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Abstract

Anomaly detection in videos has been attracting an in-
creasing amount of attention. Despite the competitive per-
formance of recent methods on benchmark datasets, they
typically lack desirable features such as modularity, cross-
domain adaptivity, interpretability, and real-time anoma-
lous event detection. Furthermore, current state-of-the-
art approaches are evaluated using the standard instance-
based detection metric by considering video frames as in-
dependent instances, which is not ideal for video anomaly
detection. Motivated by these research gaps, we propose a
modular and unified approach to the online video anomaly
detection and localization problem, called MOVAD, which
consists of a novel transfer learning based plug-and-play
architecture, a sequential anomaly detector, a mathemati-
cal framework for selecting the detection threshold, and a
suitable performance metric for real-time anomalous event
detection in videos. Extensive performance evaluations
on benchmark datasets show that the proposed framework
significantly outperforms the current state-of-the-art ap-
proaches.

1. Intoduction

With the increasing demand for security, increasing stor-
age and processing capabilities, and decreasing cost of elec-
tronics, surveillance cameras have been widely deployed
[50]. Due to the exponential increase in the number of
CCTV cameras, the amount of video generated far sur-
passes our ability to manually analyze it. Automated de-
tection of anomalies in video is challenging since the def-
inition of “anomaly” is ambiguous – any event that does
not conform to “normal” behaviors can be considered as an
anomaly. For example, a person riding a bike is usually a
nominal behavior, however, it may be considered as anoma-
lous if it occurs in a restricted space.

Specifically, due to the important role video anomaly de-
tection plays in ensuring safety, security, and sometimes

prevention of potential catastrophes, a major functionality
of a video anomaly detection system is the real-time deci-
sion making capability. While there is a lot of prior work on
anomaly detection in surveillance videos, they mainly focus
on offline localization of anomaly in video frames follow-
ing an instance-based binary hypothesis testing approach
and ignoring the online (i.e., real-time) detection of anoma-
lous events. For example, most of the existing works, e.g.
[14, 22, 50], employ a video normalization technique that
requires an entire video segment for computation. They also
typically depend on the assumption that there is an anomaly
in the video segment. In practice, this assumption either will
not hold for short video segments (on the order of minutes)
or will cause long delays in detecting anomalous events for
sufficiently long video segments (on the order of days).

The automated video surveillance literature lacks a clear
distinction between online anomalous event detection and
offline anomalous frame localization [22, 14, 34, 32, 29].
While the commonly used frame-level AUC (area under the
ROC curve), which is borrowed from the instance-based bi-
nary hypothesis testing, might be a suitable metric for local-
izing the anomaly in video frames, it ignores the temporal
nature of videos and fails to capture the dynamics of de-
tection results, e.g., a detector that detects a late portion of
an anomalous event and alarms the user after a long delay
can achieve the same frame-level AUC as the detector that
quickly detects the anomalous event and timely alarms the
user but misses some anomalous frames afterwards. While
minimizing the delay in detecting an anomalous event is
critical [28], it is also necessary to control the false alarm
rate. Hence, a video anomaly detector should aim to judi-
ciously raise alarms in a timely manner.

For practical implementations, it is unrealistic to assume
the availability of sufficient training data such that it en-
compasses all possible nominal events/behaviors. Thus, a
practical framework should also be able to perform few-
shot adaptation to new nominal scenarios over time. This
presents a novel challenge to the current approaches dis-
cussed in Section 2 as their decision functions heavily de-
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pend on Deep Neural Networks (DNNs) [8]. DNNs typi-
cally require a large amount of training data to learn a new
nominal pattern or exhibit the risk of catastrophic forgetting
with incremental updates [16].

Another limitation of existing methods is the lack of in-
terpretability due to the inclination towards end-to-end deep
learning based models, leading to a semantic gap between
the visual features and the real interpretation of events
[31]. While such models perform well on some benchmark
datasets, i.e., they are easily able to detect a certain cat-
egory of anomalies, they cannot adequately generalize to
other types of anomalies. For example, [31, 39, 29] propose
a pose estimation based framework, and hence are only able
to detect human-related anomalies. Moreover, there is no
straightforward way to modify such methods to target a dif-
ferent class of anomaly since they are based on intricately
designed neural networks.

Our goal in this paper is to present a more systematic
framework for video anomaly detection and localization,
and tackle practical challenges such as few-shot adaptation,
which is largely unexplored in the existing literature. In
summary, our contributions in this paper are as follows:

• We present a systematic unified framework for online
event detection and offline frame localization for video
anomalies, and propose a new performance metric for
online event detection.

• We propose a modular transfer learning based anomaly
detection architecture which can be easily modified to
target specific anomaly categories and can easily adapt
to new scenarios using a few samples (cross-domain
adaptivity).

• We introduce a statistical technique for the selection of
detection threshold to satisfy a desired false alarm rate.

2. Related Works
There is a fast-growing body of research investigating

anomaly detection in videos. A key component of com-
puter vision problems is the extraction of meaningful fea-
tures. In video surveillance, the extracted features should
be capable of capturing the difference between nominal
and anomalous events within a video [8]. While some
methods use supervised learning to train on both nominal
and anomalous events [21, 18], the majority of existing re-
search is concentrated on semi-supervised learning due to
the limitations in the availability of annotated anomalous
instances. Early anomaly detection methods used hand-
crafted approaches which extract different types of mo-
tion information in the form of histogram of oriented gra-
dients (HOGs) [3, 5] and optical flow. Another category
is sparse coding-based methods [49], which were used to
learn a dictionary of normal sparse events, and attempt to

detect anomalies based on the reconstructability of video
from the dictionary atoms. For example, [30] uses sparse
reconstruction to learn joint trajectory representations of
multiple objects. These approaches, while computationally
inexpensive, often fail to capture complex anomalous pat-
terns. The recent literature however has been dominated
by Convolutional Neural Network (CNN) based methods
[11, 12, 26, 37, 41, 47, 29, 34, 14] due to their signifi-
cantly superior detection performance. Recently, transfer
learning based object detection methods have also been fre-
quently used [7, 8, 14, 10] to learn appearance features.
The neural network-based methods can be broadly segre-
gated into reconstruction-based methods [11, 36, 4, 14] and
prediction-based methods [22, 24, 40]. However, these
CNNs require a significant amount of training to adapt to
a new scenario. Hence, recently few-shot learning has
been gaining attention in the computer vision literature
[17, 45, 42, 46, 23, 24]. However, no significant progress
has been made yet in few-shot scene adaptation for video
surveillance. Hence, in this work, we primarily compare our
few-shot adaptation performance with [24], which proposes
a meta-learning algorithm for cross-domain adaptivity.

3. Proposed Method

3.1. Motivation

In the recent anomaly detection literature, most of the
proposed methods consist of training a deep neural network
on available nominal samples. However, such an approach
has several shortcomings. First, the applicability of such a
method is limited to a few scenarios where there is a dras-
tic change in the appearance or motion of an object. In [7],
it is shown that modifying the benchmark datasets results
in a significant drop in the performance of state-of-the-art
algorithms. Second, to the best of our knowledge, there is
no existing method that can be easily modified or extended
to a new category of anomalies. For example, even recent
algorithms such as [48, 22, 33] cannot detect (or be mod-
ified to detect) anomalies pertaining to changes in human
poses. Third, because of the extensive use of end-to-end
learning in recent algorithms, the models lack interpretabil-
ity. While there are certain supervised methods, e.g., [43],
which are capable of recognizing the type of anomaly, they
depend on the availability of anomalous data. Finally, ex-
isting methods also lack a clear procedure for incorporat-
ing new knowledge, and would likely necessitate significant
changes to the existing architecture.

Motivated by these shortcomings, we propose a modu-
lar framework, called Modular Online Video Anomaly De-
tector (MOVAD), consisting of deep learning-based feature
extraction and statistical anomaly detection, as shown in
Fig. 1. In particular, transfer learning based convolu-
tional neural networks (CNNs) and recurrent neural net-
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Figure 1: Proposed MOVAD framework. At each time t, neural network-based feature extraction module provides location
(center coordinates and area of bounding box), appearance (class probabilities), global motion (optical flow), and local
motion (pose estimation) features to the statistical anomaly detection module, which computes kNN distance for anomaly
evidence using a fully connected neural network, and sequentially decides for anomalous events using an RNN. In human
pose estimation, the single person pose estimation (SPPE) is converted to multi-person pose features.

works (RNNs) are used to extract informative features, fol-
lowed by a novel kNN-based neural network and RNN-
based sequential anomaly detector.

The choice of separating feature extraction module and
decision module also enables theoretical performance anal-
ysis and a closed-form expression for the detection thresh-
old. In the following sections, we discuss our framework in
detail.

3.2. Transfer Learning-Based Feature Extraction

In general, the end-to-end training of DNNs for video
anomaly detection necessitates focusing on a particular as-
pect in which anomalies may occur, such as object appear-
ance or motion or pose, and extracting only those features.
However, even in the same scene, anomalous events may
be manifested in different aspects. Hence, advanced video
anomaly detectors should utilize features from multiple as-
pects together. For instance, biological vision systems ex-
tracts different features in the visual cortex such as appear-
ance, global motion, and local motion [1]. To this end,
we propose a flexible feature extraction module that can
work with various modalities, which enables a plug-and-
play modular architecture. This means although appear-

ance, global motion, and local motion features are con-
sidered in this paper, the proposed framework can be eas-
ily modified to add new feature extractors or remove exist-
ing ones. Furthermore, entirely retraining a video anomaly
detector for new scene/domain is typically not necessary
since most domains share the same feature types (appear-
ance, global motion, local motion, etc.). As a result, to sig-
nificantly reduce the training computational complexity, a
transfer learning approach is utilized in the proposed frame-
work. We next explain the considered feature extractors,
which work in parallel as shown in Fig. 1.

Object Appearance: A pre-trained object detection sys-
tem is used to detect objects and extract appearance and spa-
tial features. Since we do not assume any prior knowledge
about the type of anomalies, and hence by extension the
object classes, we use a model trained on the MS-COCO
dataset. For online anomaly detection, the real-time oper-
ation is a critical factor, and hence, we currently prefer the
You Only Look Once (YOLO) [38] algorithm, specifically
YOLOv4, in our implementations. It should be noted that
the choice of the object detector is not critical for the pro-
posed framework, and can be adjusted according to the ap-
plication. Using the object detector, we extract the bound-
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ing box (location) as well as the class probabilities (appear-
ance) for each object detected in a given frame. Instead
of directly using the bounding box coordinates, we instead
compute the center and area of the box and leverage them as
our spatial features. During testing, any object belonging to
a previously unseen class and/or deviating from the known
nominal paths contributes to an anomalous event alarm.

Global Motion: Apart from spatial and appearance fea-
tures, capturing the motion of different objects is also criti-
cal for detecting anomalies in videos. Hence, to monitor the
contextual motion of different objects, we propose using a
pre-trained optical flow model such as Flownet 2 [13]. We
hypothesize that objects with an unusually high/low optical
flow intensity would exhibit an anomalous behavior. Thus,
the mean and variance are for each detected object are used
as our global motion features.

Local Motion: To study the social behavior in a video,
it is an important factor to study the human motion closely.
For inanimate objects like cars, trucks, bikes, etc., moni-
toring the optical flow is sufficient to judge whether they
portray some sort of anomalous behavior. However, with
regard to humans, we also need to monitor their poses to
determine whether an action is anomalous or not. Hence,
using a pre-trained multi-person pose estimator such as Al-
phaPose [9] is proposed to extract skeletal trajectories.

3.3. Statistical Anomaly Detection

Anomaly Evidence: Given the various extracted fea-
tures, the next step in the proposed framework is to com-
pute an anomaly evidence score for each video frame in an
online fashion. Due its favorable characteristics, such as in-
terpretability and theoretical tractability, we use k-nearest-
neighbor (kNN) distance as an anomaly evidence. For a fea-
ture vector Xt,i ∈ Rm representing each object i in frame
t, our objective is to compute its Euclidean distance Dt,i

to the kth nearest feature vector in the nominal training set.
Since kNN distance computation becomes expensive with
increasing training size, for scalability, we propose training
a fully connected neural network with parameters θ, which
takes Xt,i as the input and gives an accurate approximation
D̃t,i(θ) toDt,i. The objective function for training the kNN
neural network is given by

min
θ

1

N

N∑
j=1

(Dj − D̃j(θ))
2 + λf(θ), (1)

whereN is the number of feature vectors in the training set,
λf(θ) is the regularization term. The number of neighbors
k determines a trade-off between sensitivity to anomalies
and robustness to nominal outliers. While smaller k values
makes the system more sensitive to real anomalies, it may
also make the system more vulnerable to nominal outliers.
However, the choice of k is not critical for the detection

performance since the proposed sequential detection mod-
ule does not directly decide on the anomaly evidences. As
shown next, through the internal memory of the RNN struc-
ture, it gathers the evidences to detect anomalous events,
hence does not typically raise an alarm due to a single evi-
dence due to an outlying frame.

Online Anomaly Detection: To accommodate the tem-
poral continuity of video data and detect anomalous events
in an online fashion, a sequential statistical decision mak-
ing method based on RNN is proposed. The anomaly ev-
idence scores (i.e., kNN distances) from streaming video
frames provide an informative time series data which typ-
ically takes large values when the anomalous event starts.
However, to avoid false alarms due to outlying large evi-
dences from nominal frames, the proposed framework does
not decide using individual evidences, but instead utilizes
the temporal information inherent in the evidence time se-
ries (i.e., an anomalous event consists of a number of suc-
cessive anomalous frames). Specifically, it takes the stream-
ing kNN distances {D̃t} as input and updates an internal
state, which is then passed through ReLU activation func-
tion to yield the decision statistic st. The time series {D̃t} is
obtained by taking the largest kNN distance among objects
in each frame, i.e., D̃t = maxi D̃t,i. The output neuron in
RNN compares st with a threshold h to raise an alarm if
st ≥ h or continue with the next frame otherwise. Note that
the RNN structure can be expanded to accept multiple time
series (in addition to kNN distances) and to have deeper
layers if desired. While kNN distances are available for the
nominal class, there is no such scores for the anomaly class
to train RNN in the considered semi-supervised setup. Syn-
thetic kNN distances are generated uniformly in the inter-
val (Dα, 2Dmax) where α is a statistical significance level
(e.g., α = 0.05), Dα is the (1 − α) percentile of nomi-
nal distances in the training set, and Dmax is the maximum
nominal distance in the training.

To circumvent the training with synthetic data, and ob-
tain a closed-form expression for the threshold h, we also
propose a simplified decision rule. Motivated by the re-
semblance of the memory (internal state) and ReLU op-
erations of RNN with the minimax optimum sequential
change detection algorithm CUSUM [2], we consider fixing
the RNN weights to obtain the simplified decision statistic
s̃t = max{s̃t−1 + δt, 0}. In this update rule, the weights
of internal state and input are set to one, where the input
δt = D̃m

t − Dm
α is the normalized kNN distance, where

m is the dimensionality of feature vectors Xt,i. In our ex-
periments, the simplified detector gave very similar results
to the general RNN detector. With the weights set to one,
there is no need to train the RNN, and the simplified deci-
sion statistic s̃t lends itself to theoretical analysis to derive
a closed-form expression for the threshold h, as explained
next.
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Theorem 1 As the training size grows (N →∞), the false
alarm rate of the proposed simplified detector based on s̃t
is upper bounded by FAR ≤ e−ω0h and the threshold h
can be set as

h =
− log β

ω0
(2)

to asymptotically satisfy a desired false alrm constraint
FAR ≤ β. The constant ω0 is computed from the train-
ing data and given by

ω0 = vm − θ −
1

φ
W
(
−φθe−φθ

)
, (3)

θ =
vm

evmD
m
α
,

whereW(·) is the Lambert-W function, vm = πm/2

Γ(m/2+1) is
the constant for the m-dimensional Lebesgue measure (i.e.,
vmd

m
α is the m-dimensional volume of the hyperball with

radius dα), and φ is the upper bound for δt.

Proof. See the supplementary file.
Although the expression for ω0 looks complicated, all

the terms in Eq. (3) can be easily computed. Particularly,
vm is directly given by the number of featuresm,Dα comes
from the training phase, φ is also found in training, and fi-
nally there is a built-in Lambert-W function in popular pro-
gramming languages such as Python and Matlab. Hence,
given the training data, ω0 can be easily computed, and the
threshold h can be chosen using Eq. (2) to asymptotically
achieve the desired false alarm rate β ∈ (0, 1).

Decision threshold h is a key parameter that is common
to all existing anomaly detection algorithms, and yet is often
overlooked. Since an alarm is raised when the test statistic
crosses the threshold, choosing an appropriate threshold is
critical for controlling the number of false alarms and min-
imizing the need for human involvement. In a practical set-
ting, without a clear procedure for selecting the decision
threshold, an exhaustive empirical process is needed to cal-
ibrate the threshold for an acceptable false alarm rate.

New Performance Metric for Online Detection: Low
detection delay is a crucial requirement in most video-
related applications such as autonomous driving [20] and
automated video surveillance. However, the detection de-
lay, which is the time required by an algorithm to detect an
anomalous event, is largely unexplored in the field of video
anomaly detection. The popular performance metric in the
video anomaly detection literature, AUC, cannot effectively
evaluate the performance of online anomaly detection al-
gorithms [19]. Hence, we present a new performance met-
ric called APD (Average Precision as a function of Delay),
which is based on average detection delay and precision.
The proposed delay metric is given by

APD =

∫ 1

0

P (γ) dγ, (4)

where γ denotes the normalized average detection delay,
and P denotes the precision. The average detection delay
is normalized by the largest possible delay either defined by
a performance requirement or the length of natural cuts in
the video stream such as the video segments in the bench-
mark datasets (See Sec. 4.1).

Offline Localization: Once an anomalous event is de-
tected, the detection instance is marked as the starting point,
and the decision statistic is updated as usual to determine
the end point. When the decision statistic drops consecu-
tively for a number of frames (e.g., five frames is found to
be a good number in our experiments), the beginning of the
drop window is marked as the end point. Finally, the frames
between the start and end points are labeled as anomalous.

Implementation Details: In our implementation, we fix
the number of neighbors as k = 10. However, as indicated
in Section 3.3, the choice of k is not sensitive and does not
significantly affect the performance of the detector. The de-
tection performance is controlled by the decision threshold
h, which can be mathematically set by following Eq. (2).
For the kNN regression network, we use a fully connected
deep neural network with 3 hidden layers consisting of 20
neurons each. We empirically chose the simplest network
that gave a sufficiently low prediction error. The feature
vector is 18-dimensional for each detected object, and con-
sists of 15 class probabilities (appearance), mean and vari-
ance of optical flow in the bounding box (global motion),
and prediction error of pose if human (local motion). Global
and local motion features are normalized to [0,1] using the
min and max values from the training data.

4. Experiments
In this section, we first briefly discuss the benchmark

datasets and the evaluation metrics. Then, we provide a de-
tailed comparison between the proposed algorithm and the
state-of-the-art algorithms in terms of online detection and
offline localization. We also evaluate our few-shot adapta-
tion performance.

4.1. Datasets

We consider four publicly available benchmark datasets,
namely the CUHK Avenue dataset, the UCSD pedestrian
dataset, the ShanghaiTech campus dataset, and the UR fall
dataset.

UCSD Ped 2: The UCSD pedestrian dataset is one
of the most widely used video anomaly detection datasets.
Due to the low resolution of the UCSD Ped 1 videos, we
only consider the UCSD Ped 2 dataset. The Ped 2 dataset
consists of 16 training videos and 12 test videos. The
anomalous events are caused due to vehicles such as bicy-
cles, skateboards and wheelchairs. Despite being widely
used as a benchmark dataset, most anomalies are obvious
and can be easily detected from a single frame.
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CUHK Avenue: Another popular dataset is the CUHK
Avenue dataset, which consists of short video clips taken
from a single outdoor surveillance camera looking at the
side of a building with a pedestrian walkway in front of it.
It contains 16 training and 21 test videos with a frame reso-
lution of 360 × 640.

ShanghaiTech: The ShanghaiTech dataset is one of the
largest and most challenging datasets available for anomaly
detection in videos. It consists of 330 training and 107 test
videos from 13 different scenes, which sets it apart from
the other available datasets. The resolution for each video
frame is 480 × 856.

UR Fall: While the UR fall dataset is not popularly used
for video anomaly detection, it has recently been proposed
for testing the generalization capability of anomaly detec-
tion algorithms [24]. This dataset contains 70 depth videos
collected with a Microsoft Kinect camera in a nursing home
and the anomalies consist of a person falling in a closed
room.

4.2. Results

Online Detection: Since the proposed online detection
formulation is event-based as compared to frame-based, it
only considers an anomaly as a single event irrespective of
the duration over which it occurs. In this setup, we present
our results only on the ShanghaiTech dataset as the UCSD
and CUHK Avenue datasets have fewer than 50 anoma-
lous events, which is not enough for a reliable average per-
formance comparison. A common technique used by sev-
eral recent works [22, 14, 31, 33] is to normalize the com-
puted statistic for each test video independently, including
the ShanghaiTech dataset. However, this methodology can-
not be implemented in an online (real-time) system as it
requires the prior knowledge of the minimum and maxi-
mum values the statistic might take. Moreover, many re-
cent methods [14, 24, 32] do not have their implementation
details/code publicly available, while others are end-to-end
[32, 34, 39] and cannot be implemented to work in an online
fashion. Hence, we compare our method with the online
versions of [22, 31, 27]. As shown in Fig. 2, our proposed
algorithm achieves a better performance than the other algo-
rithms in terms of quick detection and achieving high pre-
cision in alarms. This result is also summarized in Table 1
in terms of the APD values.

Threshold Selection: We next evaluate the non-
asymptotic use of the asymptotic threshold expression given
in Eq. (2). As shown in Fig. 3, even with the limited data
size of the CUHK Avenue dataset, the derived expression
satisfies the desired upper bound on the false alarm rate,
which corresponds to a lower bound on the false period (in-
verse rate) in the figure.

Offline Localization: To show the offline localization
capability of our algorithm, we also compare our algorithm

Figure 2: Comparison of the proposed and the state-of-the-
art algorithms Liu et al. [22] and Morais et al. [31] in terms
of online detection capability. The proposed algorithm has a
significantly higher precision for any given detection delay.

Online Detection
Methodology APD
Liu et al. [22] 0.504

Morais et al. [31] 0.324
Luo et al. [27] 0.447

Ours 0.705

Table 1: Online detection comparison in terms of the pro-
posed APD metric on the ShanghaiTech dataset. Higher
APD value represents a better online anomaly detection per-
formance.

Offline Localization
Methodology CUHK Avenue UCSD Ped 2 ShanghaiTech
MPPCA [15] - 69.3 -
Del et al. [6] 78.3 - -

Conv-AE [11] 80.0 85.0 60.9
ConvLSTM-AE[25] 77.0 88.1 -

Growing Neural Gas [44] - 93.5 -
Stacked RNN[26] 81.7 92.2 68.0
Deep Generic [12] - 92.2 -

GANs [35] - 88.4 -
Future Frame [22] 85.1 95.4 72.8

Skeletal Trajectory [31] - - 73.4
Multi-timescale Prediction [39] 82.85 - 76.03
Memory-guided Normality [33] 88.5 97.0 70.5

Ours 88.7 97.2 73.62

Table 2: Offline anomaly localization comparison in terms
of frame-level AUC on three datasets.

to a wide range of state-of-the-art methods, as shown in
Table 2, using the frame-level AUC criterion. The pixel-
level criterion, which focuses on the spatial localization
of anomalies, can be made equivalent to the frame-level
criterion through simple post-processing techniques [34].
Hence, for offline anomaly localization, we consider frame-
level AUC criterion. While [14] recently showed significant

9881



Target Methods 1-shot (K=1) 5-shot (K=5) 10-shot (K=10)
UCSD Ped 2 Pre-trained (ShanghaiTech) 81.95 81.95 81.95

Pre-trained (UCF Crime) 62.53 62.53 62.53
r-GAN (ShanghaiTech) 91.19 91.8 92.8
r-GAN (UCF Crime) 83.08 86.41 90.21

Ours 93.19 95.91 96.01
CUHK Avenue Pre-trained (ShanghaiTech) 71.43 71.43 71.43

Pre-trained (UCF Crime) 71.43 71.43 71.43
r-GAN (ShanghaiTech) 76.58 77.1 78.79
r-GAN (UCF Crime) 72.62 74.68 79.02

Ours 80.18 80.21 80.68
UR Fall Pre-trained (ShanghaiTech) 64.08 64.08 64.08

Pre-trained (UCF Crime) 50.87 50.87 50.87
r-GAN (ShanghaiTech) 75.51 78.7 83.24
r-GAN (UCF Crime) 74.59 79.08 81.85

Ours 86.11 88.7 91.28

Table 3: Few-shot scene adaptation comparison of the proposed and the state-of-the-art [24] algorithms in terms of frame-
level AUC. The proposed algorithm is able to quickly adapt to new scenarios.

Figure 3: Threshold selected according to Eq. (2) satis-
fies the desired lower bound on false alarm period (i.e., up-
per bound on false alarm rate) even in the non-asymptotic
regime with the finite sample size of the CUHK Avenue
dataset.

gains over the other algorithms, their methodology of com-
puting the average AUC over an entire dataset gave them
an unfair advantage. Specifically, as opposed to determin-
ing the AUC on the concatenated videos, first the AUC for
each video segment was computed and then those AUC val-
ues were averaged. As shown in Table 2, our proposed al-
gorithm outperforms the existing algorithms on the UCSD
Ped 2 and CUHK Avenue datasets, and performs compet-
itively on the ShanghaiTech dataset. The multi-timescale
framework [39] is the only one that outperforms ours on
the ShanghaiTech dataset since the anomalies are mostly

caused by previously unseen human poses and [39] exten-
sively monitors them using a past-future trajectory predic-
tion based framework. However, this causes their perfor-
mance to severely degrade on the CUHK Avenue dataset,
and similar to [31], they cannot work on the UCSD dataset.

Few-Shot Scene Adaptation: Our goal here is to com-
pare the few-shot scene adaptation capability of the pro-
posed algorithm and see how well it can generalize to new
scenarios. In this case, we only use a few scenes from a spe-
cific scenario to adapt. However, few-shot scene adaptation
is mostly unexplored and to the best of our knowledge only
[24] discusses it. Hence, following the experimental setup
defined in [24], we use K-shots to adapt to a new scenario,
where 1-shot is a sequence of 10 frames. From [24], we use
the following baselines for comparison.

Pre-trained: This baseline learns the model from videos
available during training, then directly applies the model in
testing without any adaptation.

r-GAN: We also compare with a few-shot scene-adaptive
anomaly detection model using a meta-learning framework
proposed in [24]. They use a GAN-based framework similar
to [22] and MAML algorithm for meta-learning.

As compared to the pre-trained and r-GAN models,
which need considerable training on either the Shang-
haiTech or UCF Crime [43] dataset, our transfer learn-
ing based algorithm (pre-trained on generic datasets such
as MS-COCO) is able to leverage our optical flow model
which requires minimal computation to establish a baseline
and adapt the decision parameter h to a new scene. Due
to the lack of available training data, we are unable to use
the local motion and appearance features meaningfully, and
hence our features are only dependant on the optical flow
statistics. However, as shown in Table 3, we are still able
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to outperform the compared methods in terms of the frame-
level AUC.

(a) CUHK Avenue

(b) UCSD

Figure 4: The proposed model is able to interpret the cause
of the anomaly correctly.

4.3. Ablation Study

In Table 4, we present the results for each module of the
proposed MOVAD framework on the ShanghaiTech dataset.
While it is clear that optical flow is the major contributor
among all the modules in this dataset, each module serves
a specific purpose. In this dataset, although several re-
cent works perform closely to the proposed framework, a
distinguishing advantage of MOVAD is its interpretability.
By leveraging the statistical nature of our decision making
module, it is possible to determine the cause of increase in

Figure 5: The advantage of sequential anomaly detection
over a single-shot detector. It is seen that a sequential de-
tector can significantly reduce the number of false alarms.

ShanghaiTech
Module AUC

Object Detection 0.594
Optical Flow 0.703

Pose Estimation 0.652

Table 4: Performance of each module in terms of the frame-
level AUC on the ShanghaiTech dataset.

the decision statistic. In Fig. 4, we present a sample sce-
nario from the CUHK Avenue and UCSD datasets, in which
the proposed detector is able to evaluate the statistics from
each module and justify the cause of the anomaly. However,
since there is no ground truth available in terms of the de-
scription of the anomaly, we were unable to quantitatively
evaluate the interpretability performance of MOVAD.

Impact of Sequential Detection: To emphasize the sig-
nificance of the proposed sequential detection method, we
compare a nonsequential version of our algorithm by ap-
plying a threshold to the instantaneous anomaly evidence
δt (Sec. 3.3), which is similar to the approach employed
by many recent works [22, 43, 14]. As shown in Fig. 5,
the proposed sequential statistic handles noisy evidence by
integrating recent evidence over time. On the other hand,
the instantaneous anomaly evidence is more prone to false
alarms since it only considers the noisy evidence available
at the current time to decide. Specifically, without sequen-
tial detection, the APD presented in Table 1 for the proposed
framework reduces to 0.673.

5. Conclusion and Discussions
For video anomaly detection, we presented a modu-

lar framework called MOVAD, which consists of an in-
terpretable transfer learning based feature extractor, and a
novel kNN-RNN based sequential anomaly detector. Math-
ematical analysis was provided for false alarm rate and
threshold selection. Following the timely detection require-
ment in practical settings, MOVAD first detects anomalous
events in an online fashion, and then deals with localizing
the anomalous video frames. Online detection of anoma-
lous events is largely overlooked in the video anomaly
detection literature, thus a new performance metric was
also introduced to compare algorithms in terms of online
anomaly detection in videos. Through extensive testing on
the benchmark datasets, we show that MOVAD significantly
outperforms the state-of-the-art methods for online detec-
tion while performing competitively for offline localization.

While being able to capture anomalies in various video
aspects, such as object appearance and motion, the proposed
method currently is not optimized for specific anomaly
types. For instance, it is not able to detect unexpected hu-
man poses as the optical flow does not change significantly
(see Supplementary). For future work, we plan to focus on
continual and self-supervised learning for MOVAD.
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