . , I, (6)

DRAFT June 12, 2016



7

where Ēi is the expectation under the probability distribution

p̄iT (x|GT ) ,

∑I
j=0 bjiL

ji
T pj(x|GT )∑I

j=0 bjiL
ji
T

, (7)

(
e.g., p̄iT (x|GT ) =

b0ip0(x|GT ) + b1iL
10
T p1(x|GT )

b0i + b1iL10
T

for I = 2
)
, (8)

pj(x|GT ) is the posterior distribution under Hj , and

LjiT ,
pj({yt}Tt=1|FT )

pi({yt}Tt=1|FT )
(9)

is a likelihood ratio. Specifically, the minimum mean-squared error (MMSE) estimator, for which

J(x̂,x) = ‖x̂− x‖2, is given by

x̂iT =

∑I
j=0 bjiL

ji
T Ej [x|GT ]∑I

j=0 bjiL
ji
T

(10)

(
e.g., x̂iT =

b0iE0[x|GT ] + b1iL
10
T E1[x|GT ]

b0i + b1iL10
T

for I = 2
)
. (11)

Proof: See Appendix A.

We see that the MMSE estimator in (10) is the weighted average of the MMSE estimators under

{Hi}. Note that typically the likelihood ratios {LjiT }j 6=i is smaller than 1 under Hi, that is, x̂iT is close

to Ei[x|GT ].

With the optimum estimators given in (6) the cost function in (3) becomes

C (T, dT , {x̂iT }) =

I∑
i=0

aiPi(dT 6= i|FT ) +

I∑
i=0

I∑
j=0

bijEi

[
Ei

[
J(x̂jT ,x)|GT

]
︸ ︷︷ ︸

∆ij
T

1{dT=j}
∣∣FT] (12)

where ∆ij
T is the posterior expected estimation cost when Hj is decided under Hi.

Specifically, for the MMSE estimator

∆ij
T = Ei

[
‖x− x̂jT ‖

2|GT
]

= Ei

[
‖x− Ei[x|GT ] + Ei[x|GT ]− x̂jT ‖

2|GT
]

= Ei
[
‖x− Ei[x|GT ]‖2|GT

]
+ Ei

[
‖Ei[x|GT ]− x̂jT ‖

2|GT
]
− 2Ei

[
(x− Ei[x|GT ])′(Ei[x|GT ]− x̂jT )|GT

]
= Tr (Covi[x|GT ]) + ‖Ei[x|GT ]− x̂jT ‖

2, (13)

where Tr(·) is the trace of a matrix. For binary hypothesis testing, where I = 2,

∆ij
T = Tr (Covi[x|GT ]) + δijT ‖E0[x|GT ]− E1[x|GT ]‖2, (14)

δ0j
T =

(
b1jL

10
T

b0j + b1jL10
T

)2

and δ1j
T =

(
b0j

b0j + b1jL10
T

)2

. (15)

We used the fact that Ei[x|GT ] and x̂jT are GT -measurable, i.e., deterministic given GT , to write (13),

and the MMSE estimator in (10) to write (14). According to (13), ∆ij
T is the MMSE under Hi plus the
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distance between our estimator x̂jT and the optimum estimator under Hi. The latter is the penalty we pay

for not knowing the true hypothesis.

Optimum Detector: We now search for the optimum decision function dT that minimizes (12) for any

stopping time T .

Lemma 2. The optimum detector dT for the problem in (5) is given by

dT = arg min
i

I∑
j=0,j 6=i

(
aj + bji∆

ji
T − bjj∆

jj
T

)
pj({yt}Tt=1|FT ) (16)

(
e.g., dT =

 1 if LT
(
a1 + b10∆10

T − b11∆11
T

)
≥ a0 + b01∆01

T − b00∆00
T

0 otherwise
, for I = 2

)
, (17)

where LT =
p1({y

t
}Tt=1|FT )

p0({y
t
}Tt=1|FT )

is the likelihood ratio, and ∆ij
T = Ei

[
J(x̂jT ,x)|GT

]
is the posterior expected

estimation cost.

Proof: See Appendix B.

The optimum decision function dt is coupled with the estimators {x̂it} through the posterior estimation

costs {∆ij
t } due to our joint formulation [cf. (3)]. Specifically, while making a decision, it takes into

account, in a very intuitive way, all possible estimation costs that may result from the true hypothesis and

its decision. For example, under Hi small ∆ii
T , which is the estimation cost for deciding on Hi, facilitates

choosing Hi. On the other hand, the reverse is true for ∆ij
T , which corresponds to the wrong decision

cases. That is, large ∆ij
T favors dT = i. In the detection-only problem with bij = 0, ∀i, j, the coupling

disappears, and dT boils down to the multi-hypothesis version of the well-known likelihood ratio test

(i.e., maximum likelihood test or maximum a posteriori test if ai represents the prior for Hi).

Complete Solution: We can now identify the optimum stopping time T, and as a result the complete

solution (T, dT, x̂T) to the optimization problem in (5).

Theorem 1. The optimum sequential joint detector and estimator (T, dT, x̂T) that solves the problem in
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(5) is given by

T = min{t ∈ N : Ct ≤ α} (18)

dT = arg min
i

I∑
j=0,j 6=i

(
aj + bji∆

ji
T − bjj∆

jj
T

)
pj({yt}Tt=1|FT) (19)

x̂T = arg min
x̂

ĒdT
[J(x̂,x)|GT] (20)

(
e.g., x̂T =

∑I
j=0 bjdT

LjdT

T Ej [x|GT]∑I
j=0 bjdT

LjdT

T

for J(x̂,x) = ‖x̂− x‖2
)

(21)

where

Ct ,
I∑
i=0

Ei

[
bii∆

ii
t 1{dt=i} +

I∑
j=0,j 6=i

(
ai + bij∆

ij
t

)
1{dt=j}

∣∣Ft] (22)

is the optimal cost at time t. The probability distribution p̄it for the expectation Ēi, and the likelihood

ratio Ljit are given in (7) and (9), respectively. For the posterior estimation cost ∆ij
t see (12)–(15).

Proof: In Lemma 1, we showed that {x̂iT} minimize the cost function in (3) for any stopping time

T and decision function dT , i.e., C (T, dT , {x̂iT}) ≤ C (T, dT , {x̂iT }). Later in Lemma 2, we showed

that C (T, dT , {x̂iT}) ≤ C (T, dT , {x̂iT}). Hence, from (5), the optimum stopping time is the first time

Ct , C (t, dt, {x̂iT}) achieves the target accuracy level α, as shown in (18). Using the optimum decision

function dt at each time t, from (12), we write the optimal cost Ct as in (22).

According to Theorem 1, the optimum scheme, at each time t, computes Ct, given by (22), and then

compares it to α. When Ct ≤ α, it stops and makes a decision using (19). Finally, it estimates x via x̂iT ,

given by (20), if Hi is decided.

Considering the mean-squared error (MSE) as the estimation cost function a pseudo-code for this

scheme is given in Algorithm 1. Since the results in Theorem 1 are universal in the sense that they

hold for all probability distributions and system models, in Algorithm 1 we provide a general procedure

that requires computation of some statistics (cf. lines 4,6,8,10). In specific cases, such statistics may be

easily computed. However, in many cases they cannot be written in closed forms, hence intense online

computations may be required to estimate them.

Remarks:

1) In the sequential detection problem, where only the binary hypothesis testing in (2) is of interest, the

classical approach of the well-known sequential probability ratio test (SPRT) [18] fails to provide a

feasible optimum solution due to the second observed sequence {Ht}. More specifically, observing
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Algorithm 1 The procedure for J(x̂,x) = ‖x̂− x‖2

1: Initialization: t← 0, C ← ∞
2: while C > α do
3: t← t+ 1

4: pi = pi({ys}ts=1|Ft), i = 0, 1, . . . , I

5: Lji =
pj
pi
, i, j = 0, 1, . . . , I

6: ei = Ei[x|Gt], i = 0, 1, . . . , I

7: x̂i =
∑I
j=0 bjiL

jiei∑I
j=0 bjiLji

, i = 0, 1, . . . , I

8: ∆ij = Tr(Covi[x|Gt]) + ‖x̂i − ei‖2, i, j = 0, 1, . . . , I

9: d = arg mini

∑I
j=0,j 6=i

(
aj + bji∆

ji − bjj∆jj
)
pj

10: Cost: C =
∑I

i=0 Ei

[
bii∆

ii
1{d=i} +

∑I
j=0,j 6=i

(
ai + bij∆

ij
)
1{d=j}|Ft

]
11: end while
12: Stop: T = t

13: Detection & Estimation: Declare dT = d and x̂T = x̂d

the pair {(yt,Ht)} we end up with a two-dimensional optimal stopping problem which is impossible

to solve analytically since the thresholds for the running likelihood ratio will depend on the sequence

{Ht}. On the other hand, for bij = 0, i, j = 0, 1, i.e., in the pure detection problem, the decision

function in Theorem 1 boils down to the well-known likelihood ratio test. Using the stopping time

given by (18) we obtain a feasible sequential detector. Unlike SPRT, the above sequential detector

follows a two-step procedure: it first determines the stopping time using a single threshold, and

then decides using another threshold. Whereas, in SPRT, two thresholds are used in a single-step

procedure to both stop and decide.

2) The optimum scheme given by Theorem 1 is considerably more general and different than the one

presented in [9]. Firstly, the estimator here is the optimum estimator under a weighted average

of the probability distributions under {Hi} since there are unknown parameter vectors under all

hypotheses. The weights for the estimator [see (7)] depend on the likelihood ratio Ljit , hence the

detector. That is, the optimum estimator for the general problem introduced in (1)–(5) is coupled

with the optimum detector. Whereas, no such coupling exists for the estimator in [9], which is the

optimum estimator under H1 as the unknown parameter appears only under H1 (x = 0 under H0).

Secondly, the optimum detector in (19) is coupled with the estimator through the posterior estimation

cost ∆ji
T under the combinations of the true and selected hypotheses. On the other hand, the optimum

detector in [9] uses the estimator itself, which is a special case of the detector in (19). Specifically,

with b01 = b00 = 0 and b10 = b11, the optimum estimator is given by x̂T = E1[x|GT] when H1 is

decided (x = 0 under H0, hence x̂T = 0 when H0 is decided), and accordingly ∆11
T = Var1[x|GT],

∆10
T = Var1[x|GT] + x̂2

T. Substituting these terms in (19) we obtain the detector in [9, Lemma
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2]. Moreover, the scheme presented in Theorem 1 is optimum for a general non-linear model with

arbitrary cost function J(x̂,x), noise distribution, number of parameters, and number of hypotheses;

and it covers the optimum scheme in [9] as a special case.

In [9], a monotonicity feature that facilitates the computation of the optimum stopping time is

shown after a quite technical proof. Although such a monotonicity feature cannot be shown here

due to the generic model we use, the optimum stopping time can still be found through numerical

procedures. In the special case studied in [9], the monotonicity also guarantees a finite stopping time

if P
(∑∞

t=0 h
2
t =∞

)
= 1. Here, in general, we need Ct → 0 almost surely as t→∞, which, from

(22), implies
∑I

i=0 Pi(dt 6= i|Ft)→ 0 and
∑I

i=0 Ei[∆
ii
t |Ft]→ 0 almost surely. In the independent

LQG case (analyzed in Section III-A), this boils down to the condition P
(∑∞

t=0 h
2
t,n =∞

)
= 1, ∀n,

similar to [9].

3) Since our Bayesian cost function, given by (3), is similar to the ones considered in [8], [12] that

study fixed-sample-size joint detection and estimation, the structures of the optimum detector and

estimator, given by Theorem 1, at the stopping time resemble those derived in [8], [12]. Specifically,

the optimum detector presented in [8, Eq. (4.1)] is the counterpart of the specialized version of

(19) for binary hypothesis testing; and the optimum estimator given in [12, Eq. (18)] coincides with

(21), which is the special case of (20) with quadratic estimation cost. The optimum detector and

estimator in Theorem 1 hold for a much more general problem formulation than the ones in [8],

[12]. Moreover, solving a sequential joint detection and estimation problem we also provide the

optimum stopping time structure given by (18) and (22).

4) If the estimation cost is independent of detection decision, i.e., bij = bi,∀i, j, then the optimum

estimators {x̂iT } in (6) are all given by

x̂T = arg min
x̂

Ē[J(x̂,x)|GT ], (23)

where Ē is the expectation under the distribution

p̄t(x|Gt) =

∑I
j=0 bjpj({ys}ts=1|Ft)pj(x|Gt)∑I

j=0 bjpj({ys}ts=1|Ft)
. (24)

In particular, the MMSE estimators in (10) become

x̂T =

∑I
j=0 bjpj({yt}Tt=1|FT )Ej [x|GT ]∑I

j=0 bjpj({yt}Tt=1|FT )
, (25)

regardless of the detection decision. Note that the optimum estimator is still coupled with the

detector through the likelihood pj({yt}Tt=1|FT ). On the other hand, the optimum detector becomes

the maximum likelihood test (likelihood ratio test for the binary case), hence independent of the
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estimator, since ∆i0
T = ∆i1

T = Ei [J(x̂T ,x)|GT ] = ∆i
T , as well as bij = bi.

C. Separated Detection and Estimation Costs

In the combined cost function, given by (3), if we penalize the wrong decisions only with the detection

costs, i.e., bij = 0, i 6= j, we get the following simplified alternative cost function

C (T, dT , {x̂iT }) =

I∑
i=0

aiPi(dT 6= i|FT ) + biEi
[
J(x̂iT ,x)1{dT=i}|FT

]
. (26)

In this alternative form, detection and estimation costs are used to penalize separate cases. Specifically,

under Hi, the wrong decision case is penalized with the constant detection cost ai, and the correct decision

case is penalized with the estimation cost biEi[J(x̂iT ,x)|FT ]. Since ai is the only cost to penalize the

wrong decision case, it is typically assigned a larger number here than in (3).

The optimum scheme is obtained by substituting bij = 0, i 6= j, in Theorem 1.

Corollary 1. Considering the combined cost function with separated detection and estimation costs,

given by (26), the optimum sequential joint detector and estimator (T, dT, x̂T) for the problem in (5) is

given by

T = min{t ∈ N : Ct ≤ α} (27)

dT = arg max
i

(ai − bi∆i
T) pi

(
{yt}Tt=1|FT

)
(28)

x̂T = arg min
x̂

EdT
[J(x̂,x)|GT] (29)(

e.g., x̂T = EdT
[x|GT] for J(x̂,x) = ‖x̂− x‖2

)
, (30)

where

Ct =

I∑
i=0

Ei
[
ai1{dt 6=i} + bi∆

i
t1{dt=i}|Ft

]
, (31)

is the optimal cost at time t.

The optimum stopping time, given in (27), has the same structure as in Theorem 1, with a simplified

optimal cost, given in (31).

Since here we are not interested in minimizing the estimation costs in case of wrong decisions,

when we decide Hi, we use the optimum estimator under Hi [cf. (29)]. Recall that in Theorem 1,

the optimum estimator is a mixture of the optimum estimators under all hypotheses. Consequently, the

posterior expected estimation cost in the correct decision case achieves the minimum, i.e.,

∆i
T = min

x̂
Ei[J(x̂,x)|GT]. (32)
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For the MSE criterion, with J(x̂,x) = ‖x̂− x‖2,

∆i
T = Tr(Covi[x|GT]) = MMSET,i. (33)

On the other hand, in the wrong decision case, which is not of interest here, the posterior estimation cost

∆ij
T , i 6= j, is higher than that in Theorem 1.

The optimum detector in (28) is biased towards the hypothesis with better estimation performance.

For instance, when the minimum posterior estimation cost ∆i
T (e.g., MMSE) under Hi is small, it is

easier to decide in favor of Hi. Conversely, large ∆i
T makes it difficult to choose Hi. Considering the

MSE estimation cost we can call it ML & MMSE detector since it uses the maximum likelihood (ML)

criterion, as in the likelihood ratio test, together with the MMSE criterion.

III. LINEAR QUADRATIC GAUSSIAN (LQG) MODEL

In this section, we consider the commonly used linear quadratic Gaussian (LQG) model under binary

hypothesis testing, as a special case. In particular, we have the quadratic (i.e., MSE) estimation cost

J(x̂,x) = ‖x̂− x‖2, (34)

and the linear system model

yt = Htx+wt, (35)

where Ht ∈ RM×N , wt is the white Gaussian noise with covariance σ2I , and x is Gaussian under both

hypotheses, i.e.,

H0 : x ∼ N (µ0,Σ0),

H1 : x ∼ N (µ1,Σ1).

(36)

We next derive the closed-form expressions for the sufficient statistics for the optimum scheme

presented in Theorem 1. Using (37)–(40), the optimum stopping time, detector, and estimator can be

computed as in (18), (19), and (21), respectively.

Proposition 1. Considering the LQG model in (34)–(36), the sufficient statistics for the optimum se-

quential joint detector and estimator, presented in Theorem 1, namely the conditional mean Ei[x|GT], the

posterior estimation cost ∆ij
T = Ei

[
‖x− x̂jT‖

2|GT
]

for deciding Hj under Hi, and the likelihood ratio

LT =
p1({y

t
}Tt=1|FT)

p0({y
t
}Tt=1|FT)

are written as

Ei[x|GT] =

(
UT

σ2
+ Σ−1

i

)−1 (vT
σ2

+ Σ−1
i µi

)
, (37)

∆ij
T = Tr

((
UT

σ2
+ Σ−1

i

)−1
)

+ δijT ‖E0[x|GT]− E1[x|GT]‖2, (38)
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LT =

√√√√√ |Σ0|
∣∣∣U T

σ2 + Σ−1
0

∣∣∣
|Σ1|

∣∣∣U T

σ2 + Σ−1
1

∣∣∣ exp

[
1

2

(∥∥∥vT
σ2

+ Σ−1
1 µ1

∥∥∥2(
U T
σ2

+Σ−1

1

)−1 −
∥∥∥vT
σ2

+ Σ−1
0 µ0

∥∥∥2(
U T
σ2

+Σ−1

0

)−1

+ ‖µ0‖2Σ−1

0

− ‖µ1‖2Σ−1

1

)]
, (39)

where ‖x‖2Σ , x′Σx,

UT ,
T∑
t=1

H ′tHt, vT ,
T∑
t=1

H ′tyt, (40)

δ0j
T =

(
b1jLT

b0j + b1jLT

)2

and δ1j
T =

(
b0j

b0j + b1jLT

)2

. (41)

Proof: See Appendix C.

Note that the sufficient statistics in (37)–(39) are functions of UT and vT only, which are given in

(40). As a result, from (22), given Ft, the expectation in the optimal cost Ct is conditional on U t as U t

is Ft-measurable, and hence the expectation is taken over vt. That is, Ct and the optimum stopping time

T, given by (22) and (18), respectively, are functions of U t only, which is in fact the Fisher information

matrix scaled by σ2.

Using (35) and (40) we can write

vt = U tx+

t∑
s=1

H ′sws, (42)

which is distributed as N (U tµi,U tΣiU t + σ2U t) under Hi. At each time t, for the corresponding U t,

we can estimate the optimal cost Ct through Monte Carlo simulations, and stop if Ct ≤ α according to

(18). Specifically, given U t we generate realizations of vt, compute the expression inside the expectation

in (22) using (37)–(39), and average them. Alternatively, C(U) can be computed in the same way through

offline Monte Carlo simulations on a grid of U . Then, at each time t, checking the C(U∗) value for

the average U∗ of 2
N2+N

2 neighboring points to U t (or simply the closest grid point U∗ to U t) we can

decide to stop if C(U∗) ≤ α or to continue if C(U∗) > α. Although U t =
∑t

s=1H
′
sHs has N2 entries,

due to symmetry the grid for offline simulations is N2+N
2 -dimensional.

A. Independent LQG Model

Here, we further assume in (35) that the entries of x are independent [i.e., Σ0 and Σ1 are diagonal

in (36)], and Ht is diagonal. Note that in this case M = N , and the entries of yt are independent. This

may be the case in a distributed system (e.g., wireless sensor network) in which each node (e.g., sensor)

takes noisy measurements of a local parameter, and there is a global event whose occurrence changes the
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probability distributions of local parameters. In such a setup, nodes collaborate through a fusion center to

jointly detect the global event and estimate the local parameters. To find the optimal scheme we assume

that all the observations collected at nodes are available to the fusion center.

Proposition 2. Considering the independent LQG model with diagonal Ht and Σi in (35) and (36),

respectively, the necessary and sufficient statistics for the optimum scheme in Theorem 1 are written as

Ei[x|GT] = [x̄1, . . . , x̄N ]′, x̄n =

vT,n
σ2 + µi,n

ρ2i,n
uT,n

σ2 + 1
ρ2i,n

, (43)

∆ij
T =

N∑
n=1

1
uT,n

σ2 + 1
ρ2i,n

+ δijT ‖E0[x|GT]− E1[x|GT]‖2, (44)

LT =

N∏
n=1

ρ0,n

ρ1,n

√√√√ uT,n

σ2 + 1
ρ20,n

uT,n

σ2 + 1
ρ21,n

exp

1

2


(
vT,n
σ2 + µ1,n

ρ21,n

)2

uT,n

σ2 + 1
ρ21,n

−

(
vT,n
σ2 + µ0,n

ρ20,n

)2

uT,n

σ2 + 1
ρ20,n

+
µ2

0,n

ρ2
0,n

−
µ2

1,n

ρ2
1,n


 ,
(45)

where δijT is given by (41), the subscript n denotes the n-th entry of the corresponding vector, ρ2
i,n and

ht,n are the n-th diagonal entries of Σi and Ht, respectively,

uT,n =

T∑
t=1

h2
t,n and vT,n =

T∑
t=1

ht,nyt,n. (46)

Proof: See Appendix D.

In this case, Ei[x|Gt], ∆ij
t , and Lt are functions of {ut,n, vt,n}Nn=1 only, hence the optimal cost Ct and

the optimum stopping time T, given in Theorem 1, are functions of {ut,n}Nn=1 only. At each time t, given

{ut,n}Nn=1, we can estimate Ct through Monte Carlo simulations using

vt,n ∼ N (µi,nut,n, ρ
2
i,nu

2
t,n + σ2ut,n), (47)

and (22), (43)–(45); and stop when the estimated Ct ≤ α. Alternatively, C({ut,n}) can be computed in

the same way through offline Monte Carlo simulations on a grid of {ut,n}Nn=1, as discussed in the general

LQG case. Note that the grid here is N -dimensional, which is much smaller than the N2+N
2 -dimensional

grid under the general LQG model. Consequently, the alternative scheme that performs offline simulations

is more viable here.

Remark (Computational complexity for Ct):

At each time t in the online computation of the optimal cost Ct (or on each grid point in the offline

computation), the complexity with respect to the number of hypothesis I scales (i) quadratically in the

general case given by (22), (ii) linearly in the special case of (31); and the complexity with respect to
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the number of unknown parameters N scales (i) quadratically for the LQG model given by Proposition

1, (ii) linearly for the independent LQG model given by Proposition 2. Since the computation of Ct is

the most expensive part of the proposed algorithm given in Algorithm 1, the computational complexity

given in Table I for the four possible models holds for the whole algorithm, as well as Ct. In all cases,

the computationally complexity linearly scales with the number of Monte Carlo iterations.

TABLE I

COMPUTATIONAL COMPLEXITY FOR THE PROPOSED ALGORITHM (SEE ALGORITHM 1) FOR THE FOUR COMBINATIONS OF

MODELS DISCUSSED IN THEOREM 1/COROLLARY 1 AND PROPOSITION 1/PROPOSITION 2

LQG (37)-(41) Independent LQG (43)-(46)

General cost (3) O(I2N2) O(I2N)

Separated cost (26) O(IN2) O(IN)

B. Numerical Results

In this subsection, we compare the proposed sequential joint detection and estimation (SJDE) scheme

with the conventional method, which invokes the sequential detector to decide between the two hypotheses

and then computes the corresponding MMSE estimate. The comparison is based on the LQG model

presented in (34)–(36). In particular, for the conventional method, the famous sequential probability ratio

test (SPRT) is used, followed by an MMSE estimator. SPRT computes the log-likelihood ratio, i.e., logLt,

given by (39), at each sampling instant and examines whether it falls in the prescribed interval, denoted

as [−B,A]. The stopping time and decision rule of SPRT are defined as

TSPRT , min {t ∈ N : logLt ∈ [−B,A]} , (48)

and dTSPRT =

 1 if logLTSPRT ≥ A,

0 if logLTSPRT ≤ −B,
(49)

where A and B are selected such that the constraints on the false alarm and misdetection probabilities

are satisfied. Upon the decision dTSPRT is made, the corresponding MMSE estimator follows. In fact,

SPRT is not feasible here since Lt, and thus A and B depend on {Ht}, which is random. However, for

comparison purposes we run the conventional scheme by selecting A and B regardless of any constraints.

The average stopping time and accuracy level are recorded after many runs.
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Fig. 1. Average stopping time vs. target accuracy level for SJDE and the combination of SPRT detector & MMSE estimator.

We consider the LQG model (35) with H1×3
t ∼ N (0, I), wt ∼ N (0, I), and the following hypotheses,

H0 : x3×1 ∼ N (1, 0.5I),

H1 : x3×1 ∼ N (−1, 0.5I),

(50)

where 1 is the vector of ones and I is the identity matrix. Ht and wt are independent and identically

distributed (iid) over time. The parameters of the cost function are set as follows: a0 = a1 = 0.5,

b00 = b11 = 0.5, b10 = b01 = 0. Fig. 1 illustrates the performance of SJDE and the conventional scheme

(SPRT & Est.) in terms of the average stopping time against the target accuracy level α. Note that small

α implies high accuracy on the detection and estimation performance, thus requires larger stopping time.

It is seen that SJDE significantly outperforms the conventional scheme. That is, SJDE exhibits a much

smaller average stopping time, while achieving the same target accuracy level α.

IV. DYNAMIC SPECTRUM ACCESS IN COGNITIVE RADIO NETWORKS

A. Background

Dynamic spectrum access is a fundamental problem in cognitive radio, in which secondary users (SUs)

are allowed to utilize a wireless spectrum band (i.e., communication channel) that is licensed to primary

users (PUs) without affecting the PU quality of service (QoS) [32]. Spectrum sensing plays a key role

in maximizing the SU throughput, and at the same time protecting the PU QoS. In spectrum sensing, if

no PU communication is detected, then SU can opportunistically utilize the band [33], [34]. Otherwise,

it has to meet some strict interference constraints. Nevertheless, it can still use the band in an underlay
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fashion with a transmit power that does not violate the maximum allowable interference level [35], [36].

Methods for combining the underlay and opportunistic access approaches have also been proposed, e.g.,

[1], [37], [38]. In such combined methods, the SU senses the spectrum band, as in opportunistic access,

and controls its transmit power using the sensing result, which allows SU to coexist with PU, as in

underlay.

The interference at the PU receiver is a result of the SU transmit power, and also the power gain

of the channel between the SU transmitter and PU receiver. Hence, SU needs to estimate the channel

coefficient to keep its transmit power within allowable limits. As a result, channel estimation, in addition

to PU detection, is an integral part of an effective dynamic spectrum access scheme in cognitive radio.

In spectrum access methods it is customary to assume perfect channel state information (CSI) at the

SU, e.g., [35]–[37]. It is also crucial to minimize the sensing time for maximizing the SU throughput.

Specifically, decreasing the sensing period, that is used to determine the transmit power, saves time for

data communication, increasing the SU throughput. Consequently, dynamic spectrum access in cognitive

radio is intrinsically a sequential joint detection and estimation problem. Recently, in [1], the joint problem

of PU detection and channel estimation for SU power control has been addressed using a sequential two-

step procedure. In the first step, sequential joint spectrum sensing and channel estimation is performed;

and in the second stage, the SU transmit power is determined based on the results of first stage. Here,

omitting the second stage, we derive the optimum scheme for the first stage in an alternative way under

the general theory presented in the previous sections.

B. Problem Formulation

We consider a cognitive radio network consisting of K SUs, and a pair of PUs. In PU communication,

a preamble takes place before data communication for synchronization and channel estimation purposes.

In particular, during the preamble both PUs transmit random pilot symbols simultaneously through full

duplexing. Pilot signals are often used in channel estimation, e.g., [39], and also in spectrum sensing,

e.g., [40]. We assume each SU observes such pilot symbols (e.g., it knows the seed of the random number

generator) so that it can estimate the channels between itself and PUs. Moreover, SUs cooperate to detect

the PU communication, through a fusion center (FC), which can be one of the SUs. To find the optimal

scheme we assume a centralized setup where all the observations collected at SUs are available to the FC.

In practice, under stringent energy and bandwidth constraints SUs can effectively report their necessary

and sufficient statistics to the FC using a non-uniform sampling technique called level-triggered sampling,

as proposed in [1].
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When the channel is idle (i.e., no PU communication), there is no interference constraint, and as a

result SUs do not need to estimate the interference channels to determine the transmit power, which is

simply the full power Pmax. On the other hand, in the presence of PU communication, to satisfy the peak

interference power constraints I1 and I2 of PU 1 and PU 2, respectively, SU k should transmit with

power

Pk = min

{
Pmax,

I1

x2
1k

,
I2

x2
2k

}
, (51)

where xjk is the channel coefficient between PU j and SU k. Hence, firstly the presence/absence of

PU communication is detected. If no PU communication is detected, then a designated SU transmits

data with Pmax. Otherwise, the channels between PUs and SUs are estimated to determine transmission

powers, and then the SU with the highest transmission power starts data communication.

We can model this sequential joint detection and estimation problem using the linear model in (35),

where the vector

x = [x11, . . . , x1K , x21, . . . , x2K ]′ (52)

holds the interference channel coefficients between PUs (j = 1, 2) and SUs (k = 1, . . . ,K); the diagonal

matrix

Ht = diag(ht,1, . . . , ht,1, ht,2, . . . , ht,2) ∈ R2K×2K (53)

holds the PU pilot signals; and

yt = [yt,11, . . . , yt,2K ]′ (54)

wt = [wt,11, . . . , wt,2K ]′ (55)

are the observation and Gaussian noise vectors at time t, respectively. Then, we have the following binary

hypothesis testing problem

H0 : x = 0,

H1 : x ∼ N (µ,Σ),

(56)

where µ = [µ11, . . . , µ2K ]′, Σ = diag(ρ2
11, . . . , ρ

2
2K) with µjk and ρ2

jk being the mean and variance of

the channel coefficient xjk, respectively.

Since channel estimation is meaningful only under H1, we do not assign estimation cost to H0, and

perform estimation only when H1 is decided. In other words, we use the cost function

C (T, dT , x̂T ) = a0P0(dT = 1|FT ) + a1P1(dT = 0|FT )

+ b1E1

[
‖x̂T − x‖21{dT=1} + ‖x‖21{dT=0}|FT

]
, (57)
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which is a special case of (3). When H0 is decided, it is like we set x̂T = 0. Similar to (5), we want to

solve the following problem

min
T,dT ,x̂T

T s.t. C (T, dT , x̂T ) ≤ α, (58)

for which the optimum solution follows from Theorem 1 and Proposition 2.

C. Optimum Solution

Corollary 2. The optimum scheme for the sequential joint spectrum sensing and channel estimation

problem in (58) is given by

T = min{t ∈ N : Ct ≤ α} (59)

dT =

 1 if LT ≥ a0

a1+b1‖x̂T‖2

0 otherwise
(60)

x̂T = [x̄11, . . . , x̄2K ]′, and x̄jk =

vT,jk
σ2 + µjk

ρ2jk
uT,j

σ2 + 1
ρ2jk

, (61)

where uT,j =
∑T

t=1 h
2
t,j , vT,jk =

∑T
t=1 ht,jyt,jk,

Ct = E0

[{
a0 −

(
a1 + b1‖x̂t‖2

)
Lt
}−

+ b1Lt‖x̂t‖2
∣∣Ft]+ a1 + b1

2∑
j=1

K∑
k=1

1
ut,j
σ2 + 1

ρ2jk

(62)

is the optimal cost at time t, A− = min(0, A); and

Lt =
p1({ys}ts=1|Ft)
p0({ys}ts=1|Ft)

=

2∏
j=1

K∏
k=1

exp

1
2

(
vt,jk

σ2
+
µjk

ρ2
jk

)2

ut,j

σ2
+ 1

ρ2
jk

− µ2
jk

ρ2jk


ρjk

√
ut,j
σ2 + 1

ρ2jk

(63)

is the likelihood ratio at time t.

Proof: See Appendix E.

At each time t the optimal cost Ct, given by (62), can be estimated through Monte Carlo simulations

by generating the realizations of vt,jk, independently for each pair (j, k), according to N (0, σ2ut,j) and

N (µjkut,j , ρ
2
jku

2
t,j + σ2ut,j) under H0 and H1, respectively. Alternatively, since Ct is a function of ut,1

and ut,2 only, we can effectively estimate C(u1, u2) through offline Monte Carlo simulations over the

2-dimensional grid. Note that the number of grid dimensions here is much less than N and N2+N
2 for

the independent and general LQG models in Section III, respectively.

The optimum detector, given in (60), uses the side information provided by the estimator itself.

Specifically, the farther away the estimates are from zero, i.e., ‖x̂T‖2 � 0, the easier it is to decide
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for H1; and the reverse is true for H0. The optimum estimator, given by (61), is the MMSE estimator

under H1 as channel estimation is meaningful only when PU communication takes place.

Remark: In [1], following the technical proof of [9] the optimum solution is presented for a sim-

ilar sequential joint detection and estimation problem with complex channels. Here, under a general

framework, we derive the optimum scheme following an alternative approach. Particularly, we show that,

without the monotonicity property for the optimal cost, the optimum stopping time can be efficiently

computed through (offline/online) Monte Carlo simulations. Furthermore, we here also show how this

dynamic spectrum access method fits to the systematic theory of sequential joint detection and estimation,

developed in the previous sections.

V. STATE ESTIMATION IN SMART GRID WITH TOPOLOGICAL UNCERTAINTY

A. Background and Problem Formulation

State estimation is a vital task in real-time monitoring of smart grid [42]. In the widely used linear

model

yt = Hx+wt, (64)

the state vector x = [θ1, . . . , θN ]′ holds the bus voltage phase angles; the measurement matrix H ∈

RM×N represents the network topology; yt ∈ RM holds the power flow and injection measurements;

andwt ∈ RM is the white Gaussian measurement noise vector. We assume a pseudo-static state estimation

problem, i.e., x does not change during the estimation period. For the above linear model to be valid it

is assumed that the differences between phase angles are small. Hence, we can model θn, n = 1, . . . , N

using a Gaussian prior with a small variance, as in [2], [43].

The measurement matrix H is also estimated periodically using the status data from switching devices

in the power grid, and assumed to remain unchanged until the next estimation instance. However, in

practice, such status data is also noisy, like the power flow measurements in (64), and thus the estimate

of H may include some error. Since the elements of H take the values {−1, 0, 1}, there is a finite number

of possible errors. Another source of topological uncertainty is the power outage, in which protective

devices automatically isolate the faulty area from the rest of the grid. Specifically, an outage changes

the grid topology, i.e., H , and also the prior on x. We model the topological uncertainty using multiple

hypotheses, as in [2], [44]–[46]. In (64), under hypothesis i we have

Hi : H = H i, and x ∼ N (µi,Σi), i = 0, 1, . . . , I, (65)
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where H0 corresponds to the normal-operation (i.e., no estimation error or outage) case.

For simplicity, following the formulation in Section II-C, we here penalize the wrong decisions only

with the detection costs, i.e., bji = 0, i 6= j, and bii = bi > 0. Hence, we use the cost function

C (T, dT , {x̂iT }) =

I∑
i=0

aiPi(dT 6= i|FT ) + biEi
[
J(x̂iT ,x)1{dT=i}|FT

]
, (66)

as in (26). Here we do not need the conditioning on Ft as the measurement matrices {Hj} are

deterministic and known. As a result the optimum stopping time T is deterministic and can be computed

offline. We seek the solution to the following optimization problem,

min
T,dT ,{x̂

j

T }
T s.t. C (T, dT , {x̂jT }) ≤ α. (67)

B. Optimum Solution

Corollary 3. The optimum scheme for the sequential joint detection and estimation problem in (67) is

given by

T = min{t ∈ N : Ct ≤ α}, (68)

dT = arg max
i

(ai − bi∆i
T) pi

(
{yt}Tt=1

)
, (69)

x̂T =

(
U t,dT

σ2
+ Σ−1

dT

)−1 (vt,dT

σ2
+ Σ−1

dT
µdT

)
, (70)

where U t,i = tH ′iH i and vt,i = H ′i
∑t

s=1 ys,

Ct =

I∑
i=0

(ai − bi∆i
t)Pi(dt 6= i) + bi∆

i
t (71)

is the optimal cost at time t;

∆i
T = Tr

((
UT,i

σ2
+ Σ−1

i

)−1
)

(72)

is the MMSE under Hi at time T;

pi

(
{yt}Tt=1

)
=

exp

−1
2

∑T
t=1

‖y
t
‖2

σ2 + ‖µi‖2Σ−1

i

−
∥∥vT,i

σ2 + Σ−1
i µi

∥∥2(
U T,i

σ2
+Σ−1

i

)−1




(2π)mT/2 σmT |Σi|1/2
∣∣∣U T,i

σ2 + Σ−1
i

∣∣∣1/2 (73)

is the likelihood under Hi at time T.

Proof: See Appendix F.

The optimal cost Ct can be numerically computed offline for each t by estimating the sufficient statistics

{Pi(dt 6= i)} through Monte Carlo simulations. Specifically, under Hj , we can independently generate the

samples of x and {w1, . . . ,wt}, and compute dt as in (69). Then, the ratio of the number of instances
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Fig. 2. Illustration for the IEEE-4 bus system with the power injection (square) and power flow (circle) measurements.

in which dt 6= i to the total number of instances gives an estimate of the probability Pi(dt 6= i). Once

the sequence {Ct} is obtained, the optimum detection and estimation time is found offline using (68).

As in Section II-C, the optimum detector in (69) is biased towards the hypothesis with best estimation

performance (i.e., smallest MMSE), hence is an ML & MMSE detector.

C. Numerical Results

We next present numerical results for the proposed scheme using the IEEE-4 bus system (Fig. 2). Note

that in this case the state status is characterized by a 3-dimensional vector, i.e., x ∈ R3 (the phase angle

of bus 1 is taken as the reference). In Fig. 2, it is seen that there are eight measurements collected by

meters, thus the topology is characterized by a 8-by-3 matrix, i.e., H ∈ R8×3.

Since the impedances of all links are known beforehand, we assume that they are of unit values without

loss of generality. Here, instead of considering all possible forms of H , we narrow down the candidate

grid topologies to the outage scenarios. In particular, as given in (75), H0 represents the default topology

matrix, and {H i, i = 1, 2, 3, 4} correspond to the scenarios where the links {l1−2, l2−3, l3−4, l4−1} (li−j

denotes the link between bus i and bus j) break down, respectively.

We use the following distributions for the state vector x under the hypotheses {Hi}.

H0 : x ∼ N (π/5× 1, π2/9× I), H1 : x ∼ N (2π/5× 1, π2/16× I),

H2 : x ∼ N (3π/5× 1, π2/25× I), H3 : x ∼ N (4π/5× 1, π2/36× I),

H4 : x ∼ N (π × 1, π2/4× I), (74)

where ai = 0.2, bi = 0.8, ∀i, 1 is the vector of ones and I is the identity matrix. The measurements are

contaminated by the white Gaussian noise wt ∼ N (0, I). The goal is to decide among the five candidate
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grid topologies, and meanwhile, to estimate the state vector.

H0 =



θ2 θ3 θ4

P1 −1 0 −1

P1−2 −1 0 0

P2 2 −1 0

P2−3 1 −1 0

P3 −1 2 −1

P3−4 0 1 −1

P4 0 −1 2

P4−1 0 0 1



, H1 =



0 0 −1

0 0 0

1 −1 0

1 −1 0

−1 2 −1

0 1 −1

0 −1 2

0 0 1



,

H2 =



−1 0 −1

−1 0 0

1 0 0

0 0 0

0 1 −1

0 1 −1

0 −1 2

0 0 1



, H3 =



−1 0 −1

−1 0 0

2 −1 0

1 −1 0

−1 1 0

0 0 0

0 0 1

0 0 1



, H4 =



−1 0 0

−1 0 0

2 −1 0

1 −1 0

−1 2 −1

0 1 −1

0 −1 1

0 0 0



. (75)

Since SPRT is not applicable in the multi-hypothesis case, we compare the proposed sequential joint

detection and estimation (SJDE) scheme with the combination of maximum likelihood (ML) detector and

MMSE estimator, equipped the stopping time given in (68). The ML detector uses the decision function

dT = arg max
j

aj pj

(
{yt}Tt=1

)
(76)

at the optimum stopping time presented in Corollary 3, hence is not a completely conventional scheme.

Fig. 3 illustrates that SJDE [i.e., the hybrid ML & MMSE detector, given by (69)] significantly out-

performs this combination [i.e., the conventional ML detector in (76)] in terms of the overall detection

and estimation performance measured by the combined cost function, introduced in (66). We see that

SJDE requires smaller average number of samples than ML & Est. to achieve the same target accuracy.

Specifically, with small average sample size (i.e., stopping time), the improvement of SJDE is substantial.
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Fig. 3. Average stopping time vs. target accuracy level for SJDE and the combination of ML detector & MMSE estimator

equipped with the stopping rule of SJDE.

This is because smaller sample size causes larger estimation cost ∆j
T, which in turn emphasizes the

advantage of the proposed detector over the conventional ML detector. In fact, in smart grid monitoring,

the typical sample size is small since the system state evolves quickly, and thus there is limited time to

estimate the current state.

VI. CONCLUSION

We have developed a general framework for optimum sequential joint detection (i.e., multi-hypothesis

testing) and estimation, considering the problems in which simultaneous detection and estimation with

minimal sample size is of interest. The proposed framework guarantees the best overall detection and

estimation performance under a Bayesian setup while minimizing the sample size. The conventional

separate treatment of the two subproblems has been shown to be strictly suboptimal since the optimum

detector and estimators are strongly coupled with each other. We have also showed how the theoretical

results, that are derived for a general model, apply to commonly used LQG models, including dynamic

spectrum access in cognitive radio and state estimation in smart grid. We have supported the theoretical

findings with numerical results.

APPENDIX A: PROOF OF LEMMA 1

If we find the estimators that minimize the cost function C (T, dT , {x̂iT }) for any stopping time T and

detector dT , then, from (5), these estimators are the optimum estimators {x̂iT }. Grouping the terms with
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the same estimator in (3), we can write the optimum estimators as

x̂iT = arg min
x̂

I∑
j=0

bjiEj
[
J(x̂,x)1{dT=i}|FT

]
(77)

Using the likelihood ratio

L̄jiT ,
pj({yt}Tt=1,x|FT )

pi({yt}Tt=1,x|FT )
(78)

we can write

Ej
[
J(x̂,x)1{dT=i}|FT

]
= Ei

[
L̄jiT J(x̂,x)1{dT=i}|FT

]
, (79)

and accordingly

x̂iT = arg min
x̂

Ei

 I∑
j=0

bjiL̄
ji
T J(x̂,x)1{dT=i}|FT

 . (80)

To free the expectation from random T we first rewrite the above equation as

x̂iT = arg min
x̂

Ei

 ∞∑
t=0

I∑
j=0

bjiL̄
ji
t J(x̂,x)1{dt=i}1{T=t}|Ft

 , (81)

then take 1{T=t} outside the expectation

x̂iT = arg min
x̂

∞∑
t=0

Ei

 I∑
j=0

bjiL̄
ji
t J(x̂,x)1{dt=i}|Ft

1{T=t}, (82)

as T is {Ft}-adapted, hence 1{T=t} is Ft-measurable, i.e., deterministic given Ft.

Since Ei[ · |Ft] = Ei

[
Ei[ · |Gt]

∣∣Ft], we write

x̂iT = arg min
x̂

∞∑
t=0

Ei

 I∑
j=0

bjiEi

[
L̄jit J(x̂,x)1{dt=i}|Gt

] ∣∣∣Ft
1{T=t}. (83)

Note that dt is Gt-measurable, i.e., a feasible detector is a function of the observations only, hence

deterministic given Gt. Then, we have

x̂iT = arg min
x̂

∞∑
t=0

Ei

 I∑
j=0

bjiEi

[
L̄jit J(x̂,x)|Gt

]
1{dt=i}

∣∣∣Ft
1{T=t}, (84)

which reduces to

x̂iT = arg min
x̂

∞∑
t=0

I∑
j=0

bjiEi

[
L̄jit J(x̂,x)|Gt

]
1{T=t}. (85)

Expand the likelihood ratio L̄jit as

L̄jit =
pj({ys}ts=1,x|Ft)
pi({ys}ts=1,x|Ft)

=
pj({ys}ts=1|Ft)
pi({ys}ts=1|Ft)

pj(x|{ys}ts=1,Ft)
pi(x|{ys}ts=1,Ft)

=
pj({ys}ts=1|Ft)
pi({ys}ts=1|Ft)

pj(x|Gt)
pi(x|Gt)

, (86)
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and denote the first term above with

Ljit =
pj({ys}ts=1|Ft)
pi({ys}ts=1|Ft)

, (87)

which is also a likelihood ratio. Given Gt, Ljit is deterministic, hence in (85), within L̄jit , only pj(x|Gt)
pi(x|Gt)

remains inside the expectation. Since

Ei

[
pj(x|Gt)
pi(x|Gt)

J(x̂,x)|Gt
]

= Ej [J(x̂,x)|Gt] , (88)

we rewrite (85) as

x̂iT = arg min
x̂

∞∑
t=0

I∑
j=0

bjiL
ji
t Ej [J(x̂,x)|Gt]1{T=t}. (89)

Define a new probability distribution

p̄it(x|Gt) ,
∑I

j=0 bjiL
ji
t pj(x|Gt)∑I

j=0 bjiL
ji
t

.

We are, in fact, searching for an estimator that minimizes Ēi [J(x̂,x)|GT ] under p̄it(x|Gt), i.e.,

x̂iT = arg min
x̂

Ēi [J(x̂,x)|GT ] , (90)

which proves (6). The MMSE estimator, for which J(x̂,x) = ‖x̂ − x‖2, is given by the conditional

mean Ēi[x|GT ], hence the result in (10), concluding the proof.

APPENDIX B: PROOF OF LEMMA 2

Reorganizing the terms in (12) we get

dT = arg min
dT

I∑
i=0

Ei

[
ai1{dT 6=i} + bii∆

ii
T1{dT=i} +

I∑
j=0,j 6=i

bij∆
ij
T 1{dT=j}|FT

]
. (91)

Using 1{dT=i} = 1− 1{dT 6=i}, it becomes

dT = arg min
dT

I∑
i=0

Ei

[
ai1{dT 6=i} − bii∆

ii
T1{dT 6=i} +

I∑
j=0,j 6=i

bij∆
ij
T 1{dT=j}|FT

]
+ biiEi[∆

ii
T |FT ]

= arg min
dT

I∑
i=0

Ei

[(
ai − bii∆ii

T +

I∑
j=0,j 6=i

bij∆
ij
T 1{dT=j}

)
1{dT 6=i}|FT

]

= arg min
dT

I∑
i=0

∫
· · ·
∫
Ri(dT )

(
ai − bii∆ii

T +

I∑
j=0,j 6=i

bij∆
ij
T 1{dT=j}

)
pi
(
{yt}Tt=1|FT

)
dy1 . . . dyT ,

(92)

where Ri(dT ) ∈ RM×T is the subspace where Hi is rejected, i.e., dT 6= i. When Hi is selected given an

observation set {yt}Tt=1, the corresponding cost
(
ai−bii∆ii

T +
∑I

j=0,j 6=i bij∆
ij
T 1{dT=j}

)
pi
(
{yt}Tt=1|FT

)
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is omitted in the risk calculation, i.e., the cost
I∑

j=0,j 6=i

(
aj − bjj∆jj

T + bji∆
ji
T

)
pj
(
{yt}Tt=1|FT

)
(93)

is included in the average risk. Hence, the optimum detector is the minimizer of this conditional risk, as

shown in (16).

For the special case of binary hypothesis testing,
(
a1 + b10∆10

T − b11∆11
T

)
p1

(
{yt}Tt=1|FT

)
gives the

conditional risk when H0 is decided. Similarly, it is given by
(
a0 + b01∆01

T − b00∆00
T

)
p0

(
{yt}Tt=1|FT

)
when H1 is decided. Therefore, the optimum detector chooses H1 if(

a0 + b01∆01
T − b00∆00

T

)
p0

(
{yt}Tt=1|FT

)
≤
(
a1 + b10∆10

T − b11∆11
T

)
p1

(
{yt}Tt=1|FT

)
, (94)

and chooses H0 otherwise.

APPENDIX C: PROOF OF PROPOSITION 1

We start by deriving the joint distribution density function of {ys}ts=1 and x as follows:

pi({ys}ts=1,x|Ft) = pi({ys}ts=1|x,Ft)pi(x)

=
exp

(
− 1

2σ2

∑t
s=1 ‖ys −Hsx‖2

)
(2π)mt/2σmt

exp
(
−1

2‖x− µi‖
2

Σ−1

i

)
(2π)n/2|Σi|1/2

= exp

−1

2

 t∑
s=1

‖ys‖2

σ2
+ ‖µi‖2Σ−1

i

− ‖vt
σ2

+ Σ−1
i µi‖

2(
U t
σ2

+Σ−1

i

)−1


exp

−1

2

∥∥∥∥∥x−
(
U t

σ2
+ Σ−1

i

)−1 (vt
σ2

+ Σ−1
i µi

)∥∥∥∥∥
2

U t
σ2

+Σ−1

i

 1

(2π)mt/2+n/2σmt|Σi|1/2
, (95)

where U t =
∑t

s=1H
′
sHs and vt =

∑t
s=1H

′
sys. Since the Gaussian prior pi(x) is conjugate to

the Gaussian likelihood function pi({ys}ts=1|x,Ft), the posterior distribution pi(x|{ys}ts=1,Ft) is also

Gaussian. Furthermore, due to

pi(x|Gt) =
pi({ys}ts=1,x|Ft)
pi({ys}ts=1|Ft)

, (96)

we can read off the mean and variance of x|Gt from the second exponent in (95), which is the only term

involving x in pi(x|Gt), and arrive at

x|Gt ∼ N

((
U t

σ2
+ Σ−1

i

)−1 (vt
σ2

+ Σ−1
i µi

)
︸ ︷︷ ︸

Ei[x|Gt]

,

(
U t

σ2
+ Σ−1

i

)−1

︸ ︷︷ ︸
Covi[x|Gt]

)
, (97)
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which proves (37). Moreover, (14) and (97) give (38). Finally, the likelihood function of {ys}ts=1 is

computed as

pi({ys}ts=1|Ft) =
pi({ys}ts=1,x|Ft)
pi(x|{ys}ts=1,Ft)

=

exp

−1
2

∑t
s=1

‖y
s
‖2

σ2 + ‖µi‖2Σ−1

i

− ‖vtσ2 + Σ−1
i µi‖2(U t

σ2
+Σ−1

i

)−1


(2π)mt/2 σmt |Σi|1/2

∣∣∣U t

σ2 + Σ−1
i

∣∣∣1/2 . (98)

The likelihood ratio LT in (39) follows from (98), concluding the proof.

APPENDIX D: PROOF OF PROPOSITION 2

Since Ht is diagonal and both x and wt have independent entries, the linear system model (35) can

be decomposed into N sub-systems, i.e., yt,n = ht,nxn + wn, n = 1, 2, . . . , N , which are independent

from each other. Then the posterior distribution is a scalar version of (97) for each local parameter xn,

i.e.,

xn|Gt ∼ N

( vt,n
σ2 + µi,n

ρ2i,n
ut,n
σ2 + 1

ρ2i,n

,
1

ut,n
σ2 + 1

ρ2i,n

)
, (99)

proving (43). Moreover, due to spatial independence, we have

pi({ys}ts=1|Ft) =

N∏
n=1

pi({ys,n}ts=1|Fnt ), (100)

where pi({ys,n}ts=1|Fnt ) is given by the scalar version of (98), i.e.,

pi({ys,n}ts=1|Fnt ) =

exp

−1
2

∑t
s=1

y2s,n
σ2 +

µ2
i,n

ρ2i,n
−

(
vt,n

σ2
+
µi,n

ρ2
i,n

)2

ut,n

σ2
+ 1

ρ2
i,n


(2π)t/2 σt ρi,n

√
ut,n
σ2 + 1

ρ2i,n

. (101)

The global likelihood ratio is given by the product of the local ones, i.e., Lt =
∏N
n=1 L

n
t , where, from

(101),

Lnt =
p1({ys,n}ts=1|Fnt )

p0({ys,n}ts=1|Fnt )
(102)

is written as in (45). From (13),

∆ij
T =

N∑
n=1

Vari[xn|GnT] + δijT ‖E0[x|GT]− E1[x|GT]‖2, (103)

which, together with (99), gives (44), concluding the proof.

APPENDIX E: PROOF OF COROLLARY 2

Substituting I = 1 and b01 = 0 into (21) we write the optimum estimator as

x̂T = E1[x|GT], (104)
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which is used only when H1 is decided. Since the independent LQG model (i.e., diagonal Ht and Σ) is

used in the problem formulation, we can borrow, from Proposition 2, the result for E1[x|GT], given by

(43), to write (61).

From (13), we write

∆11
T = Tr (Cov1[x|GT ]) and ∆10

T = Tr (Cov1[x|GT ]) + ‖x̂T‖2, (105)

where we used x̂1
T = E1[x|GT] and x̂0

T = 0. Then, in the optimum detector expression given by (16), on

the right side we only have a0 since b01 = b00 = 0; and on the left side we have LT(a1 + b1‖x̂T‖2) since

b10 = b11 = b1, resulting in (60).

Similarly, using b01 = b00 = 0 and b10 = b11 = b1 in (22), the optimal cost is given by

Ct = E0

[
a01{dt=1}|Ft

]
+ E1

[
b1∆11

t 1{dt=1} +
(
a1 + b1∆10

t

)
1{dt=0}|Ft

]
. (106)

Using 1{dt=0} = 1 − 1{dt=1}, ∆11
t −∆10

t = −‖x̂t‖2, and combining the expectations under E0 via Lt

we write

Ct = E0

[{
a0 −

(
a1 + b1‖x̂t‖2

)
Lt
}
1{dt=1} + b1Lt‖x̂t‖2|Ft

]
+ a1 + b1

2∑
j=1

K∑
k=1

Var1[xjk|Gt]. (107)

Since 1{dt=1} passes only the negative values of a0−
(
a1 + b1‖x̂t‖2

)
Lt, we obtain (62). The MMSE (i.e.,

sum of posterior variances) expression follows from (99). For the likelihood ratio, due to independence,

we have

Lt =

2∏
j=1

K∏
k=1

Ljkt where Ljkt =
p1({ys,jk}ts=1|F

jk
t )

p0({ys,jk}ts=1|F
jk
t )

(108)

is the local likelihood ratio for the channel between PU j and SU k. The likelihood p1({ys,jk}ts=1|F
jk
t )

is given by (101); and

p0({ys,jk}ts=1|F
jk
t ) =

exp
(
−1

2

∑t
s=1

y2s,jk
σ2

)
(2π)t/2 σt

(109)

since the received signal under H0 is white Gaussian noise. Hence, Lt is written as in (63).

APPENDIX F: PROOF OF COROLLARY 3

Since separated detection and estimation costs (cf. Section II-C) are used in the problem formulation,

from Corollary 1, when Hi is decided, the optimum estimator under Hi is used. As a result, the posterior

estimation cost ∆i
T corresponds to the MSE, which, from (38), is given by (72). For the LQG model

assumed in (64)–(66), the optimum estimator is the MMSE estimator, and, from (37), written as in (70).

The optimum detector also follows from Corollary 1. Since ∆i
t is deterministic, from (31), the optimal

cost Ct is given by (71). Finally, from (98), pj
(
{yt}Tt=1

)
is given by (73).
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