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Abstract—Wireless sensor networks (WSNs) can consist of
many inexpensive sensors that communicate using the same
wireless channel. In some applications, localization of these
sensors can be as crucial as collecting their monitoring data. As
the number of sensors increases, the complexity of processing data
in such large networks grows significantly. In general, localization
methods in WSNs typically rely on data containing sensor-specific
information. However, the problem becomes more challenging
when data contains no sensor-specific information. To address
this issue, we propose a mixer-based deep neural network to
estimate sensor positions using the received cumulative signal
strength that is devoid of explicit sensor-specific information. Our
approach employs wavelet decomposition to extract information
from the input time series, combined with patching, embedding,
and mixer techniques for position estimation. We compare the
performance of our model with a nonlinear Kalman filter-
based state estimation method. Extensive evaluations using data
generated from our simulator demonstrate that our method
consistently outperforms the unscented Kalman filter (UKF)
method across all scenarios.

Index Terms—wireless sensor network, sensor localization,
sensor tracking, mixer network, unscented Kalman filter

I. INTRODUCTION

A wireless sensor network (WSN) typically consists of
multiple low-cost sensors positioned over an area to monitor
the physical properties of the environment. Wildlife tracking
[1], soil moisture monitoring [2], landslide monitoring [3], and
military applications [4] are some of the important application
domains for WSN. In many applications, we need the sensors’
accurate positions along with their monitoring data. Therefore,
localization techniques are an essential research topic for
WSNs.

Various types of data, such as time difference of arrival
(TDOA), time of arrival (TOA), angle of arrival (AOA), global
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positioning system (GPS) information, and received signal
strength (RSS), are used to estimate the positions of the sensors
in WSNs.

One of the straightforward solutions to localize the sensors is
integrating the global positioning system (GPS) within the sen-
sors. However, integrating GPS with all sensors is not viable
for a cost-effective system. Recent advancements in machine
learning have facilitated the development of numerous ap-
proaches for estimating sensor positions in WSNs. A machine
learning method to refine the RSS for accurately estimating
the sensor’s position is proposed in [5]. In [6], the authors
employ RSS to estimate the positions of sensors. However,
these methods require extensive communication overhead, as
all sensors interact with one another. In [7], another machine
learning approach is introduced that trains a model using RSS
fingerprint data for the entire experimental region. However,
as the number of sensors increases, fingerprint-based methods
become computationally intensive, rendering them impractical
for real-world applications. Estimating the position of the
underwater mobile sensor using the time difference of the
arrival signal is proposed in [8]. In [9], the angle of the arrival
signal is utilized to estimate the positions of the sensors. All
of these methods require identifying and processing data from
each sensor, making such WSNs both communication- and
computation-intensive.

In this work, we propose a machine learning-based local-
ization technique from total signal strength for cost-efficient
WSNs in which sensors communicate in the same wireless
channel anonymously. We designate sensors with known lo-
cations as interrogators and those with unknown locations as
nodes. Our model estimates the positions of multiple nodes
by analyzing the received cumulative signal strength at each
interrogator. It does not require individual node recognition by



each interrogator, which allows for reduced power usage and
the incorporation of more affordable sensors.

Our contributions can be summarized as follows:
• We propose a deep neural network architecture to estimate

the nodes’ current positions, leveraging the history of the
received cumulative signal strength at each interrogator.
Our model incorporates wavelet decomposition, patching,
embedding, and mixing techniques to extract information
efficiently.

• We introduce a simulator for low-cost wireless sensor
localization to evaluate the performance of our model with
respect to a popular nonlinear Kalman filter approach.

Fig. 1: A wireless network system with two interrogators and
nine nodes. The positions of the interrogators are fixed and
known, whereas the positions of the nodes are unknown, and
they are moving downward across an inclined surface. p

(1)
t

and p
(2)
t are the cumulative received power at time step t by

interrogator-1 and interrogator-2, respectively. Our goal is to
estimate the positions of the nodes.

II. PROBLEM STATEMENT

In various cost-efficient WSN applications, such as landslide
monitoring and agricultural applications, estimating the sensor
positions from limited communication data is a challenging
task.

We consider a WSN in which a number of anchor nodes
with known positions, denoted as interrogators in this work,
receive signal from a known number of mobile sensors (nodes)
in the same wireless channel (frequency band). Considering
a landslide application, we use an inclined surface along
which nodes move, as shown in Fig. 1. While the initial
node positions can be known, their locations over time need
to be estimated from the cumulative signals received by the
interrogators. As the signals from different nodes interfere
with each other in the same channel, making it infeasible
to estimate the node positions from a single instance of the

received cumulative signal, we consider the history of received
cumulative signals, forming a time series at each interrogator.

Our goal is to estimate the positions of N nodes at each
time step t, denoted as

S = {(x(1)
t , y

(1)
t ), (x

(2)
t , y

(2)
t ), . . . , (x

(N)
t , y

(N)
t )} ∈ R1×2N ,

using the multivariate time series

PL = {pt−L+1, . . . ,pt−1,pt} ∈ RL×M

with a look-back window of length L. In this context, pt =

{p(1)t , p
(2)
t , . . . , p

(M)
t } ∈ R1×M represents the cumulative

power signals received by M interrogators at time t. As
illustrated in Fig. 1, we assume the nodes move over time in
an area with known geometry; hence, the z-axis location can
be directly derived from the estimated x and y coordinates
employing the known slope angle.

III. PROPOSED METHOD

We first normalize the received power series PL ∈ RL×M

to PL ∈ RL×M using the mean and standard deviation
of the training dataset. To calculate the loss during model
training, we then compare the estimated positions Ŝ ∈ R1×2N

with the normalized ground truth positions S ∈ R1×2N . Our
model integrates wavelet decomposition, patching, embedding,
patch mixer, and embedding mixer to extract information from
the history of the cumulative power series for estimating the
current positions of the nodes. In the following subsection, we
introduce the proposed model architecture1.

A. Model Architecture

Following the method in [10], we utilize the multi-level dis-
crete wavelet decomposition method to extract multi-resolution
information from the input series in both time and frequency
domains. The multi-level wavelet decomposition module out-
puts multiple detail coefficient series XDi ∈ RM×Li , i =
1, . . . , r, and one approximation coefficient series XAr ∈
RM×Lr , where the detail coefficient series captures the de-
tailed information and the approximation coefficient series
captures the low-frequency information. Li denotes the length
of the coefficient series, and r is the number of decomposition
levels. After the decomposition, we process each coefficient
series utilizing individual resolution branches to ensure no
information is lost. Each resolution branch combines a channel
projection, patching and embedding, multiple mixers, and a
head module.

With the channel projection module which consists of two
linear layers with non-linear GELU activation, we project the
coefficient series XT

Wi
∈ RLi×M to XT

Wi
∈ RLi×2N . The

transformation from M to 2N features is necessary as we
perform the position estimation of N nodes with 2N features.
By transposing XT

Wi
, we obtain XWi

∈ R2N×Li , which is
subsequently passed through the patching and embedding mod-
ules [11]. The patching module captures the local information,

1The code is available at https://github.com/
Secure-and-Intelligent-Systems-Lab/Localization-of-Sensors
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Fig. 2: Model estimates the positions of N nodes Ŝ, using the cumulative power signal series PL of M interrogators. The terms
XWi and YWi refer to wavelet coefficient series (either approximation or detail).

and the embedding module encodes the data into d dimensions.
Here, Ki and H represent the number of patches and the patch
length, respectively.

To capture the global information from the local information
of the patches, we further process the output of the embedding
module Xdi ∈ R2N×Ki×d employing multiple mixer modules.
Each mixer module consists of a patch mixer and an embed-
ding mixer. The patch mixer and embedding mixer are similar
to the token mixer presented in [12], but they only differ from
the token mixer in terms of mixing dimension. The patch
mixer mixes the data in the patch dimension Ki by employing
two linear layers and nonlinear GELU activation while the
embedding mixer mixes the data in the embedding dimension
d. In addition, we utilize expansion factor tf in the patch
mixer and df in the embedding mixer, which allows the model
to capture the information in higher dimensions. Different
from the patch mixer, the embedding mixer has a residual
connection. In our model, we employ two mixer modules,
where the second mixer module has a residual connection to
facilitate the information flow efficiently. More mixer modules

can be added if necessary. We add the output of the second
mixer module and the residual connection before normalizing
using 2D-batch normalization.

At the end of each resolution branch, we employ a
head module consisting of a flatten layer and a linear
layer. The flatten layer flattens the last two dimensions of
Ydi ∈ R2N× Ki×d, transforming the data from R2N×Ki×d to
R2N×Ki.d . Subsequently, a linear layer projects the output of
the flatten layer to YWi ∈ R2N×Ti , where Ti is the sequence
length of the predicted coefficient series YWi . To determine Ti,
we pass an auxiliary series with the shape R2N×1 through the
multi-level wavelet decomposition module at the initialization
of the model. The sequence lengths of the output coefficient
series are used as Ti for the corresponding resolution branch.

After obtaining the estimated approximation coefficient se-
ries YAr ∈ R2N×Tr and detail coefficient series YDi ∈
R2N×Ti , i = 1, . . . , r from the resolution branches, we employ
a multi-level wavelet reconstruction module to reconstruct
the estimated positions Y . After obtaining position estimates,
we apply a correction module with the learnable weights



K1 ∈ R2N and bias K2 ∈ R2N using the formula: Ŝ =
(Y T ⊙ K1 + K2) ∈ R1×2N , where ⊙ denotes the element-
wise multiplication.

IV. EXPERIMENTAL SETUP

We consider an environment where nodes move downward
along an inclined surface. Initially, node velocities are minimal
but abruptly increase at some point in time and maintain high
speeds until the end, similar to the situations observed in
landslide monitoring systems. We define the inclined surface
with x and y coordinates ranging from −10m to 10m and
a 30-degree slope while the range of z coordinate depends
on the slope angle. Since we set a constant value for the
slope angle and will know it in practical applications, we only
need to estimate the x, y coordinates of the nodes’ positions.
Using the estimated x, y coordinates and the slope angle,
we can determine the z-coordinate of the nodes’ positions.
We simulate this environment using our simulator, explained
in the next subsection, to assess our model’s performance.
The experimental setup comprises 9 nodes with initial x, y
coordinates of (-8.5, 10.0), (-7.0, 10.0), (-4.5, 10.0), (-1.5,
10.0), (1.0, 9.5), (2.5, 9.3), (5.0, 9.8), (6.5, 9.8), and (8.5, 9.4),
along with 2 stationary interrogators positioned at fixed x, y, z
coordinates of (-12.0, 12.0, 10.0) and (12.0, 12.0, 10.0).

A. Simulator

The simulator of the system was derived from the electro-
magnetic properties of signals from both the interrogators and
the nodes in our system. This simulator was generated using
the MATLAB software. Our knowledge of these properties
allowed us to determine the received power level at each
interrogator based on the positions of the nodes and the input
transmitted power.

In this free space simulator, we assign each interrogator
and each node to a position in free space. We can also
assign the sensors an orientation. With this, we can calculate
the relative position of each node to the interrogator. This
allows us to calculate how much gain the interrogating signal
experiences relative to node position. We also take into account
the polarization effect based on the initial orientation assigned
to sensors. This allows us to include the influence of all
polarization losses.

The simulator tracks the free space path loss to ensure
we consider losses of the signal traveling to the node. The
simulator considers the gain of the node sensors based on
the interrogator position. It also considers the conversion loss
due to the conversion of the first harmonic in the system to
the second harmonic. The main reason for using a second
harmonic system is to isolate the transmit signal from the
receiving signal, thereby preventing adverse effects such as
backscattering.

The free space path loss for the second harmonic is included
in the simulation thereby providing us with enough information
to determine the power level at the interrogators. To determine
the influence of multiple nodes in the system, the simulator
tracks the phase change of the signal from interrogator to node

for the first harmonic and from node to interrogator for the
second harmonic. Knowledge of both the phase and power
allows the simulator to calculate the incident voltages.

The simulator performs a summation of these incident
voltages before converting the total voltage back to power
since we know the impedance of the interrogating antenna.
The resulting power is the measurement that is comparable to
the data we receive in practice.

Fig. 3: Velocities of node-1, with u1, u2, u3, and u4 are set
to 1, 1.5, 5, and 5.5, are shown in the first two sub-figures.
The last two sub-figures illustrate the cumulative power signals
received by the two interrogators.

B. Dataset

We utilize our simulator to generate the dataset based on a
velocity model defined by the following equations:

Vx = ϵx (1)

Vy =
a

1 + e−c(t−b)
+ ϵy (2)

Here, Vx ∈ R1×N and Vy ∈ R1×N represent the velocities
of N nodes in the x and y direction, respectively. The
random variable a ∈ R1×N , uniformly distributed between
u1 and u2, corresponds to the magnitude of the velocities,
while b ∈ R1×N , uniformly distributed between u3 and u4,
corresponds to the onset time of the velocity increase. The
terms ϵx and ϵy represent the zero-mean Gaussian noise in the
velocities, t denotes the time, and c is a constant parameter.



Fig. 4: Estimated nodes’ positions of our proposed model and unscented Kalman filter with zero velocity assumption for the test
dataset-2.

At the start of the node movements, we initialize a and b for
all nodes individually and maintain the values throughout the
movement. At each time step, with a time sampling interval dt,
we sample the noise ϵx and ϵy from the Gaussian distribution
and add to the velocities. Following the velocity equations,
nodes are moved from their initial positions down the slope.
We record the interrogators’ cumulative power with the nodes’
locations for each time step. Each sample in the dataset has 20
features representing the locations of 9 nodes by 18 features
and the cumulative power of 2 interrogators by the remaining
2 features. Among all nodes, the velocity of node-1 and the
cumulative received powers are presented in Fig. 3.

We run the simulator three times to create the training
dataset while we generate the validation dataset from a sin-
gle run. To evaluate the model’s performance, we generate
multiple test datasets, each corresponding to a separate sim-
ulator run. We use different u1, u2, u3, and u4 values when

generating the training, validation, and testing datasets. The
initial positions of the nodes and the interrogators’ positions
are consistent across all datasets since these positions will be
known in practical applications. The dataset configurations are
given in Table I.

TABLE I: Specifications of the datasets.

Dataset Samples u1 u2 u3 u4 c

Training 8887 1 1.5 1 2 4
Validation 2337 2 2.5 3 3.5 4
Testing-1 2234 2.5 3 4 4.5 4
Testing-2 3766 1 1.5 5 5.5 4
Testing-3 3159 1.5 2 5.5 6 4
Testing-4 2224 1.5 2 0.5 1 4

C. Baseline
As the relation between the nodes’ position and the received

power signal is nonlinear, we employ the unscented Kalman



filter (UKF) state estimation method following the techniques
presented in [13]. The UKF is well-suited for non-linear
systems and provides a recursive state estimation. In our case,
the state equation can be defined as,

St = f(St−1, vt−1) +wt−1 (3)

Here, St−1 and vt−1 represent the positions and the velocity
of the nodes at time step (t−1), respectively. wt−1 denotes the
process noise at time step (t−1), while f(.) is the linear state
transition function. The measurement equation can be defined
as,

pt = h(St) + et (4)

Here, pt represents the observed cumulative powers, and et
represents the measurement noise at time step t. The non-linear
measurement function h(.) is implemented using our simulator.

Since we do not have access to the nodes’ velocity, we
estimate the average velocity for the nodes by leveraging the
history of their estimated positions. However, in our analysis,
we find that UKF performs well when we assume zero velocity
for our problem.

D. Evaluation Metric

We assess our model’s performance using the mean square
error (MSE) metric, which compares the estimated and actual
positions of the nodes in their original scale.

V. RESULTS

We evaluate the performance of our proposed model in
estimating the positions of nodes along an inclined surface by
comparing it with the unscented Kalman filter-based estimation
method. To ensure a fair comparison, we employ multiple
test datasets, each featuring unique velocity patterns for the
nodes. A look-back window of 256 past instances is used in
all experiments to predict the next instance.

In Table II, we compare our model with the UKF method
based on mean squared error (MSE) values. The results show
that our proposed model outperforms the UKF model across
all the test datasets. Since the UKF estimates node positions
recursively, its estimation error gradually increases in our
problem as the nodes move downward. Additionally, the UKF
provides accurate estimation for only a few nodes, whereas our
model achieves good estimations for almost all nodes. Fig.
4 illustrates the estimated positions for test dataset-2. From
Fig. 4, it is evident that the UKF struggles to provide good
estimations for both the x and y coordinates, whereas our
proposed model consistently delivers good estimations for the
x coordinate.

VI. CONCLUSION

It is difficult to estimate the positions of the nodes from
data that does not have node-specific information. To address
this problem, we propose a mixer-based model to estimate the
current positions of the nodes from the history of the cumu-
lative power signals received by interrogators. We compare
the performance of our model with the unscented Kalman

TABLE II: Performance comparison of the proposed model
and UKF-based method.

Proposed Model UKF

MSE

Test dataset-1 0.500764 8.748231
Test dataset-2 1.778423 3.809604
Test dataset-3 0.763363 8.226274
Test dataset-4 0.735885 12.49711

filter-based estimation method. Through extensive evaluations
using our simulator, we find that our model consistently
outperforms the UKF method across all test datasets. Although
our experiments focus on nodes moving along an inclined
surface, our model applies to flat and inclined surfaces.
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