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Abstract

For semantic segmentation, integrating multimodal data
can vastly improve segmentation performance at the cost
of increased model complexity. We introduce FuseForm, a
multimodal transformer for semantic segmentation, which
can effectively and efficiently fuse a large number of ho-
mogeneous modalities. We demonstrate its superior per-
formance on 5 different multimodal datasets ranging from
2 to 12 modalities and comprehensively analyze its com-
ponents. FuseForm outperforms existing methods through
two novel features, a hybrid multimodal fusion block and
a transformer-based decoder. It leverages a multimodal
cross-attention module for global token fusion, alongside
convolutional filters’ ability to fuse local features. Global
and local fusion modules together enable enhanced mul-
timodal semantic segmentation. We also introduce a de-
coder based on a mirrored version of the encoder trans-
former, which outperforms a popular decoder when tuned
sufficiently on the dataset.

1. Introduction

Semantic segmentation, a popular area of computer vi-
sion, involves the detailed pixel-wise classification of im-
ages into distinct semantic categories. This process is fun-
damental to a variety of applications, ranging from au-
tonomous driving [14] and medical imaging [35] to video

surveillance [26] and environmental monitoring [22, 28].
Recent advancements in deep learning, particularly with
Convolutional Neural Networks (CNNs) [9, 10, 24, 36], U-

Net architectures [35], and the integration of skip connec-
tions [13], have propelled the field forward, enabling more
accurate and efficient segmentation models.

However, the scope of semantic segmentation extends
beyond conventional RGB imagery, embracing multimodal
data sources that enrich the models’ understanding of en-
vironments [14, 34,43]. On one hand, multiple modalities
can significantly enhance the environmental understanding
of a model, leading to more accurate and detailed segmen-
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tation results. On the other hand, the integration of such
varied modalities presents unique challenges [17]. While
simply stacking or concatenating these data types can offer
performance boosts, it is the nuanced interactions between
modalities that hold the key to unlocking new levels of seg-
mentation accuracy [2, 4,29, 34,40,43,44]. Nevertheless,
not all fusion strategies are equal; some may inadvertently
hinder performance by failing to meaningfully integrate fea-
tures from different sources [27].

In response to these challenges, we propose a novel, hy-
brid transformer-based architecture for multimodal seman-
tic segmentation. By leveraging the global attention mech-
anisms of transformers, along with the high resolution local
feature extraction power of convolutional filters, the pro-
posed architecture surpasses state-of-the-art models in deci-
phering complex interactions between different data modal-
ities, thereby enhancing segmentation performance.

To validate the effectiveness of our architecture, we
conduct experiments across various multimodal datasets
with homogeneous modalities, demonstrating its advan-
tages in diverse scenarios. Homogeneous modalities re-
fer to the case where the input data has the same struc-
ture. For a homogeneous dataset with two modalities,
D= {(xgl), x§2)), s (:L'%l), xg))}, both 21 and x5 belong
to the same feature space R?. Whereas, a heterogeneous
dataset may have () € R% and (?) € R%,

The contributions of our research can be summarized as
follows:

¢ A novel multimodal transformer model, FuseForm, is
introduced, which can efficiently work with a large
number of homogeneous modalities.

* A hybrid data fusion block based on multimodal cross
attention and convolutions to facilitate passing both
global and local representation of multimodal features
to the decoder.

¢ A transformer-based decoder, which allows for en-
hanced feature integration over traditional methods
while maintaining a lightweight implementation.



* FuseForm achieves state-of-the-art performance on
five datasets from distinct applications in both
single-modality and multimodal implementations (2-
12 modalities).

2. Related Works
2.1. Semantic Segmentation

Semantic segmentation is a more detailed form of im-
age classification, where each pixel in the image is assigned
one or more class labels, producing a segmentation map the
same size as the input image [35]. Traditional deep learn-
ing architectures achieve this through Convolutional Neu-
ral Networks (CNNs) [3, 9, 20, 28, 35, 36]. Fully Convo-
lutional Networks (FCNs) pioneered this approach by per-
forming pixel-wise segmentation from end to end, replac-
ing the dense layers with convolutional layers [36]. U-
Net [35], notable for its symmetric encoder-decoder archi-
tecture, achieved new levels of accuracy in semantic seg-
mentation of medical images, and subsequently influenced
many developments in semantic segmentation.

2.2. Vision Transformers

The introduction of Vision Transformer (ViT) [12] has
applied the benefits of Natural Language Processing (NLP)
transformers to images, leading to transformer-based ar-
chitectures replacing CNNs in state-of-the-art computer vi-
sion tasks. The use of transformers as feature extractors in
sequence-to-sequence networks was demonstrated in [46],
showcasing their ability to capture long-range dependen-
cies and contextual information, thus enhancing seman-
tic segmentation tasks. The Pyramid Vision Transformer
(PVT) [39] integrates a hierarchical structure to combine
the strengths of transformers and pyramid designs common
in segmentation models, effectively capturing multi-scale
features for dense classification [7,32,35,40-44].

Building on these advancements, SegFormer [42] re-
fined the transformer semantic segmentation pipeline, us-
ing PVT’s feature extractor with a lightweight, MLP-based
decoder to achieve exceptional segmentation performance
while maintaining computation efficiency. SegFormer has
since become the foundation of many new implementations,
showcasing how versatile the architecture is [34,40,43,44].

2.3. Multimodal Data Fusion

Multimodal data fusion integrates information from mul-
tiple data sources, enhancing system performance by pro-
viding a more robust and comprehensive understanding than
single-modal data. The primary challenge lies in efficiently
combining different types of data, such as images, text, or
audio, which often vary in nature, processing requirements,
and information sparsity.

Recent works in the field of multimodal computer vi-
sion have investigated rigorous data fusion techniques at
every layer in the model. Transformer blocks can inte-
grate global contextual information from different modal-
ities at each layer in the feature extractor [33]. In MF-
TransNet [47], they use a hybrid CNN-Transformer archi-
tecture with multi-headed self-attention for data fusion in
the encoder, augmenting RGB data with Digital Surface
Maps (DSMs) information to enhance complementary in-
formation. C3Net [5], a cross modal feature re-calibration
module is used to learn from multiple modalities while min-
imizing noise impact. TokenFusion [40] adapts the Seg-
Former architecture for multimodal data by using an aux-
iliary network to dynamically replace low information to-
kens with high information tokens from other modalities,
improving performance.

CMNeXT [44] employs asymmetric branches for mul-
timodal dense prediction tasks, utilizing SegFormer for the
optical modality and a unique self-query hub to select infor-
mative features from supplementary modalities, which are
fused before the decoder. MMSFormer [34] uses modal-
ity specific encoders to extract different hierarchical fea-
tures and combines them using a lightweight multimodal
fusion strategy, improving performance as more modalities
are added.

3. Methodology

Since the intricate dependencies in multimodal data
cause a more complex learning problem than the better
understood unimodal image segmentation task, with Fuse-
Form we aim to develop more effective multimodal data fu-
sion and decoding techniques for extracted multimodal fea-
tures. Existing models typically utilize either convolution-
based or transformer-based fusion techniques. The theoreti-
cal motivation behind our proposed multimodal data fusion
module is to combine the local information processing of
convolution operation through its inductive bias, such as lo-
cal receptive field at different resolutions and weight shar-
ing, and the global information processing of multimodal
cross-attention operation through discovering correlations
beyond the local connectivity assumption of convolution.
As for the proposed decoder, our theoretical motivation is
the hypothesis that the multimodal input data would benefit
from further information processing in the decoding phase
in addition to feature encoding and data fusion, which the
existing methods focus on. For developing an effective de-
coder, we were motivated by the theoretical underpinnings
of attention and convolution operations similar to the ones
discussed for the fusion module.

3.1. Encoder

Each modality is processed with a separate encoder to
ensure extraction of relevant features. We adopt a hierar-
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Figure 2. Transformer block with E,, layers.

chical design for the feature encoder similar to the Mix-
Transformer [42]. Taking an image of size H x W x C,
we split the image into % patches, where s; denotes the
stride in stage one. The patches are flattened and embed-
ded into & YV tokens with channel depth C; using a sin-
gle convolutional layer. This process effectively downsam-
ples the image resolution by a factor of /s, at each stage
n € {1,2,3,4}.

In each stage n, after patch embedding, there is a trans-
former block with E,, layers. Denoting the input to layer
¢ with x,, as shown in Fig. 2, multi-head self-attention
(MHSA) is applied to xz, after layer normalization (LN)

with a residual connection. Then, after another LN, a mul-

tilayer perceptron (MLP) is applied with a residual connec-
tion to yield the input to the next layer xy1:

ze+1 = MLP(LN(ye)) + ye, ye = MHSA(LN (2¢)) + .
In MHSA, spatial reduction is applied as in PVT (Fig. 2).
3.2. Multimodal Data Fusion

As each encoder produces its own output for each modal-
ity, to reduce model size and complexity, we introduce a
data fusion block which intelligently combines informa-
tive features from each modality before sending them to
a shared decoder. The information flow for the model is
shown in Fig. 1. To facilitate this multimodal data fusion,
we propose a hybrid attention-convolution mechanism. The
multimodal fusion block, which consists of two main mod-
ules, Global Fusion and Local Fusion, is illustrated in Fig.
3. Global Fusion is based on a novel multimodal cross-
attention (MMCA) mechanism, whereas Local Fusion uses
a mixture of different size convolution operations.

The data flow through the multimodal fusion block with
input z,,, m € M, is represented through the following
equation.

z, = Tm + GF(tm) + LF(xm), me M

1
& = LN (Linear(Concat(z,|M))), o

where GF and LF are the Global Fusion and Local Fusion
modules introduced in Sec. 3.2.1, and Sec. 3.2.2. Each
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Figure 3. (Left) Overall data flow of the proposed Multimodal Fusion block. Single modality tokens are fed into both the Local and
Global Fusion modules, residually added, then passed then projected and normalized to provide the decoder with a highly informative
representation of the input image. (Right) Local Fusion module graphical representation. Data is first linearly projected, then fed into

parallel convolutions before being combined and projected again.

modality is updated with its GF output. Then, the modalities
are linearly projected from a C,, x M dimensional space to
C,, dimensional space. The homogenized features are then
fed into the Local Fusion module, which extracts relevant
local features. The highly informative output feature vector
passes through a layer normalization before being sent to
the decoder.

3.2.1 Global Fusion:

Cross attention originates from the NLP transformer [38],
where the query from one language’s token vector is com-
pared against the keys and values from another language.
We extend this to facilitate multimodal data fusion by com-
paring a modality’s query to the keys and values of all other
modalities. Over time, this allows for high information to-
kens from all modalities to be emphasized while overall
lower information tokens to be ignored. Our experiments
show that our implementation using MMCA improves fu-
sion module performance versus other MHSA based imple-
mentations [25, 34]. Fig. 4 summarizes the MMCA mecha-
nism. Taking u,,, to be an input token vector from modality
m, we first linearly map each u,, to its query, (Q,,). We
perform spatial reduction from PVT [39] on each u,, sep-
arately before passing it through the key (X,,) and value
(Vi) linear projections. To compute the MMCA for modal-
ity m, its query @, is multiplied with all key vectors from
other modalities to obtain the multimodal attention weight
matrix through the softmax function. The resulting weights
are multiplied with the value vectors of other modalities and
linearly projected to obtain a fused token vector.

3.2.2 Local Fusion:

While the attention mechanism of transformers excels at ag-
gregating global features and enhancing feature extraction,
there may still exist localized correlations within the multi-
modal data, which can enhance overall model performance.
Other implementations, [4,6, 11,32,47], rely only on atten-
tion based mechanisms for feature fusion, which can skip
over these local correlations. To extract these features, we
enhance the global feature representation of MMCA with
important local information. Our Local Fusion module,
shown in Fig. 3, performs parallel convolutions of differ-
ent kernel sizes over the tokens to extract different scale
features. We utilize kernels of size 1 x 1,3 x 3,5 x 5, and
7 x 7 before passing through a shared 1 x 1 kernel convolu-
tion layer. The resulting output is combined with the Global
Fusion output in the Multimodal Fusion Block.

3.3. Decoder
One of our closely related works, SegFormer [42], and
many of its multimodal implementations [34,40,43,44] uti-

lize a hierarchical transformer encoder with a lightweight
decoder. While the lightweight decoder is aimed at en-
abling real-time segmentation of single modality imagery,
recognizing the limitations in scenarios demanding supe-
rior segmentation accuracy, our research introduces a new,
high-performance transformer decoder. Our decoder con-
sists of two main parts which are explained in the following
sections.
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Figure 4. Data flow through the Global Fusion module, which performs multimodal cross-attention (MMCA) between different modalities.

3.3.1 Skip Fusion:

After data is fused through the multimodal fusion blocks in
the encoder at stage n, it is sent directly to the decoder at
stage n. To facilitate merging this skip connection infor-
mation with the feed-forward data, we implement a Skip
Fusion block. The Skip Fusion block is modeled using the
following equation,

2y = Convyx1((Proj(Convixi(2)))), 2)

where 7 is the concatenation of wyx ¢y and waX sxip, w1 and
wo are learnt coefficients to weight the inputs. As shown
in Fig. 1, zss is the feedforward output of the previous
decoder stage, and x,;p is the output of the Multimodal
Fusion module in the same stage. Convyxi are 1 x 1 ker-
nel convolutions. In between each Conviyi, there is a
Proj sequential network which consists of Linear, ReLU,
Linear, and ReLU layers to project the convolved input
into a feature space of C), x 2 dimensions before projecting
back to C,, dimensions. The final combined feature repre-
sentation is passed through batch normalization and Re LU
activation before being sent to the decoder blocks in the
same stage n of the decoder.

3.3.2 Decoder Block:

The decoder block is a modified version of the Multimodal
Fusion block shown in Fig. 3. As there is only a single,
fused modality input to the decoder block, we utilize stan-
dard MHSA for global feature extraction rather than Global
Fusion introduced in Section 3.2.1. Our decoder block is
modeled according to the following equation

ye = x¢ + Proj(Concat(LF (xz¢) + (MHSA(xy)))
Te41 =ye + MLP(BN(y.)),
3)
where LF is Local Fusion as described in Section 3.2.2,
and Proj is a linear projection to reduce the dimensionality

from C,, x 2 to C,,. In the presented experiments, we utilize
two decoder blocks in each layer, i.e., D1 = Dy = D3 =
D4 = 2. After the final stage in the decoder, we utilize a
linear projection to increase the spatial resolution of the de-
coded image to be closer to the input size. The final expan-
sion layer projects the input from C} to C x 16, then subse-
quently rearranges the output from [H /4, W/4,C; x 16] to
[H/2,W/2,C x 4]. This expansion allows for increasing
the resolution and detail of segmentation maps, by allowing
the model to attend to more pixels with each token in the
decoder.

4. Experiments

We test the efficacy of our proposed FuseForm model
on five multimodal semantic segmentation datasets. We
compare our model’s results to the state-of-the-art on each
dataset. We also test our model’s ability for RGB-only se-
mantic segmentation, showcasing its versatility for many
different tasks.

4.1. Datasets

The Whu-Opt-SAR [28] dataset is a terrain classi-
fication dataset which consists of 100 images of dimen-
sion 5556 x 3704 pixels spanning 51,488 km? across 7
classes. It combines satellite and drone imagery across opti-
cal (RGB), near-infrared (N), and Synthetic Aperture Radar
(SAR) modalities.

The MCubeS [29] dataset contains 500 images, each
of 1024 x 1224 pixels resolution, spanning 20 material
classes. The dataset integrates four modalities, including
optical (RGB), Angle of Linear Polarization (A), Degree of
Linear Polarization (D) and Near-Infrared (N).

MFNet [18] is an urban street dataset containing 1,569
image sets total of both optical (RGB) and thermal (T) im-
agery. The resolution for each image set is 640 x 480 with
8 total classes for semantic segmentation. Out of the 1,569



images, 820 of them were collected during daytime and the
remaining 749 were taken at nighttime.

The DeLiVER [44] dataset is a large-scale multimodal
semantic segmentation dataset containing 4 modalities: op-
tical (RGB), depth (D), LiDAR (Li), and event (E) views.
The dataset consists of 3,983/2,005/1,897 image sets for
training, validation, and test respectively, for a total of 7,885
image sets of resolution 1042 x 1042. The dataset contains
25 classes ranging from buildings and pedestrians to 4 dif-
ferent classes of vehicles.

The Next Day Wildfire Spread dataset [22] is a mul-
timodal next frame prediction dataset aimed at predicting
wildfire spread for the next day. The input consists of 12
inputs derived from seven modalities: Fire masks, topogra-
phy (elevation), weather (temperature, wind, precipitation,
humidity), drought indices, vegetation indices, and popu-
lation density. The dataset comprises 18,545 samples with
64 x 64 resolution and an 80:20 split for training and testing.

4.2. Implementation Details

Each dataset features a number of spatially aligned
modalities, which we feed into separate encoder networks.
We trained FuseForm on various hardware, ranging from
one 4090M laptop GPU, two 4090 desktop GPUs, to six
H100 GPUs. Model performance is not affected by hard-
ware selection, only training and inference speed. We train
for 200 (DeLiVER, Whu-Opt-SAR, Next Day Wildfire)
/ 500 (MFNet, MCubeS) epochs in total with 10 epochs
of warm-up, where the learning rate linearly ramps from
6 x 1077 to 6 x 1075, We use AdamW optimizer with
an epsilon of 10~ and weight decay of 10~2, with a poly
strategy (power 0.9) loss scheduler. The minimum learning
rate is capped to 1079, We utilize a batch size of 2 on each
GPU, and perform image augmentations through random
resized cropping, color jitter, flipping, and Gaussian blur.
We utilize Mix-Transformer (MiT) [42] pretrained on Ima-
geNet dataset as the backbone for our encoder and a random
initialization for our transformer decoder. For each dataset,
we choose the size of our backbone to be equivalent to other
methods which use Mix-Transformer.

4.3. Comparison with Existing Methods

Results on Whu-Opt-SAR: As seen in Table 1, com-
pared to other methods, our FuseForm model obtained the
highest median Intersection over Union (mloU) score of
48.4%, outperforming MCANet [28] by 5.5% and OPT-
SARMSNet [20] by 3.2% when using MiT-B4 [42] as the
encoder backbone for the RGB branch and MiT-B2 for the
N and SAR branches. Our single modality RGB only result
is still 3.3% higher than MCANet and 1.3% higher than
OPTSARMSNet, both which all modalities. Our single
modality implementation of FuseForm outperforms task-
specific multimodal models on this dataset, highlighting the

Table 1. Results on Whu-Opt-SAR dataset [28]. The dataset
contains RGB, Near-Infrared (N), and Synthetic Aperature Radar
(SAR) modalities.

Method | Modals mloU
SegNet [3] RGB-N-SAR | 374
DeeplabV3+ [9] RGB-N-SAR 41.2
MCANet [28] RGB-N-SAR | 429

OPTSARMSNet [20] | RGB-N-SAR 452
FuseForm RGB 46.5
FuseForm RGB-N-SAR 48.4

Table 2. Results on MCubeS dataset [29]. The dataset contains
RGB, Angle of Linear Polarization (A), Degree of Linear Polar-
ization (D), and Near-Infrared (N) modalities.

Method |  Modals | mloU
MCubeSNet [29] RGB 33.70
CMNeXt [44] RGB 48.16
MMSFormer [34] RGB 50.44
FuseForm RGB 52.08
DRConv [8] RGB-A-D-N | 34.63
DDF [48] RGB-A-D-N | 36.16
TransFuser [32] RGB-A-D-N | 37.66
MMTM [23] RGB-A-D-N | 39.71
FuseNet [19] RGB-A-D-N | 40.58
MCubeSNet [29] RGB-A-D-N | 42.86
CMNeXt [44] RGB-A-D-N | 51.54
MMSFormer [34] | RGB-A-D-N | 53.11
FuseForm RGB-A-D-N | 54.70

effectiveness of our advanced transformer decoder at ex-
tracting and decoding relevant information.

Results on MCubeS: Table 2 presents a comprehensive
comparison of various methods evaluated on the MCubeS
dataset. Our model demonstrates exceptional performance
across both RGB and RGB-A-D-N modalities, significantly
outperforming all other methods listed. Using all 4 modal-
ities and MiT-B4 [42] as the backbone for RGB and MiT-
B2 for accompanying modalities, we see an improvement in
mloU of 11.84% over MCubeSNet [29], 3.16% over CM-
NeXt [44], and 1.59% over MMSFormer [34]. These results
demonstrate the effectiveness of our fusion module as well
as our transformer decoder. Using only the RGB modality,
we still see an improvement of 18.38% over the RGB imple-
mentation of MCubeSNet [29], 3.92% over CMNeXt [44],
and a 1.64% improvement over MMSFormer [34].

Results on MFNet: The results for MFNet can be seen
in Table 3. Using MiT-B4 [42] as the encoder backbone for
the RGB branch and MiT-B2 for the Thermal branch, our
model outperforms other general segmentation models on
this dataset by a margin of 1.0% in terms of mIoU. Fuse-
Form also outperforms SegFormer in RGB only segmenta-
tion by a margin of 0.8%.

Results on DeLiVER: As shown in Table 4, we con-



Table 3. Results on MFNet dataset [ 1 8]. The dataset contains both
RGB and Thermal (T) images.

Method | Modals | mIoU
SwinT [30] RGB 49.0
SegFormer [42] RGB 52.0
FuseForm RGB 52.8
ACNet [21] RGB-T 46.3
FuseSeg [37] RGB-T 54.5
ABMDRNet [45] | RGB-T 54.8
LASNet [25] RGB-T 54.9
FEANet [11] RGB-T 55.3
MFTNet [47] RGB-T 57.3
GMNet [49] RGB-T 57.3
DooDLeNet [16] RGB-T 57.3
CMX [43] RGB-T 59.7
CMNeXt [44] RGB-T 59.9
FuseForm RGB-T 60.9

Table 4. Results on DeLLiVER dataset [44]. The dataset contains
RGB, Depth (D), Events (E) and LiDAR (Li) modalities.

Method | Modals | mloU
HRFuser [4] RGB 47.95
Segformer [42] RGB 57.20
FuseForm RGB 57.93
HRFuser [4] RGB-D 49.32

TokenFusion [40] RGB-D 60.25

CMNeXt [44] RGB-D 63.58
FuseForm RGB-D 68.34
HRFuser [4] RGB-E 42.22
TokenFusion [40] RGB-E 45.63
CMNeXt [44] RGB-E 57.48
FuseForm RGB-E 57.53
HRFuser [4] RGB-Li 43.13
TokenFusion [40] RGB-Li 53.01
CMNeXt [44] RGB-Li 58.04
FuseForm RGB-Li 58.00
HRFuser [4] RGB-D-E-Li | 52.97
CMNeXt [44] RGB-D-E-Li | 66.30
FuseForm RGB-D-E-Li | 68.49

duct in depth testing to show how FuseForm compares to
the state-of-the-art methods on this dataset. We utilize MiT-
B2 [42] as the encoder backbone for all branches. We
improve segmentation performance over state-of-the-art in
single, dual, and quad modality tests. We outperform CM-
NeXt [44] by 4.76% in RGB-D tests, which also outper-
forms their quad-modality result by 2.04%. With all modal-
ities, this gap increases to 2.19%.

Results on Next Day Wildfire Spread: The perfor-
mance of FuseForm is shown in Table 5 compared to var-
ious U-Net implementations [!, 15,22, 31] and the Wild-
fire Prediction Network [15]. We initialize MiT-BO [42] for
each modality and train for 200 epochs. FuseForm outper-

Table 5. Results on Next Day Wildfire Prediction Dataset [22].

Method Precision Recall F1 Score mloU
U-Net [35] 28.2 47.8 0.36 15.0
R2U-Net [1] 25.9 48.8 0.34 14.6
Attn U-Net [31] 30.3 44.8 0.36 14.8
R2AttnU-Net [15] 28.3 47.6 0.36 149
WPN [15] 30.3 44.8 0.36 14.4
FuseForm 43.5 48.8 0.39 26.2

Table 6. Computational complexity and performance comparison.
Tested with a 512 x 512 resolution, with 1 and 4 modalities (shown
in parentheses). The encoder backbone chosen is MiT-B4 for all
methods. IPS denotes the number of processed images per second.
The number of parameters is given in millions.

Model GFLOPs #Params(M) IPS
CMNeXt (1) 72.2 62.4 30.8
MMSFormer (1) 72.3 62.4 31.6
FuseForm (1) 87.9 100.0 20.5
CMNeXt (4) 124.0 117.0 11.9
MMSFormer (4) 136.0 138.0 14.3
FuseForm (4) 153.0 202.0 10.4

forms other implementations on this dataset by a wide mar-
gin. Our model improves on Wildfire Prediction Network
in precision by 14.2%, recall by 4.0% (equivalent to R2U-
Net [1]), F1 by 0.03, and mIoU by 11.8%. This dataset,
while low resolution, shows how our model can combine
a large number of modalities effectively to enhance perfor-
mance over existing methods.

4.4. Computational Complexity

We compare the computational efficiency of FuseForm
with other state-of-the-art methods in Table 6 using the
MCubeS dataset. Our method significantly outperforms the
existing methods at the cost of a reasonable increase in the
computational complexity. This result indicates that our
method can be preferred over other methods for systems
that can tolerate some more computations (e.g., ~12% for
four modalities).

We further analyze in Table 7 the size and computational
complexity of the novel parts in FuseForm. Looking at the
fusion block, our model falls on the lower end in terms
of number of parameters, but is the most computationally
intensive method. This is primarily due to the use of full
@ K'V-based cross attention in our block. We also compare
our decoder with two other popular decoders, the decoder
of SegFormer [42] (Used in [34,40,43,44], among others)
and U-Net [35] (Used in [1, 15,22,31], among others). Our
decoder is roughly 2x in size to the convolution-based U-
Net while needing 75% more GFLOPs. Although our de-
coder has 4x more parameters than the SegFormer decoder
with an embedding depth of 768, it is 3xX more computa-



Table 7. Comparison of number of parameters and computational
efficiency. Tested on the MCubeS dataset at 3 X 512 x 512 reso-
lution input with 4 modalities present.

Method #Params(M) GFLOPs
Fusion Module

- CMNeXt [44] 16.63 6.47
- MCubeSNet [29] 7.41 12.10
- HRFuser [4] 1.72 17.50
- MMSFormer [34] 3.23 247
- FuseForm 5.67 19.19
Decoder

- Segformer [42] 3.15 40.29
- U-Net [35] 6.54 7.59
- FuseForm 13.97 13.46

Table 8. Ablation study of FuseForm’s multimodal data fusion
module and decoder. Tested on the MCubeS dataset with 4 modal-
ities. #Params is given for the fusion module and decoder.

Setup #Params(M) mloU
FuseForm 19.64 54.70
Fusion Module

- without local fusion (Eq. (1)) 18.01 53.52
- without global fusion (Eq. (1)) 17.16 53.85
- replace CA with SA 18.01 52.16
Decoder

- without local fusion (Eq. (3)) 15.68 50.65
- without MHSA (Eq. (3)) 13.87 54.22
- without skip fusion (Eq. (2)) 18.76 51.02
- SegFormer decoder [42] 8.82 52.42

tionally efficient. The SegFormer decoder uses a large con-
volutional layer of the full output resolution of the model
with 768 x 4 = 3072 filters, which amounts to over 38
GFLOPs alone. These results show that a vast majority of
FuseForm’s size and computations come from the standard
encoder, which is an important future research direction.

4.5. Ablation Study

In this section, we investigate individual contributions of
key components within our FuseForm architecture. Shown
in Table 8, we investigate the impacts of local and global
fusion modules, attention types, and decoder type on the
performance of our model as a whole.

Multimodal Data Fusion: Our multimodal fusion block
is a combination of both high-resolution local features and
overall global context. To determine the contribution of
both modules, we disable each sequentially and test Fuse-
Form on the MCubeS dataset by loading our baseline
weights and training the model for 200 iterations with the
new configuration. Table 8 illuminates how vital each mod-
ule is to performing effective data fusion. By having lo-

cal fusion only, the model is missing vital global context,
which causes a large drop in mIoU to 53.85%. Similarly,
the drop in performance due to the model only being able
to see the global context but not local details such as texture
is 53.52%. In a surprise, swapping cross attention (CA)
for self attention (SA) in our fusion block sees a drop to
52.16%, more than when removing global fusion. A pos-
sible explanation is that without any attention mechanism,
global context is completely lost in the fused features. With
SA however, we are still able to extract modality specific
context, which is sometimes contrasting and causes infor-
mation loss.

Decoder: The ablation study on the decoder of the Fuse-
Form architecture shows the critical role of different fusion
mechanisms in enhancing semantic segmentation perfor-
mance. Removing local fusion from the decoder (Eq. (3))
results in a notable drop in mIoU to 50.65%, highlighting its
importance in capturing fine-grained details. Similarly, the
absence of MHSA in the decoder causes a decrease in mloU
to 54.22%, which shows it also contributes to overall perfor-
mance, albeit less than local fusion. To test the effectiveness
of the Skip Fusion module, we replace Eq. (2) with a sim-
ple addition of x ¢y and xs1;p,. The resulting mloU declines
to 51.02%, displaying the contribution of the Skip Fusion
module to integrating multi-scale features effectively. No-
tably, replacing the FuseForm decoder with the decoder of
SegFormer [42], leads to a reduced mIoU of 52.42%. This
suggests that the sophisticated fusion strategies within the
FuseForm decoder are essential for achieving superior seg-
mentation accuracy.

5. Future Work and Conclusion

In this paper, we introduce FuseForm, a hybrid
convolutional-transformer fusion module alongside a novel
transformer-based decoder, replacing SegFormer’s [42]
widely-used decoder. Our comprehensive experiments
show that FuseForm effectively merges data from various
modalities, leading to state-of-the-art performance on five
major datasets: DeLiVER [44], MCubeS [29], MFNet [ 18],
Whu-Opt-SAR [28], and Next Day Wildfire Spread [22].
We perform detailed ablation studies to understand the con-
tributions of each component within the fusion module and
decoder to the FuseForm’s overall performance. Neverthe-
less, a limitation of FuseForm is the need for modality-
specific encoders, which increases computational complex-
ity with the number of modalities. Future research will fo-
cus on exploring new architectures which can leverage a
shared encoder, reducing model size, as well as extending
the model’s capabilities to other multimodal tasks.
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