
ComplexVAD: Detecting Interaction Anomalies in Video

Furkan Mumcu*

University of South Florida
furkan@usf.edu

Michael J. Jones
Mitsubishi Electric Research Labs (MERL)

mjones@merl.com

Yasin Yilmaz
University of South Florida

yasiny@usf.edu

Anoop Cherian
Mitsubishi Electric Research Labs (MERL)

cherian@merl.com

Abstract

Existing video anomaly detection datasets are inadequate
for representing complex anomalies that occur due to the in-
teractions between objects. The absence of complex anoma-
lies in previous video anomaly detection datasets affects
research by shifting the focus onto simple anomalies. To ad-
dress this problem, we introduce a new large-scale dataset:
ComplexVAD. In addition, we propose a novel method to
detect complex anomalies via modeling the interactions be-
tween objects using a scene graph with spatio-temporal
attributes. With our proposed method and two other state-
of-the-art video anomaly detection methods, we obtain base-
line scores on ComplexVAD and demonstrate that our new
method outperforms existing works.

1. Introduction

Video anomaly detection (VAD) has become a popular
research area with important security and public safety appli-
cations due to the massive amount of video surveillance data
being generated which humans cannot effectively monitor.
Video anomaly detection algorithms are crucial for flagging
unusual activity in surveillance video for further review by
human operators. Various formulations of the video anomaly
detection problem have been studied by the research com-
munity. In this paper, we focus on the formulation in which
nominal videos (also called training videos) containing only
normal activities in a particular scene are provided for learn-
ing a model. The goal is to temporally and spatially localize
anomalous activity occurring in test video of the same scene.

We are focused on single-scene video anomaly detection
because it corresponds to a very common use-case: using a
camera to monitor activity at a particular location and alert
someone when unusual activity occurs. In such scenarios,

*Furkan Mumcu did part of this work as an intern at MERL.

what is normal in one scene may not be normal in another.
For a new scene, the idiosyncrasies of that scene would need
to be learned from video of the new scene and not general-
ized from other scenes. For example, something as innocu-
ous as walking across the grass may be anomalous in one
scene, but perfectly normal in another. One can only know
this by viewing normal video of a particular scene. Another
important difference between single-scene and multi-scene
VAD is the presence of location-specific anomalies in single-
scene VAD (i.e. activity that is anomalous in some locations
but not others in a scene). Because there is no overlap in
locations for the difference scenes in multi-scene VAD, such
datasets do not include location-specific anomalies. Thus,
multi-scene VAD is not a generalization of single-scene
VAD. This is an important point that is often overlooked by
researchers in this field.

There have been many datasets introduced for the single-
scene version of video anomaly detection, including UCSD
Ped1 and Ped2 [22], CUHK Avenue [19], Street Scene [26],
NOLA [8], and IITB-Corridor [27]. All of these datasets
contain anomalous activity that mainly involves a single
object or actor, such as a golf cart driving on a pedestrian
walkway, a jaywalker, or a person running, etc. In the real
world, anomalous activity is often not this simple. In this
paper, we introduce the idea of complex anomalies which
are anomalies that involve the interaction of two or more
objects/actors. Some examples of complex anomalies in-
clude a cyclist running into a car, a person falling off of a
skateboard, and a person sitting on a car. Because existing
datasets have very few complex anomalies, we introduce a
new dataset, called ComplexVAD, with many different types
of anomalies involving interactions between two objects. By
introducing this new dataset, we hope to encourage more
complex models of scenes that include modeling of object
interactions. We expect such models to expand the types of
anomalies that can be reliably detected.

In addition to introducing a new dataset and a new direc-



tion for video anomaly detection research, we also propose
a novel method for detecting complex anomalies in video.
In our method, we generate scene graphs by turning frames
into graph representations. Each object of each frame is
extracted (using a multi-class object detector) and treated as
a node in the graph where node features are represented by
the current location, bounding box, motion trajectory for the
next T frames, object class identifier, and skeletal pose if the
object is a person. Each node is then connected with nearby
nodes in the frame if the 3D spatial distance between objects
is below a threshold.

At the end of this process, we have a graph representation
for each frame. We group node-to-node connections which
we simply call node pairs or just pairs, into a set of normal
pairs. We also collect isolated nodes into another set to detect
simple anomalies. Then, we reduce both sets to smaller sets
which we call exemplars by removing redundant instances.
The details of exemplar selection are given in Section 4. For
a given test video, we again compute scene graphs for test
frames and compare node pairs and isolated nodes to the
appropriate exemplar set using distance functions between
object attributes which are explained in Section 4. Any test
instance with a high distance to every nominal exemplar is
considered anomalous.

On the ComplexVAD dataset, we compare our proposed
method against two state-of-the-art video anomaly detection
methods using the frame-level criterion [16], the region-
based detection criterion [26] and the track-based detection
criterion [26]. Our experimental results show that while
our method performs better than existing methods, complex
anomaly detection is a difficult problem in needs of further
investigation.

In summary, we make the following key contributions:

• We introduce a new large-scale video anomaly detec-
tion dataset, named ComplexVAD, to encourage further
research on detecting more difficult complex anomalies.

• We propose a novel video anomaly detection method
based on scene graphs to detect complex anomalies.

• We demonstrate improved results for our proposed
method over two state-of-the-art video anomaly detec-
tion methods which establishes a baseline for the new
ComplexVAD dataset.

2. Related Work
There have been many datasets introduced for the prob-

lem of video anomaly detection. UCSD Ped1 and Ped2 [22]
are early datasets with simple anomalies such as cyclists,
golf carts and people walking in unusual places. CUHK
Avenue [19] is another popular dataset whose anomalies
include people running or walking in unusual directions or
throwing things into the air. Street Scene [26] emphasizes

location-dependent anomalies such as people jaywalking,
cars parked illegally or cars/bikes moving outside of their
designated lanes. IITB-Corridor [27] is a dataset with anoma-
lies such as loitering, left-behind luggage, people running
and people fighting. NOLA [8] is another dataset proposed
to study continual learning in VAD. These datasets are all
single-scene datasets which is our main focus in this paper.

There are also a number of datasets intended for anomaly
detection across multiple scenes. ShanghaiTech [21] in-
cludes videos of 13 different scenes with anomalies such as
cyclists, people with strollers, and people fighting. UCF-
Crime [30] is another multi-scene dataset intended for
weakly supervised version of video anomaly detection in
which anomalous videos are used in addition to normal
videos during training. Anomaly types include people fight-
ing and explosions. UBnormal [1] is a multi-scene dataset
consisting of synthetically generated scenes that include an-
notated anomalies in the training videos. Anomalous activity
includes people running, falling, dancing and jaywalking.

The vast majority of anomalies in all of these datasets
(with the exception of UCF-Crime) involve a single ob-
ject, for example, a person walking in an unusual place,
the appearance of a golf cart, a cyclist, or a person run-
ning. Such anomalies can be detected well (at least for
temporal localization) by models that fundamentally work
at the pixel level as evidenced by so many models that
use pixel reconstruction error as a loss function for train-
ing [3,13,14,17,18,20,25,28,32,34,37,38]. Concerning the
UCF-Crime dataset [30], it is designed for a very different
version of video anomaly detection (multi-scene and weakly
supervised) which does not correspond to the most com-
mon real-world surveillance application that we are most
interested in. We hope to encourage methods that try to
understand a scene at a higher level such as methods that
model objects and their motions. Toward that end, a dataset
that has more complex anomalies such as those involving
the interaction of multiple objects will require modeling a
scene at a higher level to be successful. This is the main
motivation for introducing our new ComplexVAD dataset.

The novel algorithm we propose for detecting complex
anomalies uses a scene graph to represent objects and their
interactions in a video. A number of recent papers have also
focused on addressing anomaly localization at the object-
level [2, 5–7, 10, 11, 14, 35, 39]. These methods utilize pre-
trained object detectors to first localize objects and then
estimate if the detected objects are anomalous or not. There
are many differences in the details of these methods com-
pared to ours, especially in the representation of motion, but
the most important difference is that these methods do not
model the interactions among people/objects.

There have been a few past approaches that did model
interactions among objects. Many of these methods also
employed scene graphs to represent the interactions [4,9,31].



Figure 1. Nominal frame samples from the ComplexVAD dataset.

In [4], a simple model of object-relation-object triplets is
used to model a scene, but unlike our method, there is no
modeling of motion or trajectories. In our approach, the
trajectory for each object is computed which allows unusual
trajectories to be detected as anomalous. The approach
of [9] used a scene graph to represent subject-predicate-
object triplets in normal video and then compare those to
ones found in test video. The main difference compared
with our proposed approach is our use of an exemplar-based
model of normal pairs of objects and our inclusion of ob-
ject trajectories in the representation of objects in the scene
graph. In [31], a scene graph was also used to represent
objects and their interactions. The main difference with
our approach is the method for computing distances between
pairs of graph nodes and the specific attributes that are stored
in the representation of each object.

The work of [33] modeled interactions between a person
and an object using human-object interaction (HOI) vectors
that does not use scene graphs. Normal HOI vectors are
modeled with a Gaussian mixture. Low probability HOI
vectors from test video can then be detected as anomalous.

Most of the methods that use object-level representations
including our method are also interpretable. They can pro-
vide human-understandable explanations for detected anoma-
lies. Explainability is a very important property for VAD
methods to be adopted for real-world use.

3. ComplexVAD

To address the absence of complex anomalies in existing
datasets, we introduce the ComplexVAD dataset. The dataset
has 104 training and 113 test video sequences. All videos

Figure 2. Samples of complex anomaly from the ComplexVAD
dataset. In all samples, objects are nominal, but the interactions are
anomalous. (Top) A skateboard moving alone violates the expec-
tation of a nominal interaction between a person and skateboard.
(Middle) Person carries an object and then leaves it on the ground.
(Bottom) Three people walk together and then suddenly start to run
in different directions.

are recorded at the same location in a university campus
showing a crosswalk, pedestrian sidewalks, and a two-lane
street. Figure 1 shows some nominal frames. The video
collection process lasted 5 months and videos were recorded
during different periods including morning, noon, and after-
noon. Since it is a campus environment, the scene tends to
change frequently depending on the time and day. For this
reason, for each day of the week, there is at least one hour of
recording for morning, noon, and afternoon to represent the
different states of the scene. It is a highly active and complex
scene with people who walk, jog, or run; bikers, skateboard-
ers, and scooter riders using the crosswalk and sidewalks;
cars, buses, and golf carts using the car lanes. In addition,
the background is not static among videos due to changing
shadows, trees blowing in the wind or parking lots with vary-
ing numbers of parked cars. All faces were blurred using
a face detector and Gaussian blurring to remove personally
identifiable information.

ComplexVAD is a large dataset consisting of videos
recorded in 1080x1920 resolution and at a rate of 30 frames
per second. The training set includes videos ranging from
2.5 minutes to 13 minutes, with an average duration of 11
minutes. In the test set, the longest duration is 12.8 minutes,
the shortest is 1.5 minutes, and the average duration is 7.9
minutes. When considering frames extracted from the origi-
nal videos at 30 frames per second, there are 2,069,941 RGB



Dataset
Total

Frames
Training
Frames

Testing
Frames

Anomalous
Events

Anomaly
Types

Ground
Truth Resolution

Complex
Anomalies

UCSD Ped1 14,000 6800 7200 54 5 S, T 238 x 158 No
UCSD Ped2 4560 2550 2010 23 5 S, T 360x240 No

CUHK Avenue 30,652 15,328 15,324 47 5 S, T 640 x 360 No
IITB-Corridor 483,566 301,999 181,567 ? ∼10 T 1920x1080 No

NOLA 1,440,000 450,000 990,000 50 ∼10 S, T 1280 x 720 No
Street Scene 203,257 56,847 146,410 205 17 S, T 1280 x 720 No

ComplexVAD 3,681,438 2,069,941 1,611,497 118 40 S, T 1920x1080 Yes

Table 1. Characteristics of existing single scene video anomaly detection datasets compared to ComplexVAD. S and T denote Spatial and
Temporal ground truth labels respectively.
frames for training and 1,611,497 RGB frames for testing,
totaling 3,681,438 RGB video frames for the entire dataset.
Due to potential complications and challenges in storage
and distribution, ComplexVAD is publicly shared in video
format. The comparison with existing VAD datasets can be
seen in Table 1.

The aim of the ComplexVAD dataset is to showcase com-
plex anomalies. We define a complex anomaly as an anoma-
lous event resulting from the interaction between objects.
Compared to anomalies presented in previous datasets, ob-
jects in a complex anomaly should be considered normal
within the scene until their interaction occurs. Some ex-
amples of complex anomaly are presented in Figure 2. For
instance, a person and a backpack are common objects in our
dataset, but a person leaving their backpack on a sidewalk
constitutes an anomaly resulting from the "leaving" action.
Another example is a skateboard moving autonomously (due
to a remote control), on a crosswalk. While skateboards are
typically found in crosswalks with someone riding them, in
this case, the usual interaction between the skateboard and a
rider is absent.

Additionally, changes in interactions can lead to com-
plex anomalies, such as a biker slowing down and stopping
briefly in the middle of a crosswalk, where the typical in-
teraction involves passing by without any interruption. The
ComplexVAD dataset includes complex anomalies resulting
from interactions between various objects such as pedestri-
ans, cars, bikes, scooters, skates, sports balls, dogs, baseball
bats, and trees. ComplexVAD includes 118 anomalies from
40 diverse types of complex anomalies, which are detailed
in the supplementary document.

The ComplexVAD dataset is publicly available under the
CC-BY-SA-4.0 license.1 We provide ground truth annota-
tions in a form which can easily be used for several types
of evaluation criteria such as region-based and track-based
as well as frame-level. Annotations are provided for each
testing video in the form of bounding boxes around each
object that is a part of the anomalous event in each frame.
In addition, a track id is assigned to each bounding box so
that each anomalous event can be represented as a track of
bounding boxes. Due to the nature of our dataset, each frame
can have more than one anomaly labeled.

1www.merl.com/research/downloads/ComplexVAD

4. Detecting Complex Anomalies
We propose a novel method to detect complex anomalies.

Our method can be divided into three stages. First, we derive
graph representations of all frames in the training dataset.
Second, for all pairs of nodes (i.e., pairs of objects that
are close in terms of 3D distance) and isolated nodes (i.e.,
objects that are not close to any other object) in the training
set, we use an exemplar selection algorithm to select a subset
of unique node pairs and isolated nodes to form an exemplar
set. Third, we compare the distances between node pairs in
the test set and node pairs in the exemplar set. The same is
done between isolated test nodes and isolated nodes in the
exemplar set. Any test instance with a high distance to every
exemplar is considered anomalous. In the following sections,
we will discuss the stages of our method in detail.

4.1. Frame to graph

For a given dataset, we transform each frame of each
video into an undirected graph. The pipeline of our frame to
graph transformation is depicted in Figure 3. Our first step is
to use an object detector to extract objects. Note that, for our
approach, the object detector plays a fundamental role. It is
important to evaluate the object detector’s capability in the
scene and choose the most suitable one. In our initial experi-
ments, we found that Detectron2 [36] has the most accurate
object detection. Hence, Detectron2, which is trained on the
COCO dataset, is used in our implementation.

A video V is a collection of M frames {Fi}Mi=1, such that
V = [F1, F2, ..., FM ]. We send each frame Fi to the object
detector O, which returns X number of detected objects. For
each object o, the location l = (xo, yo) which is the x and y
coordinates of the center of the object, b = (wo, ho) which
is the width and height of the bounding box for the object,
and class id c. The output of the object detector is then
O(F ) = [o1, o2, ..., oX ], where each object oi is represented
by oi = [b, c, l].

After detecting objects in a frame, they are then tracked
using an object tracker, namely ByteTrack [40]. Each
detected object o is sent to the object tracker, which re-
turns x and y coordinates for that object in the subse-
quent frames. In our method, we track objects for 30
frames. Therefore, for every object, we acquire the trajectory
θ = {(x1, y1), (x2, y2), ..., (x30, y30)}.

www.merl.com/research/downloads/ComplexVAD
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Figure 3. The pipeline of our method for frame to graph generation with the help of an object detector, object tracker and pose estimator.

In addition to the object detector and object tracker,
we also use a pose estimator to obtain the pose informa-
tion of human objects. Any object o identified as human
is sent to the pose estimator to obtain the pose vector
p = {(x1, y1), (x2, y2), ..., (x17, y17)}, which contains the
locations of 17 key points on the human body. In our experi-
ments, we use the human pose estimation method included
in Detectron2 [36].

We concatenate the features that we extract from an object
o to form a graph node n = [b, c, l, θ, p] where node attribute
b is the bounding box size, c is the class id, l is the location
of the center of the object, θ is the trajectory vector and p is
the pose vector.

Next, we need to find edges between nodes/objects that
are likely to be interacting. Past approaches to building scene
graphs [4, 31] have used a deep network, usually trained on
the Visual Genome dataset [15], to estimate relations be-
tween objects. We found such approaches to produce too
many inconsistent relations which can cause false positive
anomalous detections. Instead we use the simple and more
robust method of assigning an edge between objects if they
are close to each other (if their distance in 3D space is below
a threshold). Thus, to determine which nodes to connect
in the graph we need to calculate the 3D distances between
each pair of nodes. To calculate the 3D distance we need
to derive the 3D coordinates of the node locations by esti-
mating a pseudo-depth since we do not have access to actual
depth estimates. Given two nodes n1 and n2, we have 2D
coordinates l1 = (x1, y1) and l2 = (x2, y2). Then we define
a relative depth, z, between two nodes by taking the abso-
lute difference of y values such that z = |y1 − y2|. This
estimate of pseudo-depth assumes that objects are resting
on the ground plane and the ground plane is farther from
the camera the closer it is to the top of the image. The 3D

distance d can then be calculated by taking the Euclidean
distance between 3D coordinates (x1, y1, z) and (x2, y2, 0).
Any node pair that has a 3D distance d smaller than a prede-
termined threshold h is connected with an edge E. Due to
applying the threshold, not every single node is necessarily
connected to another node, which leads to having isolated
nodes in addition to node pairs.

At the end of our frame to graph transformation, a frame
F which is a collection of objects {o1, o2, ..., oX} where
X is the total number of objects extracted by the object
detector, can be represented as a graph G = (N,E) where
N is the collection of graph nodes [n1, n2, ..., nX ], and E
is the graph edges between connected nodes. Similarly,
a video V = [F1, F2, ..., FM ] which contains M number
of frames F , can be represented as collection of graphs:
V = [G1, G2, ..., GM ].

4.2. Model building from nominal video

For a given nominal video, frames are processed using
our method described in 4.1 and transformed into graphs.
For all frames in a video, we collect all pairs of nodes that
are connected by an edge into one set and all isolated nodes
(not connected to any other node) into another set. Then for
each of the sets, independently, we run an exemplar selec-
tion algorithm which selects a subset of the elements of the
set such that no two members of the subset are near each
other according to a distance function (described below).
The intuition behind exemplar selection is to simply remove
redundant (or nearly redundant) elements from the set leav-
ing behind a compact, representative subset of exemplars.
We use the same exemplar selection algorithm as described
in [26]. Given a set S, the exemplar selection algorithm
proceeds as follows: (1) Initialize the exemplar set to NULL.
(2) Add the first element of S to the exemplar set. (3) For



each subsequent element of S, find its distance to the near-
est instance in the exemplar set. If this distance is above a
threshold, th, then add the element to the exemplar set.

As mentioned before, we run exemplar selection sepa-
rately on the set of all isolated nodes found in the graphs
of all frames and the set of all pairs of nodes found in the
graphs of all frames. To use the exemplar selection algorithm
we need to define a distance between two isolated nodes and
a distance between two node pairs. We will start with the
distance between two isolated nodes.

A graph node, n, is a high-level representation of an ob-
ject which includes the attributes [b, c, l, θ, p] where b is the
bounding box size, c is the class identifier, l is the location,
θ is the trajectory vector and p is the pose vector. For two
given nodes n1 and n2 with attributes [b1, c1, l1, θ1, p1] and
[b2, c2, l2, θ2, p2], we define a distance between each node
attribute as follows.

The location distance is the Euclidean distance between
l1 = (x1, y1) and l2 = (x2, y2):

L(n1, n2) =
√
(x1 − x2)2 + (y1 − y2)2 (1)

The distance between bounding box sizes b1 = (w1, h1)
and b2 = (w2, h2) is calculated by taking the Euclidean
distance between each bounding box width and height nor-
malized by the minimum width and height:

S (n1, n2) =

√
(w1 − w2)

2

min (w1, w2)
+

(h1 − h2)
2

min (h1, h2)
(2)

The class distance is set to 0 if the nodes have the same
class id; otherwise, it is set to 1:

C(n1, n2) =

{
0 if c1 = c2

1 if c1 ̸= c2,
(3)

For two pose vectors, P1 =
{(x1,1, y1,2), (x1,2, y1,2), ..., (x1,17, y1,17)} and
P2 = {(x2,1, y2,2), (x2,2, y2,2), ..., (x2,17, y2,17)}, The
pose distance is

P (n1, n2) =

17∑
t=2

|dp1,t − dp2,t|
max (min (dp1,t, dp2,t) , 1)

(4)

where

dp1,t =
√
(x1,1 − x1,t)2 + (y1,1 − y1,t)2 (5)

and
dp2,t =

√
(x2,1 − x2,t)2 + (y2,1 − y2,t)2 (6)

are the distances from the first pose keypoint to the tth pose
keypoint, for each pose vector, respectively. The max func-
tion in the denominator of Equation 4 insures that the de-
nominator is not less than 1 to prevent division by zero.

For two node trajectories θ1 =
{(x1,1, y1,1), (x1,2, y1,2), ..., (x1,30, y1,30)} and
θ2 = {(x2,1, y2,1), (x2,2, y2,2), ..., (x2,30, y2,30)}, the
trajectory distance is the sum of the L1 distances between
the displacements of the first node and the displacements of
the second node normalized by the minimum displacement:

Θ(θ1, θ2) =

T−1∑
t=1

|dx1,t − dx2,t|
max (min (dx1,t, dx2,t) , 1)

+

|dy1,t − dy2,t|
max (min (dy1,t, dy2,t) , 1)

(7)

where dx1(t) = x1,t − x1,t+1, dx2(t) = x2,t − x2,t+1,
dy1(t) = y1,t − y1,t+1, dy2(t) = y2,t − y2,t+1. T is the
number of frames in a track which is set to 30 in our experi-
ments. The max function in the denominator is used to avoid
division by zero.

Given these distances between attributes of two nodes,
the final distance between two isolated nodes is calculated
as follows:

D(n1, n2) = max(
L(n1, n2)− µL

σL
,

S(n1, n2)− µS

σS
,
C(n1, n2)− µC

σC
,

P (n1, n2)− µP

σP
,
Θ(n1, n2)− µΘ

σΘ
) (8)

where the µ and σ parameters are normalization constants
for each distance which make all the distances comparable.
We discuss how these normalization constants are chosen in
the supplementary material.

A node pair N is a combination of two nodes which are
connected with an edge. Between two node pairs N1 =
(n1, n2) and N2 = (n3, n4), the distance is calculated as
follows:

Dpair(N1, N2) =

min(max(D(n1, n3), D(n2, n4)),

max(D(n1, n4), D(n2, n3))). (9)

The intuition behind this distance is firstly that we do not
know whether n1 corresponds to n3 or n4 (and similarly
whether n2 corresponds to n3 or n4) so we need to try both
pairings and take the minimum distance. This corresponds
to the outer min function. For a given correspondence, the
overall distance between the two node pairs is the maximum
distance between the corresponding nodes from each pair.
This is represented by the inner max functions. Further
details on distance normalization and exemplar selection
provided in the supplementary document.



4.3. Complex anomaly detection in test video

After the first stage of obtaining exemplar sets from nom-
inal videos, the next step is detecting anomalies in testing
video of the same scene. As with nominal videos, the
pipeline that is described in 4.1 is also followed for test
videos, to generate graphs from objects detected in each
frame. The same object attributes are computed for each ob-
ject: location, bounding box size, class ID, trajectory and if
the object is a person, a pose vector. Given a scene graph for
a test frame, anomaly scores are computed for every pair of
connected nodes and for every isolated node. The anomaly
score, AS, for a test isolated node, n, is the distance to the
nearest exemplar in the isolated node exemplar set:

AS(n, Eiso) = min
ne∈Eiso

D (n, ne) (10)

Similarly, the anomaly score (AS) for a pair of nodes
N = (n1, n2) is the distance to the nearest pair of nodes
from the node-pair exemplar set:

AS(N, Epair) = min
Ne∈Epair

Dpair (N,Ne) (11)

The nearest neighbor searches in Equations 10 and 11
are generally fast because the number of exemplars is typi-
cally small, but can easily be sped up with one of the many
efficient nearest neighbor techniques [23].

5. Experiments
5.1. Experimental settings and evaluation criteria

We evaluate our proposed method and two other state-of-
the-art video anomaly detection methods, namely Memory-
augmented Deep Autoencoder (MemAE) [12] and Explain-
able Video Anomaly Localization (EVAL) [29], on the Com-
plexVAD dataset.

For our method, ByteTrack [40] and Detectron2 [36]
were used as object tracker and object detector. The pose
estimator module of Detectron2 is also used for pose estima-
tions. Using the method described in Section 4, exemplar
sets are extracted for all of the training videos. We choose
a threshold th = 0.65 for exemplar selection that resulted
in a modest number of total exemplars selected. From past
work that used exemplar-based models, this threshold mainly
effects model size and has a small effect on test accuracy.

To test MemAE on the ComplexVAD dataset, we used the
same proposed hyper-parameter and model structure settings
as described in [12]. The ComplexVAD dataset is resized
to 256x256 to be compatible with the existing settings. Ad-
ditionally, since the ComplexVAD dataset has an extensive
number of frames, we sub-sampled every third frame of the
dataset for training and testing to gain computational speed
during training and testing. Finally, the MemAE model is
trained with the training split on NVIDIA 4090.

Method RBDC TBDC Frame
MemAE [12] 0.0005 0 0.58
EVAL [29] 0.10 0.62 0.54

Ours 0.19 0.64 0.60

Table 2. The table reports the area under the curve (AUC) for our
method and two recent VAD methods using the RBDC, TBDC and
Frame-Level evaluation criteria on ComplexVAD.

To test EVAL on the ComplexVAD dataset, we subsam-
pled every other frame (for an effective frame rate of 15 fps),
and used 10 frame video volumes with 256x256 pixel spatial
region sizes which roughly corresponds to the average height
of a person in this dataset. The remainder of the setup and
parameters were exactly as described in [29].

We use the Region-Based Detection Criterion (RBDC)
and the Track-Based Detection Criterion (TBDC) as pro-
posed in [26] as our primary evaluation criteria and report
the area under the curve (AUC) for false positive rates per
frame from 0 to 1. We also report frame-level AUC [22]
scores. As highlighted in previous works [26] frame-level
AUC only evaluates temporal accuracy and disregards spatial
localization of anomalies. Whereas, RBDC and TBDC mea-
sure a method’s capacity to accurately identify anomalous
spatio-temporal regions within a given video sequence, how-
ever, we also report frame-level AUC scores of the methods
for completeness, as well as comparisons to older methods.

In order to get RBDC and TBDC numbers for MemAE
we used the following procedure. For each anomaly score
threshold, we create a mask of all pixels with anomaly scores
above threshold. We then find connected components of
anomalous pixels. This give us anomalous regions. For each
connected component with at least 10 pixels, we compute
the minimum bounding box encompassing that component.
This yields a set of anomalous bounding boxes that can be
used for computing RBDC and TBDC numbers.

5.2. Results

The main results of our method as well as the EVAL
[29] and MemAE [12] methods using the three different
evaluation criteria described above are reported in Table 2.
We can see that our scene-graph based method outperforms
the other two recent methods under all criteria. The MemAE
method does very poorly for the two criteria that measure
spatial localization. This implies that the regions of an image
that MemAE predicts as anomalous are usually normal.

We also show some visualizations of the output of our
method on some frames from ComplexVAD in Figures 4 and
5. Figure 4 shows 5 frames from a test video in Complex-
VAD in which a person carrying an object places the object
on the ground and continues walking. This is an example of a
"left-behind object" anomaly and is correctly detected by our
method. Figure 5 shows frames from three other anomalies,
including a dog walking without a person holding its leash,
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Figure 4. A person who drops a bag on the street is detected as an anomaly with our method. The detection starts with the action of "drop".
After the object interaction ends, the dropped object continues to be detected as an anomaly. Ground truth labels and detection boxes are
represented with green and red colors, respectively.

Figure 5. Detected interaction anomalies with our method. (Top)
A dog without a walker. (Middle) Car picks up a passenger on
crosswalk. (Bottom) Bicycle stops briefly in the middle of the road.
Ground truth labels and detection boxes are represented with green
and red colors, respectively.

a person getting into a car in the middle of a crosswalk, and
a person stopping on a bicycle in the middle of a crosswalk.
These are all successfully detected by our method. The first
anomaly is particularly interesting because it required the
system to notice that in the nominal training videos, dogs
always appeared with a person walking them on a leash. It is
the lack of the expected interaction that is anomalous here.

6. Future Work and Discussions

Complex video anomaly detection is a new direction in
research and according to the baseline results, there is plenty
of room for improvement for this difficult problem. Since the
limitations of the object detector directly affect our method’s

accuracy, investigating the effects of different object detec-
tors may lead to improved accuracy. Also, because our
method only models the interactions of pairs of objects, ex-
panding this to modeling three or more objects interacting
may also lead to accuracy gains. Another interesting direc-
tion for further research is explainability. As shown by other
papers [4,9,29,31], the use of object-level models and scene
graphs allow for human-understandable explanations to be
automatically generated to explain why certain activities are
detected as anomalous.

Our interest in introducing complex video anomaly detec-
tion is to make this research area more applicable in the real
world. An important practical issue that real systems must
handle is adversarial attacks which have been demonstrated
to effectively deceive video anomaly detection systems [24].
Therefore, robustness against such attacks should be a major
concern in this new field.

7. Conclusion
Existing video anomaly detection datasets demonstrate

anomalous activities that mainly involve a single object or ac-
tor. However, in the real world, anomalies are often caused
by the interactions between objects. In this work, we in-
troduce a new video anomaly detection dataset, Complex-
VAD, with many diverse types of interaction-based anoma-
lies. With the introduction of ComplexVAD, we anticipate
that more research will be directed towards detecting com-
plex anomalies in video.

In addition to a new dataset, we also introduce a novel
method to detect complex anomalies. With our method and
two other state-of-the art video anomaly detection methods,
we provide baseline scores on ComplexVAD. Results indi-
cate that our method outperforms the existing methods but
there is still room for improvement with further research.
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