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1. Proof of Theorem 1
In [1][page 177], for CUSUM-like algorithms with inde-

pendent increments, such as MOVAD with independent δt,
a lower bound on the average false alarm period is given as
follows

E∞[T ] ≥ eω0h,

where h is the detection threshold, and ω0 ≥ 0 is the solu-
tion to E[eω0δt ] = 1.

To analyze the false alarm period, we need to consider
the nominal case. In that case, since there is no anomalous
object at each time t, the selection of object with maximum
predicted kNN distance in D̃t = maxi D̃t,i does not nec-
essarily depend on the previous selections due to lack of an
anomaly which could correlate the selections. Hence, in the
nominal case, it is safe to assume that δt is independent over
time.

We firstly derive the asymptotic distribution of the
frame-level anomaly evidence δt in the absence of anoma-
lies. Its cumulative distribution function is given by

P (δt ≤ y) = P ((max
i
{D̃t,i})m ≤ Dm

α + y).

It is sufficient to find the probability distribution of
(max

i
{D̃t,i})m, the mth power of the maximum kNN dis-

tance among objects detected at time t. As discussed above,
choosing the object with maximum distance in the absence
of anomaly yields independent m-dimensional instances
{Xt} over time, which form a Poisson point process. The
nearest neighbor (k = 1) distribution for a Poisson point
process is given by

P (max
i
{D̃t,i} ≤ r) = 1− exp(−Λ(b(Xt, r)))

where Λ(b(Xt, r)) is the arrival intensity (i.e., Poisson rate
measure) in the m-dimensional hypersphere b(Xt, r) cen-
tered at Xt with radius r [2]. Asymptotically, for a large
number of training instances as M2 → ∞, under the
null (nominal) hypothesis, the output of the neural net-
work converges to the actual nearest neighbor distance, and
maxi{D̃t,i} of Xt takes small values, defining an infinites-
imal hyperball with homogeneous intensity λ = 1 around

Xt. Since for a homogeneous Poisson process the inten-
sity is written as Λ(b(Xt, r)) = λ|b(Xt, r)| [2], where
|b(Xt, r)| = πm/2

Γ(m/2+1)r
m = vmr

m is the Lebesgue mea-
sure (i.e.,m-dimensional volume) of the hyperball b(Xt, r),
we rewrite the nearest neighbor distribution as

P (max
i
{D̃t,i} ≤ r) = 1− exp (−vmrm) ,

where vm = πm/2

Γ(m/2+1) is the constant for the m-
dimensional Lebesgue measure.

Now, applying a change of variables we can write the
probability density of (maxi{D̃t,i})m and δt as

f(maxi{D̃t,i})m(y) =
∂

∂y
[1− exp (−vmy)] , (1)

= vm exp(−vmy), (2)
fδt(y) = vm exp(−vmdmα ) exp(−vmy) (3)

Using the probability density derived in (3), E[eω0δt ] =
1 can be written as

1 =

∫ φ

−Dmα
eω0yvme

−vmDmα e−vmydy, (4)

evmD
m
α

vm
=

∫ φ

−Dmα
e(ω0−vm)ydy, (5)

=
e(ω0−vm)y

ω0 − vm

∣∣∣∣∣
φ

−Dmα

, (6)

=
e(ω0−vm)φ − e(ω0−vm)(−Dmα )

ω0 − vm
, (7)

where −Dm
α and φ are the lower and upper bounds forδt =

(maxi{D̃t,i})m−Dm
α . The upper bound φ is obtained from

the training set.
As M2 → ∞, since the mth power of (1 − α)th per-

centile of nearest neighbor distances in training set goes to
zero, i.e., Dm

α → 0, we have

e(ω0−vm)φ =
evmD

m
α

vm
(ω0 − vm) + 1. (8)
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Figure 1. The proposed model gives a false alarm in the first and third case and is unable to detect the anomaly in the second case.

We next rearrange the terms to obtain the form of eφx =

a0(x + θ) where x = ω0 − vm, a0 = evmD
m
α

vm
, and

θ = vm
evmD

m
α

. The solution for x is given by the Lambert-W
function [3] as x = −θ − 1

φW(−φe−φθ/a0), hence

ω0 = vm − θ −
1

φ
W
(
−φθe−φθ

)
. (9)

Finally, since the false alarm rate (i.e., frequency) is the
inverse of false alarm period E∞[T ], we have

FAR ≤ e−ω0h,

where h is the detection threshold, and ω0 is given above.

2. Fail Cases

In Fig. 1, we analyze a few cases in which the proposed
detector is unable to detect the anomaly or raises a false
alarm. In the first case, we see a person standing on the
grass, which is considered as anomalous by the proposed
detector since there is no similar frame of people standing
on the grass in the training data. In the second case, the
detector misses a person using a skateboard since the res-
olution of the video is low and the skateboard is obscured
from view. In the last case, the reflection of a person riding
a bicycle on the window results in a false alarm.

3. Source Code

We have included the source code along with the ex-
tracted features to reproduce the results reported in the pa-
per. However, due to file size constraint, the actual outputs
from the optical flow, object detection and pose estimation
models are not included. The code for the video anomaly
detector is written in Python and has been tested on Ubuntu
18, and the code for the upper bound on the false alarm rate
presented in Theorem 1 is written in MATLAB. More de-
tails can be found in the readme.md file. The entire code
will be made available on GitHub upon the acceptance of
the paper.

References
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