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Abstract

While video anomaly detection has been an active area
of research for several years, recent progress is limited to
improving the state-of-the-art results on small datasets us-
ing an inadequate evaluation criterion. In this work, we
take a new comprehensive look at the video anomaly detec-
tion problem from a more realistic perspective. Specifically,
we consider practical challenges such as continual learning
and few-shot learning, which humans can easily do but re-
mains to be a significant challenge for machines. A novel al-
gorithm designed for such practical challenges is also pro-
posed. For performance evaluation in this new framework,
we introduce a new dataset which is significantly more com-
prehensive than the existing benchmark datasets, and a new
performance metric which takes into account the fundamen-
tal temporal aspect of video anomaly detection. The exper-
imental results show that the existing state-of-the-art meth-
ods are not suitable for the considered practical challenges,
and the proposed algorithm outperforms them with a large
margin in continual learning and few-shot learning tasks.

1. Introduction
With an ever-increasing number of closed-circuit televi-

sion (CCTV) cameras and the subsequent amount of video
data generated continuously in real-time, it has now be-
come inefficient and nearly impossible for human operators
to manually analyze the collected data. Even though auto-
mated video surveillance has attracted much research inter-
est in recent years, learning continually from new data re-
mains largely unexplored. While the vast majority of recent
anomaly detection methods perform competitively on the
three popular benchmark datasets (UCSD Pedestrian [16],
CUHK Avenue [19], and ShanghaiTech Campus [17]), we
believe that progress in this domain has become stagnant.
This can be attributed to several factors, such as a flawed
problem formulation, lack of a comprehensive dataset, and
an inadequate evaluation criterion.

Traditionally, the video anomaly detection (VAD) prob-

lem is formulated as detecting behaviors or patterns that
are previously unseen in the training data. However, such
a formulation has an underlying assumption that the train-
ing data includes all possible nominal patterns, which is im-
practical. The main challenge in VAD is the “open set” na-
ture of the nominal class for behaviors and patterns. Since
the data domain of VAD is the real-world behaviors and pat-
terns, it is not possible to confine the nominal class to a
static (i.e., fixed) training set even for a specific scene (e.g.,
a static camera monitoring a particular street). A more re-
alistic problem formulation can be provided by the Contin-
ual Learning framework [18]. A practical VAD algorithm
must continually train 1 on new nominal video data arriving
irregularly over time. As opposed to the standard classifica-
tion setup, where training on a fixed dataset is followed by
testing, in the continual learning setup, training and testing
episodes are interleaved, resulting in an ever-growing train-
ing dataset, as shown in Fig. 1. The main challenge in this
setup is to incrementally learn new nominal patterns from
sequentially arriving new training data without forgetting
the past knowledge obtained from previous training data.

The current practice for performance evaluation in VAD
also follows the standard binary classification setup. Con-
sidering each video frame as an independent instance to
be classified as nominal or anomalous, the existing perfor-
mance criterion uses the area-under-the-curve (AUC) met-
ric, which computes the area under the ROC curve (true
positive rate (TPR) vs. false positive rate (FPR)). This com-
monly used frame-level AUC metric is not adequate to eval-
uate the overall VAD performance. In real-world scenes,
usually the main objective is to detect anomalous activi-
ties rather than anomalous frames. Even though both tasks
might seem similar, they each serve a different purpose.
While anomalous activity detection is crucial for raising an
alarm in a timely manner, and hence must be online, anoma-
lous frame localization on the other hand is used to capture
anomalous activities for future analysis, and thus can be

1Not continuously. In CL, it is natural to have gaps between training
episodes. The key point is the ability to incrementally train on sequential
data arriving over a long time horizon without forgetting the past.



Figure 1. The proposed continual learning framework. Training data consists of a number of splits, used to update the algorithm and
knowledge base. After each update, the model is evaluated on the entire test set.

offline. The existing VAD literature lacks a clear distinc-
tion between the anomalous activity detection and anoma-
lous frame localization tasks [17, 12, 30, 23]. The stan-
dard frame-level AUC metric is only suitable for anomalous
frame localization. For online activity detection, it is imper-
ative to evaluate the performance in terms of activities and
also consider the detection delay in performance evaluation.
An ideal VAD algorithm should minimize the average delay
in detecting anomalous activities and avoid false alarms as
much as possible.

Figure 2. Simple optical flow method performs close to the state-
of-the-art methods [20, 27, 17, 5, 23, 37] on the three popular
benchmark datasets in terms of the frame-level AUC metric.

The popular benchmark datasets in VAD are prepared
for the traditional classification setup based on static train-
ing, whose shortcomings are explained above. In these
datasets, anything not seen in the training data is labeled as
anomalous, which causes a very limited nominal class and
a superficial definition for anomaly. For example, in the
UCSD [16], Avenue [19], and ShanghaiTech [17] datasets,
the nominal behaviors mainly consists of walking people.
Such a limited nominal class enables optical flow based ap-
proaches to perform increasingly well on these datasets. In

Fig. 2, we compare the performance of the recent state-of-
the-art methods [20, 27, 17, 5, 23, 37] on these benchmark
datasets with respect to a simple optical flow based algo-
rithm, which only computes the average optical flow in a
frame. Even such a rudimentary approach is able to per-
form competitively with respect to the state-of-the-art mod-
els, demonstrating the skewness in the benchmark datasets.
Furthermore, in these datasets, a person using a bike or
skateboard is always considered as anomalous. Even in the
more recent Street Scene dataset [27], certain activities like
loitering and dog walking on the sidewalk are considered
anomalous irrespective of their context. However, in real
life, such activities are fairly common and would be con-
sidered anomalous only under certain circumstances, such
as riding a bike against the flow of traffic or loitering after
midnight. Finally, none of the existing datasets/algorithms
take into consideration practical challenges such as different
weather and lighting conditions, shifts in the activity levels
based on the day and time, and adapting to different views
due to a moving camera. Hence, for the advancement of
VAD, a significantly more comprehensive dataset that can
shift the focus to evaluating the continual learning perfor-
mance of VAD algorithms is required.

Another important limitation of the current state-of-the-
art methods is the inherent assumption that each test video
segment includes an anomalous activity. In practice, for this
assumption to hold, the length of video segments may need
to be extremely long since in real-world scenes anomalous
activities typically occur infrequently. On the contrary, the
video segments in the existing benchmark datasets are a
few minutes long and always labeled by some anomlaous
frames, which do not necessarily correspond to real-world
anomalies. Thus, most of the existing methods are designed
to find anomalous frames in each video segment, which will



result in many false alarms in a real-world scenario.
Motivated by the above research gaps in VAD, in this

paper, we

• design a framework for continual learning and propose
a new performance metric based on detection delay
and alarm precision;

• introduce a new comprehensive dataset for continual
learning in VAD;

• propose a novel algorithm that significantly outper-
forms the state-of-the-art methods in online activity
detection and continual learning, and provide guidance
for future algorithm design.

2. Related Work
Anomaly detection in videos has been extensively stud-

ied for several years. While early approaches focused on
using handcrafted motion features such as histogram of ori-
ented gradients (HOGs) [1, 2, 16], Hidden Markov Models
[14, 11], sparse coding [38, 22], and appearance features
[3, 16], recent approaches have been completely dominated
by deep learning based algorithms. Recent algorithms can
be broadly classified into reconstruction based approaches
[7, 9, 21, 25, 26], which try to classify frames based on
the reconstruction error, and prediction based approaches
[17, 15, 4, 6], which attempt to predict a future frame, pri-
marily by using generative adversarial networks (GANs)
[8]. More recently, skeletal trajectory based approaches
[23, 30] have been proposed since a large proportion of
anomalies in the benchmark datasets involve anomalous
poses. In such algorithms, an RNN architecture is typically
used to learn nominal human poses, and estimation error is
used during testing to detect the level of abnormality. Apart
from these approaches, [28] proposed a Siamese network
to learn spatio-temporal patches and detect an anomaly us-
ing the dissimilarity between patches. While these meth-
ods perform competitively on the benchmark datasets, they
are completely dependant on complex neural networks and
mostly end-to-end trained. This makes them notoriously
difficult to train on new data, which is crucial in complex
temporal applications such as VAD. Furthermore, there is
no clear procedure for these methods to adapt to different
nominal baselines.

Continual learning has been recently gaining increased
research interest [13, 33, 31, 35, 18]. However, not a lot
of progress has been made yet in continual learning for
VAD. In [5], a modular transfer learning based architecture
is proposed to extract appearance and motion features, and
a CUSUM based approach is used to continually learn nom-
inal patterns. However, it is only briefly discussed and the
algorithm is evaluated only in terms of the false alarm rate
on a single YouTube video. Furthermore, the algorithm uses

an object-centric framework similar to [12, 10], which treat
each object independently, and fails to capture the intricate
relationship between different objects. Whereas, our pro-
posed method tracks each object while also capturing spa-
tial information relative to other objects in the frame.

3. Continual Video Anomaly Detection

Ideally, when a video anomaly detection system acquires
new information, it should be capable of updating its defi-
nition of nominal patterns/behaviors to avoid false alarms.
However, this is not straightforward with the existing algo-
rithms since they are extensively dependant on end-to-end
trained deep neural networks that are prone to catastrophic
forgetting when trained incrementally, i.e., they tend to for-
get previously learned information when trained sequen-
tially on a new task [18]. Hence, we first carefully define
a framework for continual learning in the context of video
anomaly detection. Then, we propose a new metric for as-
sessing the online activity detection performance that, and
an effective algorithm for continual VAD. We believe the
new problem formulation and the new dataset, introduced
in Sec. 4, will help guide the future VAD research towards
practical and reproducible solutions.

3.1. Problem Formulation

Although a stream of video frames F = {f1, f2, . . . }
is a standard data structure for general video processing,
for anomaly detection, a video frame is not a natural data
unit due to two main reasons: lack of temporal continuity
and interpretability. Firstly, the task of classifying video
frames as nominal or anomalous ignores the temporal con-
tinuity in video frames, which is the main characteristic that
differentiates video from a sequence of images. Activities
happening in a video are the cause of temporal continuity,
e.g., running person, falling object, etc. Also, since hu-
mans perceive a visual environment in terms of activities,
the results of classifying video activities are much more
interpretable than frame classification results. Therefore,
we consider a data structure of streaming video activities
X = {x1, x2, . . .}.

An activity xi can be typically defined in terms of action,
e.g., playing basketball, or object(s)-action pair, e.g., car
crashing. An activity may involve multiple objects, e.g.,
people walking. The index i denotes the order of activity
xi in terms of starting time. If multiple activities start at
the same frame, they can be ordered randomly. In a given
frame, there can be multiple activities or no activity.

While we use activity as a data unit, it should be noted
that for the anomaly detection task there is no need to ex-
plicitly recognize the activities in a video, setting it apart
from the activity recognition task. Two competing objec-
tives make VAD a meaningful and challenging problem:



raise an alarm as soon as possible when an anomalous activ-
ity takes place, and raise an alarm only when it is relevant.

Detection Delay: The first objective of quickly detect-
ing anomalous activities can be mathematically written as
min1[Ti− τi], where 1 denotes the expectation with respect
to the probability distribution of anomalous activities, τi is
the starting time of anomalous activity i, and Ti ≥ τi is the
alarm time. Empirically, the average detection delay can be
computed as

ADD =
1

N

N∑
i=1

(Ti − τi), (1)

with N denoting the number of anomalous activities. Con-
sidering a longest tolerable delay δmax, if there is no alarm
within the duration [τi, τi + δmax] after anomalous activity
i happens, the delay is set to be the maximum value, i.e.,
Ti − τi = δmax. Note that the considered objective of mini-
mizing the average detection delay covers as a special case
the traditional classification objective of minimizing false
negative rate (a.k.a. misdetection rate), 1

N

∑N
j=1 1{Ti ≥

τi}. The indicator function 1{A} takes the value 1 when
the condition A holds, otherwise 0. Minimizing the false
negative rate (FNR) is the same as its more popular ver-
sion, maximizing the true positive rate (TPR), as FNR =
1 − TPR. Instead of using the generic cost of 1 for each
missed anomalous activity, i.e., 1{Ti ≥ τi}, ADD assigns
the specific cost of detection delay δi = Ti − τi.

Figure 3. Definitions of true alarm and false alarm. The anomalous
activity i is successfully detected with alarm time Ti = T j+1,
whereas the anomalous activity i+ 1 is missed.

Alarm Precision: The second objective of alarm-
ing only when necessary is equivalent to the well-
known precision metric of binary classification. Maxi-
mizing the alarm precision means maximizing the ratio
of Number of true alarms/Number of all alarms. As illus-
trated in Fig. 3, an alarm j is a true alarm if it is
raised within the relevant duration of an anomalous ac-
tivity, i.e., T j ∈ ∪[τi, τi + δmax], otherwise it is a false
alarm. We combine close anomalous activities into a sin-
gle one, e.g., car crashing and people are running, such
that the anomalous activity intervals do not overlap, i.e.,
[τi, τi + δmax] ∩ [τi+1, τi+1 + δmax] = ∅,∀i. If multiple
alarms are raised within an anomalous activity interval, only
the first one is considered as true alarm, and the rest is ig-
nored. Mathematically, we want to maximize the probabil-
ity (T j ∈ ∪[τi, τi+ δmax]), which gives the alarm precision.

Empirically, the alarm precision is computed as

P =
1

M

M∑
j=1

1{T j ∈ ∪[τi, τi + δmax]}, (2)

where M = |{T j}| is the number of all alarms and | · |
denotes the cardinality of a set. Note that the alarm pre-
cision is much easier to calculate than false alarm/positive
rate (FPR), another commonly used metric in binary clas-
sification. While the normalization term M in precision,
i.e., number of all alarms, is easy to know, false alarm rate
requires the number of all nominal activities, which is not
easy to find.

Average Precision Delay: In order to obtain a sin-
gle metric for conveniently comparing VAD algorithms,
we propose a new metric called Average Precision Delay
(APD), which combines average detection delay and alarm
precision. Similar to the way the popular AUC metric sum-
marizes TPR and FPR, APD measures the area under the
Precision vs. normalized ADD (NADD) curve. To map
ADD into [0, 1], we normalize it by the maximum delay,
i.e., NADD = ADD/δmax. Mathematically, APD is given
by

APD =

∫ 1

0

P (α) dα, (3)

where α denotes NADD, and P denotes the precision. A
highly successful algorithm with an APD value close to 1
must have high precision and low delay in its alarms.

Continual Learning: In the proposed continual learn-
ing framework, the VAD algorithm is trained in multiple
sessions over time using several batches of nominal data,
called splits (Fig. 1). In practice, training splits may ar-
rive irregularly with varying sizes. Following the common
practice in VAD, no labels are provided with the training
splits. Although training data is assumed to be nominal,
some level of contamination with anomalous activities may
be tolerated depending on the robustness of the VAD algo-
rithm to outliers. The objective in the continual learning
setup is to improve the APD performance consistently with
each training split k, i.e.,

APDk ≥ APDk−1,∀k. (4)

The APD value is measured after each training split using
all the available test data. Assessing the performance on a
comprehensive test dataset is important to see if the algo-
rithm suffers from catastrophic forgetting. If the algorithm
is not suitable for continual learning, it may start to lose
performance although more training data and accordingly
more knowledge becomes available. On the contrary, a suc-
cessful continual VAD algorithm will consistently improve
its APD performance with more training splits.



Figure 4. Proposed VAD algorithm. Object tracking features and spatio-temporal object features form the feature vector, whose kNN
distance with respect to the nominal vectors is used to make an anomaly decision within an RNN structure. The use of kNN distances
facilitates effective continual learning.

3.2. Continual VAD Algorithm

Due to the the tendency of deep neural networks to for-
get previously learned information when the network is
trained sequentially on multiple tasks, end-to-end trained
VAD models are not suitable when it comes to continual
learning. Even though experience replay has shown promis-
ing results on toy examples recently, it still cannot be scaled
up to problems with complex tasks since constantly retrain-
ing on all previously learned tasks is highly inefficient, and
the amount of data that would have to be stored quickly
becomes unmanageable [34]. However, in this work, we
show that this challenge can be addressed by treating con-
tinual learning with a two-stage approach: by first extract-
ing a low dimensional feature embedding for each frame
using end-to-end deep learning models and then employing
k-Nearest-Neighbors (kNN) based RNN model to prevent
catastrophic forgetting.

As shown in Fig. 4, we first detect objects in each frame
by using a pretrained object detector, such as YOLO-v4
[29]. Then, we use the extracted bounding boxes to con-
struct a feature embedding to represent the spatio-temporal
activities observed in the frame. Particularly, we monitor
the number of objects detected per object class, the number
of object classes observed, the day of the week and the time
of the day the video frame belongs to. To limit the com-
putational complexity, we discretize the day dimension into
two categories as weekday and weekend. Similarly, we dis-
cretize the time of the day into four categories as active and
inactive times of day and night. In addition, to extract more
intricate features from each detected object, we also employ

a re-identification and tracking algorithm called DeepSORT
[36], which performs real-time path tracking of each de-
tected object. The extracted object paths are provided to an
RNN to make predictions about the future path. The predic-
tion errors for all object paths are then stacked into a feature
vector together with the spatio-temporal features.

Next, the kNN distance of the feature vector is computed
with respect to the set of nominal feature vectors stored in
the memory module. As explained next, we consider two
different ways of computing the kNN distance for contin-
ual learning purposes. The single-dimensional time series
of kNN distances provides evidence for anomalies since the
frames from anomalous activities typically lie farther away
in the feature space from the nominal frames. However, to
leverage the temporal continuity among frames, we do not
directly decide for each frame using its kNN distance; we
use an RNN structure to capture the temporal dependency
in kNN distances and decide using that sequential informa-
tion. To train the RNN with anomalous frames, we use syn-
thetic kNN distances generated uniformly between the 95th
percentile of nominal kNN distances and its double.

Continual Learning: We propose two approaches for
continual learning, which are based on two different ways of
computing the kNN distance. The first one is based on ex-
act kNN distance computation and is particularly useful for
continually learning nominal behaviors when the amount
of training data is still tractable. In this approach, we in-
crementally update the memory module with the kNN dis-
tance of new features from each training split. However,
with many training splits over a long time horizon, the ex-



act computation of kNN distance may be prohibitive as
the nominal training set grows. For long-term scalability,
we propose a second approach which estimates the kNN
distance using a fully-connected deep neural network (k-
DNN). To continually update k-DNN, we use experience
replay, i.e., in addition to the most recent feature vector and
its kNN value, previous feature vectors and kNN values are
also used to update k-DNN. The second approach has the
advantage of being computationally efficient during testing,
especially when the training set is large.

Implementation Details: For the kNN regression net-
work (k-DNN), we use a fully-connected deep neural net-
work with 3 hidden layers consisting of 20 neurons each.
We empirically chose the simplest network that gave a suf-
ficiently low prediction error. A single hidden layer LSTM
with a two input time steps is used for the decision RNN.
The YOLO object detector is trained on the MS-COCO
dataset with 80 classes, and the DeepSORT object tracker
is trained on the MOT16 dataset. For path prediction, an
LSTM with three hidden layers with 20 input time steps is
used. We remove trajectories which last for less than 50
frames. All the features are normalized to [0, 1] using the
maximum and minimum values from training. The entire
pipeline is able to run at approximately 18 fps on a RTX
2070 GPU, which can be significantly improved by using
a better GPU or more lightweight models. Moreover, to
maintain real-time performance, the videos can also be an-
alyzed at lower fps. For the maximum detection delay, we
set a limit of 5 minutes, which we believe is sufficient for
detecting any type of anomaly.

4. Dataset for Continual VAD

The popular benchmark datasets (UCSD, Avenue,
ShanghaiTech) in VAD are not sufficiently comprehensive
for the continual learning framework. There is a recent
multi-scene dataset, UCF Crime [32], which is significantly
larger and more complex than the popular benchmarks.
However, having been collected from various YouTube
videos this multi-scene dataset is also not suitable for con-
tinual learning since the sheer heterogeneity in the dataset
causes incompatibility issues [27]. For instance, an ob-
vious anomalous activity in one scene cannot be detected
since a very similar activity has appeared as nominal in a
quite different scene. Hence, instead of a multi-scene setup
with spatial richness (i.e., comprehensive data over vari-
ous scenes), we focus on a single-scene setup with a new
dataset that provides temporal richness (i.e., comprehensive
data over time).

4.1. Existing Datasets

The three popular benchmark datasets for VAD are dis-
cussed below.

Figure 5. Sample frames from nominal (top row) and anomalous
(bottom row) activities in the proposed NOLA dataset.

UCSD Ped 2: The UCSD Pedestrian dataset is one
of the most widely used VAD datasets. Due to the small
resolution of the UCSD Ped 1 videos, most recent works
only consider the UCSD Ped 2 dataset. The Ped 2 dataset
consists of 16 training videos and 12 test videos. The
anomalous activities are caused by vehicles such as bicy-
cles, skateboards and wheelchairs. Despite being widely
used as a benchmark dataset, most anomalies are obvious
and can be easily detected from a single frame.

CUHK Avenue: Another popular dataset is the CUHK
Avenue dataset, which consists of short video clips taken
from a single outdoor surveillance camera. It contains 16
training and 21 test videos with a frame resolution of 360×
640. While it is more challenging than the UCSD dataset,
the anomalies are staged and the labeling of the anomalous
instances is not consistent.

ShanghaiTech: The ShanghaiTech dataset is one of the
largest and most challenging datasets available for anomaly
detection in videos. It consists of 330 training and 107 test
videos from 13 different scenes, which sets it apart from
the other available datasets. The resolution for each video
frame is 480 × 856. However, the videos are captured from
13 different cameras, which makes it a multi-scene formu-
lation. On the other hand, treating it as 13 different datasets
severely limits the number of available training frames for
each scene.

4.2. New Dataset: NOLA

We introduce a new dataset which consists of 110 train-
ing video segments in 11 splits and 50 test segments cap-
tured over an entire week from a single moving camera2

from a famous street in New Orleans, Louisiana, USA. To

2https://www.earthcam.com/usa/louisiana/
neworleans/bourbonstreet/?cam=catsmeow2

https://www.earthcam.com/usa/louisiana/neworleans/bourbonstreet/?cam=catsmeow2
https://www.earthcam.com/usa/louisiana/neworleans/bourbonstreet/?cam=catsmeow2


Dataset Total Training Testing Ground Resolution Note
Frames Frames Frames Truth

UCSD Ped1 14,000 6800 7200 Spatial, Temporal 238 x 158 –
UCSD Ped2 4560 2550 2010 Spatial, Temporal 360 x 240 –

Subway 125,475 22,500 102,975 Temporal 512 x 384 2 scenes
CUHK Avenue 30,652 15,328 15,324 Spatial, Temporal 640 x 360 –

UMN 3,855 N/A N/A Temporal 320 x 240 Frames not directly available
ShanghaiTech 317,398 274,515 42,883 Spatial, Temporal 856 x 480 13 scenes
Street Scene 203,257 56,847 146,410 Spatial, Temporal 1280 x 720 –

NOLA (proposed) 1,440,000 450,000 990,000 Spatial, Temporal 1280 x 720 Audio also available

Table 1. Comparison of existing and proposed VAD datasets. Ground truth refers to the type of anomaly labeling.

maintain consistency and avoid unrealistic normalization
assumptions, all the training and testing video segments are
clipped at 9000 frames, extracted at 30 frames per second.
Overall, the dataset consists of 990,000 training frames and
450,000 testing frames, making it significantly larger than
any other available dataset, as shown in Table 1. The dataset
was manually collected, cleaned and annotated by the au-
thors. The training set is split into 11 smaller batches to
evaluate the performance in terms of continual learning, as
described in Section 3.1. One split is used for initial train-
ing, and the rest 10 splits are used to evaluate the continual
learning performance (Fig. 1).

In contrast to existing datasets, the proposed dataset con-
sists of videos captured during day and night, as well as on
various days of the week. This information is also provided
in the form of metadata, which we believe is especially cru-
cial since the expected amount of activity is directly related
to the day and time. The proposed dataset is especially
challenging because the anomalies are contextual in nature
and require a deeper understanding of the videos. For ex-
ample, loitering is considered as nominal during daytime,
but anomalous during night. Other examples of anomalous
events include a person carrying a snake, a vehicle mov-
ing in the wrong direction, sudden appearance of several
bikes, etc. as anomalous. Sample frames from nominal and
anomalous activities are given in Fig. 5. To detect such
an anomaly, an algorithm will need to understand the be-
haviors with respect to the day and time. Also, since the
camera alternates between two different views of the same
street, each with an independent nominal baseline, it is chal-
lenging to adapt to such contextual changes. There is also
audio data available in the NOLA dataset, which is not used
in this work but may be helpful in future studies by provid-
ing extra information 3.

5. Experiments

In this section, we compare the continual learning capa-
bility of the proposed algorithm and state-of-the-art VAD
methods. While there are a few approaches [5, 24] which
attempt to continuously learn nominal behaviors from a toy

3The entire dataset will be publicly available

dataset, their objective is to minimize the false alarm rate
by updating their baseline model without considering the
detection delay or TPR performance. However, to the best
of our knowledge, since there is no existing approach that is
designed for continual VAD, we modify two existing state-
of-the-art approaches, namely the Future Frame Prediction
method [17] and the Memory guided Normality (MNAD)
method [26]. The future frame prediction method proposes
a GAN architecture to learn appearance and motion fea-
tures and aims to predict the future frames. Its detection
is based on the assumption that a previously unseen activ-
ity causes a higher prediction error. On the other hand,
the MNAD approach proposes a reconstruction based ap-
proach using autoencoders. We chose these two algorithms
since their codes were readily available, and they could be
tweaked to learn both incrementally and in batches. We also
attempted to implement a more recent algorithm proposed
in [12] since they also propose an object-centric approach
more akin to our proposed algorithm; however, our version
was unable to achieve a score close to their reported results.

Results on the Proposed NOLA Dataset: We first
study the continual learning performance of the proposed
and benchmark algorithms on the new NOLA dataset using
the setup introduced in Sec. 3.1. In this experiment, we
use the k-DNN and experience replay based version of our
algorithm. From Table 2, we can see that the proposed al-
gorithm clearly outperforms the two benchmark algorithms
across all splits. Particularly, the proposed algorithm per-
forms well at detecting anomalous activities such as a vehi-
cle moving in the wrong direction and a person loitering af-
ter midnight. Since the initial training data consists mainly
of videos captured during a weekday, we first see several
false alarms caused due to test videos from weekend, which
exhibits a significantly higher activity level. These false
alarms gradually decrease after each split as we continu-
ally learn new baselines. In contrast, we see performance
decrease for the benchmark algorithms on several splits, in-
dicating that they suffer from catastrophic forgetting. For
instance, although the future frame prediction algorithm has
shown competitive performance on the existing benchmark
datasets, we see that it is not capable of predicting more
complex scenarios. Specifically, even after training on sev-



Figure 6. Fail cases.

Method CL-1 CL-2 CL-3 CL-4 CL-5 CL-6 CL-7 CL-8 CL-9 CL-10
Future Frame Prediction [17] 0.137 0.149 0.173 0.205 0.211 0.232 0.202 0.22 0.245 0.271

MNAD [26] 0.162 0.21 0.219 0.262 0.251 0.289 0.311 0.271 0.295 0.28
Ours 0.235 0.239 0.243 0.296 0.317 0.323 0.325 0.375 0.377 0.401

Table 2. Performance of the proposed detector and recent state-of-the-art approaches across different continual learning splits in terms of
the proposed APD metric.

Figure 7. Comparison of the proposed and state-of-the-art algo-
rithms Liu et al. [17] and Park et al. [26] in terms of learning
from few samples on the ShanghaiTech (top) and UCSD (bottom)
datasets.

eral thousand frames of people using a bicycle, the algo-
rithm gives a high prediction error whenever it sees a similar
activity in the test videos. This result shows why it is im-
perative for VAD algorithms to be evaluated on more com-
prehensive datasets.

Results on Existing Benchmark Datasets: To further
analyze the performance of our model and to provide a
fair comparison with the benchmark algorithms, we also
provide performance evaluation results on the benchmark
datasets using the popular frame-level AUC metric. How-
ever, since these datasets are significantly smaller, it is
not possible to split them similar to the continual learn-
ing framework proposed in Sec. 3.1. Hence, we design a
specific scenario in which the objective is to learn a new
activity type which was unavailable in the training dataset.
Specifically, we choose a person riding a bicycle as our new
nominal activity, since it is the only anomalous case which
is common in UCSD Ped 2 and ShanghaiTech4 datasets that
occurs several times. Fig. 7 shows that our proposed algo-
rithm outperforms the benchmark algorithms even with the

4We choose a subset of the entire dataset to test on since the videos are
from several different cameras. The exact split is described in the Supple-
mentary material.

classical metric on the existing benchmark datasets. Since
the datasets are relatively small here, we employ the incre-
mental version of the proposed algorithm based on exact
kNN distances.

5.1. Discussion

While the proposed detector is able to detect several
kinds of anomalies, it is tuned to learn continuously and
reduce the number of false alarms rather than analyze each
frame intricately. Hence, in Fig. 6, we analyze a few cases
in which the proposed detector is unable to raise an alarm.
In the first case, the anomaly is due to a person carrying
a snake in a crowded street. In the second one, we see a
person deliberately stopping a car by dancing in front of it.
Finally, in the third one, we see a couple arguing with the
restaurant owners. To detect such anomalies, a VAD algo-
rithm needs to have a much deeper understanding of the in-
tricate relationships between each detected object and how
it affects its surroundings. Nevertheless, this also presents
the richness of the proposed NOLA dataset, and how it can
help improve future VAD algorithms.

6. Conclusion
We presented a new framework and a new comprehen-

sive dataset for continual learning in video anomaly detec-
tion. We hope the new problem formulation (Sec. 3) and
the new dataset (Sec. 4) will help guide the future VAD
research towards practical and reproducible solutions. We
also presented a novel video anomaly detector capable of
learning continuously both incrementally and through ex-
perience replay. Through extensive testing on the proposed
NOLA dataset and available benchmark datasets, we show
that the proposed algorithm outperforms two of the state-of-
the-art approaches in continual learning, as well as in terms
of the standard frame-level AUC metric. For future work,
we plan on leveraging audio and video in a multi-modal



setup for improved detection performance.
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