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Abstract

Most video anomaly detection approaches are based on
data-intensive end-to-end trained neural networks, which
extract spatiotemporal features from videos. The extracted
feature representations in such approaches are not inter-
pretable, which prevents the automatic identification of
anomaly cause. To this end, we propose a novel frame-
work which can explain the detected anomalous event in
a surveillance video. In addition to monitoring objects
independently, we also monitor the interactions between
them to detect anomalous events and explain their root
causes. Specifically, we demonstrate that the scene graphs
obtained by monitoring the object interactions provide an
interpretation for the context of the anomaly while perform-
ing competitively with respect to the recent state-of-the-art
approaches. Moreover, the proposed interpretable method
enables cross-domain adaptability (i.e., transfer learning in
another surveillance scene), which is not feasible for most
existing end-to-end methods due to the lack of sufficient la-
beled training data for every surveillance scene. The quick
and reliable detection performance of the proposed method
is evaluated both theoretically (through an asymptotic op-
timality proof) and empirically on the popular benchmark
datasets.

1. Introduction
With an ever-increasing number of closed-circuit televi-

sion (CCTV) cameras and the subsequent amount of video
data generated continuously in real-time, it has now be-
come inefficient and nearly impossible for human opera-
tors to manually analyze the collected data. Particularly, the
ability to detect events in real-time is critical for prevention
of potential catastrophes. Hence, video anomaly detection
has been attracting an increasing amount of research inter-
est. Most of the recent approaches depend on spatiotem-
poral features extracted in a black-box fashion, which offer
limited visual interpretability and cannot explicitly explain
the context of the anomaly.

A crucial task which is neglected by almost all existing
algorithms is interpretable decision making, where a model
is able to accurately interpret the cause of the anomaly. One
of the critical applications of video anomaly detection is to
take appropriate action whenever an anomaly occurs. How-
ever, the suitable response to an anomalous event is often
dependant on its severity, which cannot be accurately as-
sessed without model interpretability. For example, a car
accident might require immediate attention, whereas a per-
son simply jaywalking does not. Recent video anomaly
detection approaches extract appearance and motion fea-
tures of objects detected in the video and raise an alarm
when there is a shift in the learned nominal data patterns
[17, 12, 8, 9]. However, while objects and their relative mo-
tion are the core building blocks of a video, it is generally
the relationships between objects that define its holistic in-
terpretation. For example, a video consisting of a person
and a bike could involve the person riding, standing next to,
or even carrying the bike. Different from the existing ap-
proaches, we here focus on object interactions, in addition
to monitoring objects independently.

Another key observation is that often activities are se-
mantically related to each other, and yet semantic infor-
mation has not yet been leveraged by any existing video
anomaly detection approach. For example, a “person on a
bike” and a “person on a skateboard” are semantically sim-
ilar, and hence even without sufficient training data for one
class, we should be able to infer it from semantically related
classes. Similarly, existing approaches are unable to per-
form cross-domain adaptability, where a model trained on
a surveillance scene is able to achieve competitive perfor-
mance on a completely new scene with few or no additional
training. While a similar task was discussed in [24], the
proposed approach still required some training data from
the new scene to fine-tune its model using meta-learning.
This approach might not always be feasible since it requires
a human operator to manually collect a representative set of
nominal frames which also includes new activities pertain-
ing to the surveillance scene. On the other hand, humans
are able to interpret the cause of the anomaly, and adapt
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the learnt knowledge to different scenes. We believe that
understanding the diversity of relationships between differ-
ent objects is essential for interpretability and cross-domain
adaptability.

In recent years, scene graphs have attracted an increasing
amount of research in image processing due to their inter-
pretability and the ability to generalize to different tasks.
Specifically, scene graphs combine computer vision and
natural language processing to generate a visual graphical
representation of an image, where nodes represent objects
and edges represent the relationships between them. In
this paper, we aim to address the interpretability and cross-
domain adaptability challenges by monitoring each object
individually as well its interactions with other objects in the
scene. Our contributions in this paper can be summarized
as follows:

• We propose a novel interpretable approach for video
anomaly detection using scene graphs.

• We propose a novel semantic embedding based ap-
proach for video anomaly detection using deep metric
learning, which in turn significantly reduces the mem-
ory and computational requirements.

• We extensively evaluate our proposed approach using
publicly available datasets and show that it performs
competitively in addition to being interpretable and
cross-domain adaptable.

To the best of our knowledge, the proposed approach is the
first interpretable and semantic embedding based method in
the video anomaly detection literature.

2. Related Work
Anomaly detection in videos has been extensively stud-

ied for several years. While early approaches focused on
using handcrafted motion features such as histogram of ori-
ented gradients (HOGs) [2, 3, 20], Hidden Markov Mod-
els (HMMs) [18, 16], sparse coding [47, 27], and appear-
ance features [4, 20], recent approaches have been com-
pletely dominated by deep learning algorithms. Recent al-
gorithms can be broadly classified into reconstruction based
approaches [13, 15, 26, 29, 30], which try to classify frames
based on the reconstruction error, and prediction based ap-
proaches [22, 19, 7, 9], which attempt to predict a future
frame, primarily by using generative adversarial networks
(GANs) [14]. More recently, skeletal trajectory based ap-
proaches [28, 33] have been proposed since a large propor-
tion of anomalies in the benchmark datasets involve anoma-
lous human poses. In such algorithms, an RNN architec-
ture is typically used to learn nominal poses, and estima-
tion error is used during testing to detect the level of ab-
normality. Apart from these approaches, [32] proposed a

Figure 1. Proposed video anomaly detection framework. We pro-
pose a two branch pipeline, in which the global monitoring branch
observes the interactions between different objects in an inter-
pretable manner, and the local monitoring branch observes the in-
dividual skeletal pose of each person. Finally, their statistics are
sequentially monitored to quickly and reliably detect anomalous
events.

Siamese network to learn spatiotemporal patches and detect
an anomaly using the dissimilarity between patches. While
these methods perform competitively on the popular bench-
mark datasets, they are completely dependant on complex
neural networks and mostly end-to-end trained. This limits
their interpretability and makes them notoriously difficult
to train on new data, which is crucial in complex sequential
applications such as video anomaly detection. Furthermore,
there is no clear procedure for these methods to adapt to dif-
ferent nominal baselines.

Recently, several visual relationship understanding ap-
proaches have been proposed for image and language re-
lated tasks. A common approach employed by several
methods [23, 48, 41, 5, 39, 37] is to use an off-the-shelf
detector to detect objects of interest and then treat the sec-
ond step as a classification task [23, 48, 41, 5, 39, 38, 21,
36, 40, 42, 44, 45, 46], which takes in features of object
pairs and outputs a label for their relationship. For video
anomaly detection, to the best of our knowledge, we are the
first to propose a visual relationship understanding based
approach.

3. Proposed Technique
3.1. Overall Structure

In the existing video anomaly detection literature, the
singular goal is to detect frames which are unexpected with
respect to the training data. Most detectors train a recon-
struction or prediction based deep learning model on a batch
of video frames, typically in an end-to-end fashion to learn
nominal appearance or motion features. However, we ar-
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gue that for general video surveillance, such a setup is not
optimal since learned visual embeddings are exceedingly
dependant on conditions such as illumination, view point
variation, occlusion, etc. Furthermore, due to the black-box
nature of end-to-end trained neural networks, these models
are not interpretable. Also, the standard framework implic-
itly assumes that sufficient training data is available for each
activity from the target scene where the detector will be de-
ployed [24]. Such an assumption requires a human to manu-
ally annotate hours of videos from each scene to generate an
anomaly-free training dataset, which is far from ideal. Since
humans perceive a visual environment in terms of activities,
we believe that it is more natural and efficient to learn video
activities semantically rather than storing entire frames in
buffer or learning high-dimensional visual embeddings.

Motivated by these shortcomings, we propose a novel
dual-monitoring approach for detecting video anomalies.
The proposed approach consists of two branches of moni-
toring, namely global and local object monitoring, followed
by sequential anomaly detection (Fig. 1). The global object
monitoring branch exclusively observes the interactions be-
tween different objects in the scene and generates a scene
graph, whereas the local object monitoring branch moni-
tors each person in the video independently. The sequential
anomaly detection block, in the end, monitors the statistics
of the two object monitoring blocks to detect anomalous
events in a quick and reliable manner. In the following sec-
tions, we discuss our proposed framework in detail.

3.2. Global Object Monitoring

We aim to capture and monitor the interactions between
pairs of objects in a surveillance video (Fig. 2). Similar to
[46, 43, 23], we propose a visual-semantic approach to de-
tect interactions between object pairs through a scene graph.
A scene graph consists of objects as graph vertices and pred-
icates (i.e., words that relate two objects, such as verb) as
graph edges. The interaction detection network is trained
in a fully supervised fashion using the VRD dataset [23],
which consists of a set of images with object and relation-
ship annotations. Each detected interaction is then moni-
tored for possible anomalies by comparing it with the de-
tected interactions in the nominal training dataset for video
surveillance (e.g., the ShanghaiTech dataset [26]). The out-
put GMstat(t) is a scalar denoting the semantic distance of
the interactions in frame t with respect to the nominal inter-
actions.

Interaction Detection: As shown in Fig. 2, the pro-
posed method first detects the bounding boxes in each frame
and then processes them in pairs. A convolutional neural
network (CNN) is used to extract the individual appear-
ance features from each bounding box separately (Individ-
ual CNN). In parallel, another CNN processes the union
of bounding boxes to extract the joint appearance features

(Joint CNN). The joint and individual appearance features
are concatenated and passed through a multilayer percep-
tron (MLP) to obtain a score vector v1 for each predicate
class present in the VRD dataset, as well as the no-predicate
class. Similarly, the individual appearance features are pro-
cessed by two MLPs to obtain two (K + 1)-dimensional
score vectors v2 and v3, where K denotes the number of
predicate classes. Another score vector v4 is provided by
the Semantic Module which takes the object labels (e.g.,
person and bike) from the Individual CNN and outputs the
score log(qi/q∅) for each predicate class i using the empir-
ical probabilities {qi, . . . , qK , q∅} of the predicate classes
for the considered subject-object pair from the annotated
training data. These prior probabilities provide a base-
line knowledge for predicate prediction. Heuristically, the
possible combinations between two objects is usually lim-
ited. For example, the relationship between a person-bike
pair would usually be “riding” or “on” and would never be
“eat” or “wear”. Thus this allows us to generate an empir-
ical distribution qi = P (pred i|sub, obj). The final step
in interaction detection is summing the four score vectors
v = v1 + v2 + v3 + v4 and applying the softmax function
to compute the predicate class probabilities

pi =
ev(i)∑K+1

i=1 ev(i)
, i = 1, . . . ,K + 1,

where v(i) is the ith element of vector v.

For training the predicate detection/classification net-
work, we augment the well-known cross-entropy loss for
quicker convergence with the contrastive loss [46], which
aims to maximize, for each subject and object, the margin
between the lowest affinity for related objects and the high-
est affinity for unrelated objects:

ms
1(i) = min

j∈X+
i

Φ(si, o
+
j )− max

k∈X−
i

Φ(si, o
−
k ),

mo
1(j) = min

i∈X+
j

Φ(s+i , oj)− max
k∈X−

j

Φ(s−k , oj).
(1)

For subject si, X+
i and X−

i represent the sets of related
and unrelated objects, respectively. Similarly, X+

j and X−
j

are defined for object oj as the sets of related and unre-
lated subjects. Those sets are predetermined from the train-
ing set. Φ(s, o) = 1 − p∅ is the affinity between subject s
and object o, which represents the probability of interaction
between the subject-object pair. In training with the VRD
dataset for each image with M bounding boxes, considering
all N = M(M−1) subject-object pairs the following loss is
computed and backpropagated through the MLPs that pro-
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Figure 2. The global object monitoring branch of the proposed approach detects and monitors interactions between objects. In each video
frame t, it detects the interaction triplets (subject, predicate, object) for the possible object pairs. Predicate can be empty for unrelated
objects. Then, each interaction is monitored by computing its semantic distance to a set of nominal embeddings learned from the training
data. A set of artificial anomalous interaction embeddings are generated to support the metric learning network. Finally, the largest of
semantic distances in frame t is used as the global monitoring statistic GMstat(t) for sequential anomaly detection.

duce v1,v2,v3, as well as the Joint CNN1:

Ld =

N∑
i=1

1

N

[
max{0, α1 −ms

1(i)}+

max{0, α1 −mo
1(i)}

]
− λ log pi∗ ,

(2)

where α1 is the margin threshold, margins below which in-
cur a loss, λ helps combine the cross-entropy loss with the
contrastive loss, and i∗ ∈ {1, . . . ,K+1} denotes the actual
predicate class. Minimizing this loss function, the network
is trained to choose the correct predicate class while maxi-
mizing the affinity between the related subject-object pairs
and minimizing the affinity between the unrelated pairs.

Interaction Monitoring: For each detected interaction
i in each frame t, the (subject, predicate, object) triplet
with the highest probability predicate class is monitored
for possible anomaly evidence. First, the word triplet is
mapped to numerical vectors using a semantic embedding
network, such as the Word2Vec model. Empirically, 300-
dimensional embedding is found to be useful. Then, the
average of the three embeddings, ait, is input to an MLP for
metric learning. The goal with metric learning is to extract
an anomaly absence/presence information from the interac-
tion embedding. To that end, we use another contrastive
loss which minimizes the Euclidean distance between the
nominal embeddings and maximizes the distance between

1Individual CNN is separately trained using only individual objects, not
pairs, as explained in Section 3.6.

nominal and anomalous embeddings. Denoting the metric
learning embedding with g(·), the objective is to minimize
∥g(ait)−g(p)∥ and maximize ∥g(ait)−g(n)∥where ait, p, n
respectively represent the semantic embedding vector of the
anchor, positive, and negative instances. While the posi-
tive instance (i.e., interaction triplet) p is randomly selected
from the nominal training set, the negative instance is ran-
domly sampled from an artificially generated set of anoma-
lous interaction triplets, e.g., person hits person. Note that
generating anomalous (subject, predicate, object) triplets is
a straightforward task and does not require actual anoma-
lous videos. During training, only nominal instances are
used as anchor so that the metric learning MLP learns to
map nominal semantic embeddings close to each other and
away from the anomalous instances through the loss func-
tion

Lm = max{0, α2 + ∥g(a)− g(p)∥−
∥g(a)− g(n)∥}+ µ∥g(a)∥2,

(3)

where α2 serves as the desired margin between the dis-
tance to nominal instances and the distance to anomalous
instances. µ helps combine the contrastive loss with the L2-
regularizer, which ensures small embeddings for nominal
(positive) instances during training.

During testing, the expectation is that the embedding
g(ait) for the anchor instance will be small similar to g(p)
when the detected interaction is nominal and statistically
larger than g(p) when the interaction is anomalous. We use
a scalar embedding g(ait) ∈ R and use the largest embed-
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ding among all detected interactions in a frame as the global
monitoring statistic for anomaly detection in that frame,

GMstat(t) = max
i

g(ait).

3.3. Local Object Monitoring

To study the social behavior in a video, it is important to
study the human motion closely. For inanimate objects like
cars, trucks, bikes, etc., monitoring the optical flow is suffi-
cient to judge whether they portray some sort of anomalous
behavior. However, with regard to humans, we also need
to monitor their poses to determine whether an action is
anomalous or not. Hence, using a pre-trained multi-person
pose estimator such as AlphaPose [10] is proposed to ex-
tract skeletal trajectories. In each frame at time t, pose i is
represented by a set of joint locations in image coordinates
θit =

(
xi
t, y

i
t

)
i=1,...,J

, where J is the number of pose joints.

Figure 3. The local monitoring branch of the proposed approach.
We input the skeletal pose for each person into a message-passing
encoder-decoder network and compute the reconstruction error.

However, due to fluctuating conditions such as view
point variation and occlusion, the extracted skeleton mo-
tions need to be normalized first. This can be broken into
two categories, global body movement and local body pos-
ture. Specifically, global body movement describes the pose
configuration with respect to the environment, whereas the
local posture describes the deformity in the pose, irrespec-
tive of its position in the environment. Since the depth is
missing in a 2-dimensional image coordinate, the shape of
the bounding box is used to normalize the global pose com-
ponent as:

θi,gt = (xi,g
t , yi,gt , wi

t, h
i
t)

xi,g
t =

maxi{xi
t}+mini{xi

t}
2

, yi,gt =
maxi{yit}+mini{yit}

2
,

wi
t = max

i
{xi

t} −min
i
{xi

t}, hi
t = max

i
{yit} −min

i
{yit},

which is then used to normalize the local component as

θi,lt = (xi,l
t , yi,lt ), xi,l

t =
xi
t − xi,g

t

wi
t

, yi,lt =
yit − yi,gt

hi
t

.

Inspired by the recently proposed Gated Recurrent
Unit (GRU) based model called Message-Passing Encoder-
Decoder Recurrent Neural Network [28], we propose the
local monitoring branch shown in Fig. 3, where both the
encoder and decoder networks are divided into two GRU
branches. While one row of GRU processes global features,
the other processes local features.

LMstat(t) = max
i
∥θ̂it − θit∥,

will be of similar magnitude compared to the reconstruction
errors in training, whereas for anomalous frames, it will be
statistically greater than the nominal reconstruction errors.

3.4. Sequential Anomaly Detection

The global and local monitoring statistics from each
frame t are combined zt = [GMstat(t), LMstat(t)] and se-
quentially monitored for possible anomalies (Fig. 1). Both
the largest semantic distance of detected object-object in-
teractions, GMstat(t), and the largest reconstruction er-
ror of human poses, LMstat(t), are expected to take val-
ues similar to those of nominal training dataset and grow
when an anomalous event starts. However, in general it is
not straightforward to determine a separating boundary be-
tween the nominal and anomalous zt values due to several
factors, such as the inherent high variance in nominal and
anomalous video events and the imperfect nature of feature
extraction pipelines. Furthermore, instantaneous anoma-
lous statistics for a frame in zt may easily cause frequent
false alarms. As a result of the temporal nature of anoma-
lous real-world events unfolding in successive video frames,
we consider the following sequential change detection prob-
lem:

zt ∼ f0, t < τ ; zt ∼ f1, t ≥ τ, (4)

where f0 and f1 denotes the nominal and anomalous prob-
ability distributions, and τ represents the anomaly onset
time.

In order to statistically monitor zt in a sequential man-
ner, we measure its Euclidean distance to the nominal train-
ing set Z . In particular, the distance dt to the kth nearest
neighbor (kNN) in Z is computed and compared to a nom-
inal baseline dα to quantify any anomaly evidence in frame
t. The nominal baseline dα is obtained in training as the
(1−α) percentile of the kNN distances of training instances
with respect to each other, where α is a statistical signifi-
cance level such as 0.05. That is, the kNN distance of each
training z vector with respect to the other vectors within
Z is computed, and the distance which is greater than the
(1− α)% of all distances is selected as dα.

During testing, for each vector zt at time t, the proposed
algorithm computes the instantaneous frame-level anomaly
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evidence δt as

δt = log d2t − log d2α. (5)

This specific form of δt enables the asymptotic optimality
result presented in Theorem 1. Finally, we update a sequen-
tial decision statistic st as

st = max{st−1 + δt, 0}, s0 = 0. (6)

We decide that there is an anomaly when the decision
statistic st exceeds the threshold h,

T = min{t : st ≥ h}.

Theorem 1 When the nominal distribution f0(zt) is finite
and continuous, and the anomalous distribution f1(zt) is a
uniform distribution, as the training set grows, the decision
statistic δt converges in probability to the log-likelihood ra-
tio,

δt
p→ log

f1(zt)

f0(zt)
as |Z| → ∞, (7)

i.e., the proposed data-driven detector converges to
CUSUM, which is minimax optimum in minimizing expected
detection delay while satisfying a false alarm constraint
[1]:

min
T

max
τ

max
z1,...,zτ

Eτ [(T − τ)+|z1, . . . ,zτ ] s.t. E∞[T ] ≥ β.

(8)

Eτ denotes the expectation given the anomaly occurs at time
τ , (.)+ = max{., 0}, E∞ indicates the expectation given
that the anomaly never occurs, i.e., E∞[T ] is the expected
false alarm period.

The proof is provided in the supplementary file.

3.5. Anomaly Interpretation

We perform an in-depth analysis to determine which
branch of the proposed approach detected the anomaly. We
begin by examining the decision statistic st and determin-
ing which branch is causing the increase. Hence, after an
alarm is raised at time T , we

• first determine the time instance τ̂ when the test statis-
tic st started to increase since the last time it was zero,
which can be seen as an estimate for the anomaly onset
time,

• then compute the average statistic

d̄n =
1

T − τ̂ + 1

T∑
t=τ̂

dnt , (9)

for each branch n ∈ {global, local}, where (dglobal
t )2+

(dlocal
t )2 = d2t ,

• finally compare d̄global and d̄local with a threshold η to
determine the anomaly source.

For example, if we detect the source of the anomaly as
the global object monitoring branch, then it implies that the
anomaly was caused due to a previously unseen interac-
tion between two objects, and the interaction that causes
GMstat(t) to be large during [τ̂ , T ] is provided as the
anomaly cause. If the source of the anomaly is the local ob-
ject monitoring branch, then it implies that the anomaly was
caused due to an anomalous human action. During training,
we extract fixed length segments from a person’s trajectory
and separate them into local and global features, which are
then input to the proposed model.

3.6. Implementation Details

We use YOLO-v4 object detection model pretrained on
the MS-COCO dataset to generate bounding boxes in the
global monitoring branch. The object detection model is
not fine tuned on the VRD dataset for simplicity. We use
VGG-16 as the Individual CNN model for extracting ap-
pearance features. It is pretrained on the MS-COCO dataset
and then fine tuned on the VRD dataset in an end-to-end
fashion. The Joint CNN model is also a VGG-16 model,
which is initialized using the weights from the Individual
CNN model. During training the Joint CNN model with the
VRD dataset, we follow [46] and independently sample re-
lated and unrelated pairs. Specifically, we sample 128 sub-
jects/objects, and then for each of them choose the related
and unrelated objects/subjects according to Eq. (1). The
model is trained using a learning rate of 0.001 and Adam
optimizer. During inference, we take each object pair and
rank the relationship proposal by multiplying the predicted
subject, object, predicate probabilities. The MLPs in the in-
teraction detection model have two fully-connected layers.
Word2Vec method is used for semantic embedding in the in-
teraction monitoring part. The MLP for metric learning has
three fully-connected layers. We extract pose information
from the videos using AlphaPose [10] and track them across
the video using PoseFlow. The nearest neighbor (k = 1) is
used in the sequential anomaly detection algorithm, along
with the significance level α = 0.05. The overview of the
proposed framework is summarized in Algorithm 1.

4. Experiments
In this section, we evaluate the performance of the pro-

posed approach in terms of interpretability, online anomaly
detection, anomalous frame localization, and cross-domain
adaptability on two benchmark datasets. We consider two
publicly available benchmark datasets, namely the CUHK
Avenue dataset and the ShanghaiTech campus dataset. We
do not consider the UCF-Crime [34] dataset in our evalua-
tions since it is intended for a different formulation of the
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Algorithm 1: Structure of the overall algorithm
1: Input: Video Frames F1, F2, . . .
2: Training phase:
3: Train the interaction detection module in the global

object monitoring branch on VRD dataset using Eq.
(2).

4: Extract semantic embeddings for triplets detected in
the training video frames to form bag of nominal
semantic embeddings.

5: Generate a set of artificial anomalous interactions and
extract its corresponding semantic embeddings.

6: Train the interaction monitoring MLP using Eq. (3).
7: Extract human skeletal pose using AlphaPose and train

the local monitoring branch.
8: Test phase:
9: while st < h do

10: t← t+ 1
11: Get video frame Ft at time instance t.
12: Compute GMstat(t) and LMstat(t) to form zt.
13: Calculate the anomaly evidence δt and decision

statistic st according to Eq. (5) and Eq. (6).
14: end while
15: Declare an anomaly at time t and identify the source

by comparing Eq. (9) to η.

video anomaly detection problem.

4.1. Results

Interpretability: To show the the interpretability perfor-
mance of our proposed approach, we first manually anno-
tated the root cause for each video. However, there are mul-
tiple possible predicates to explain each anomalous activity.
For example, in the case of a person riding a bike, “per-
son on bike” and “person use bike” are both possible ex-
planations. Since it is not feasible to manually annotate all
such possible combinations, we use the Recall@k metric to
evaluate the interpretability performance. Since we are the
first to propose an interpretable model for video anomaly
detection, we are unable to compare our performance with
any other method. The quantitative performance of the ap-
proach is shown in Table 1.

Interpretability
Method Recall@5

Ours 0.373

Table 1. Interpretability performance on the ShanghaiTech dataset.
We compute recall for the top-5 predictions of the proposed detec-
tor by comparing it with the annotated ground truth.

In Fig. 4, we show the qualitative performance of our
model. As demonstrated in the figure, the proposed ap-
proach is able to interpret and explain the true cause of the

anomalies. In the middle column, we visualize the feature
maps from the Joint CNN, where it can be seen that the clas-
sifier is able to learn the interaction between two objects.
On the other hand, existing approaches only learn appear-
ance or motion features, which cannot explain the anoma-
lous object interactions. More qualitative analysis can be
found in the supplementary file.

Cross-Domain Adaptability: Our goal here is to com-
pare the cross-domain scene adaptation capability of the
proposed algorithm and see how well it can generalize to
new scenarios. In this case, we only train our model on
the training videos from a single camera (camera 1) in the
ShanghaiTech dataset and evaluate its performance on the
test videos from the rest of the cameras, and also on the
Avenue dataset. Cross-domain scene adaptation is mostly
unexplored and to the best of our knowledge only [24] dis-
cusses a similar few-shot adaptation concept. However,
the proposed approach discussed in [24] requires several
anomaly-free video frames for adapting their model to the
new scene, which might not always be feasible. Particularly,
a GAN-based framework is used in [24] similar to [22],
and MAML algorithm [11] is used for meta-learning. As
shown in Tables 2 and 3, considering zero-shot adaptability
the proposed approach is able to outperform the state-of-
the-art methods in terms of frame-level AUC. In both of the
considered datasets, behaviors that are considered anoma-
lous are similar, which satisfies our inherent assumption.
Since no zero-shot adaptability result was presented in the
literature, we compared our performance with the methods
whose code is available and suitable for zero-shot adaptabil-
ity. The few-shot adaptable method in [24] requires videos
to adapt to new scenes, hence is not suitable for zero-shot
adaptation.

Anomalous Frame Localization: To show the anomaly
localization capability of our algorithm, we also compare
our algorithm to a wide range of state-of-the-art methods,
as shown in Table 4, using the commonly used frame-
level AUC criterion. The pixel-level criterion, which fo-
cuses on the spatial localization of anomalies, can be made
equivalent to the frame-level criterion through simple post-
processing techniques [31]. Hence, for anomaly localiza-
tion, we consider the frame-level AUC criterion. While [17]
recently showed significant gains over the other algorithms,
their methodology of computing the average AUC over an
entire dataset gave them an unfair advantage. Specifically,
as opposed to determining the AUC on the concatenated
videos, first the AUC for each video segment was computed
and then those AUC values were averaged. As shown in Ta-
ble 4, our proposed algorithm outperforms the existing al-
gorithms on the CUHK Avenue dataset, and performs com-
petitively on the ShanghaiTech dataset. The multi-timescale
framework [33] is the only one that outperforms ours on
the ShanghaiTech dataset since the anomalies are mostly
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Method Cam-1 Cam-2 Cam-3 Cam-4 Cam-5 Cam-6 Cam-7 Cam-8 Cam-9 Cam-10 Cam-11 Cam-12
Stacked RNN [26] 0.6412 0.6083 0.6116 0.6231 0.6834 0.6951 0.6482 0.6294 0.6867 0.6789 0.6924 0.6485

Future Frame Prediction [22] 0.6780 0.6178 0.6632 0.6588 0.6984 0.7351 0.6814 0.6186 0.6743 0.6789 0.6548 0.6509
Ours 0.7429 0.6924 0.7411 0.6914 0.7441 0.7985 0.7763 0.6258 0.7125 0.658 0.7531 0.7038

Table 2. Performance of the proposed detector in terms of frame-level AUC for cross-domain adaptability on different cameras from the
ShanghaiTech Dataset.

Figure 4. An example from the CUHK Avenue and ShanghaiTech datasets showing the interpretability of the proposed approach. The
middle column is a visualization of the Joint CNN features by averaging over the channel dimension, where the white box represents the
location where the anomaly occurs. We show that as opposed to appearance or motion based approaches, the proposed approach learns the
real cause of the anomaly and outputs an interpretable result.

Frame-level AUC
Approach ShanghaiTech Avenue

Stacked RNN [26] 0.643 0.724
Future Frame Prediction [22] 0.652 0.749

Skeletal Trajectory [28] 0.683 0.702

Ours 0.689 0.79

Table 3. Overall performance of each model in terms of frame-
level AUC for cross-domain adaptability when trained on camera
1 from the ShanghaiTech dataset and tested on the entire Shang-
haiTech and Avenue datasets.

Anomaly Localization (AUC)
Method CUHK Avenue ShanghaiTech

Del et al. [6] 78.3 -
Conv-AE [15] 80.0 60.9

ConvLSTM-AE[25] 77.0 -
Growing Neural Gas [35] - -

Stacked RNN[26] 81.7 68.0
Future Frame [22] 85.1 72.8

Skeletal Trajectory [28] - 73.4
Multi-timescale Prediction [33] 82.85 76.03

Ours 85.78 71.18

Table 4. Anomalous frame localization comparison in terms of
frame-level AUC on two datasets.

caused by previously unseen human poses and [33] exten-
sively monitors them using a past-future trajectory predic-
tion based framework.

5. Conclusion

For video anomaly detection, we present an interpretable
framework, which is also capable of zero-shot cross-domain
adaptability. We propose a dual branch pipeline, which
monitors the local and global activities in a video. While
the global branch observes interactions between different
objects, the local branch observes human behaviors. A se-
quential detector statistically monitors both branches for
possible anomalies and determines the root cause of the
anomaly when detected, providing interpretability. The
asymptotic optimality of the proposed sequential detector
is derived in terms of minimizing the average detection de-
lay in the minimax sense while controlling the false alarm
rate. Through extensive testing on the benchmark datasets,
we show that the proposed approach is able to interpret the
cause of detected anomalies and significantly outperforms
the state-of-the-art methods in terms of cross-domain adapt-
ability.
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