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Asymptotic Upper Bound on False Alarm Rate

Theorem 1. The false alarm rate of the proposed algorithm
is asymptotically (as M2 →∞) upper bounded by

FAR ≤ e−ω0h, (1)

where h is the decision threshold, and ω0 > 0 is given by

ω0 = vm − θ −
1

φ
W
(
−φθe−φθ

)
, (2)

θ =
vm

evmd
m
α
.

In (2),W(·) is the Lambert-W function, vm = πm/2

Γ(m/2+1) is
the constant for the m-dimensional Lebesgue measure (i.e.,
vmd

m
α is the m-dimensional volume of the hyperball with

radius dα), and φ is the upper bound for δt.

Proof.

In (Basseville & Nikiforov, 1993)[page 177], for CUSUM-
like algorithms with independent increments, such as the
proposed detector with independent δt, a lower bound on
the average false alarm period is given as follows

E∞[T ] ≥ eω0h,

where h is the detection threshold, and ω0 ≥ 0 is the solu-
tion to E[eω0δ

t

] = 1.

To analyze the false alarm period, we need to consider the
nominal case. In that case, since there is no anomalous
object at each time t, the selection of object with maximum
kNN distance in δt = (maxi{dti})m − dmα does not neces-
sarily depend on the previous selections due to lack of an
anomaly which could correlate the selections. Hence, in the
nominal case, it is safe to assume that δt is independent over
time.

We firstly derive the asymptotic distribution of the frame-
level anomaly evidence δt in the absence of anomalies. Its
cumulative distribution function is given by

P (δt ≤ y) = P ((max
i
{dti})m ≤ dmα + y).

It is sufficient to find the probability distribution of
(max

i
{dti})m, the mth power of the maximum kNN dis-

tance among objects detected at time t. As discussed above,
choosing the object with maximum distance in the absence
of anomaly yields independent m-dimensional instances
{xt} over time, which form a Poisson point process. The

nearest neighbor (k = 1) distribution for a Poisson point
process is given by

P (max
i
{dti} ≤ r) = 1− exp(−Λ(b(xt, r)))

where Λ(b(xt, r)) is the arrival intensity (i.e., Poisson rate
measure) in the m-dimensional hypersphere b(xt, r) cen-
tered at xt with radius r (Chiu et al., 2013). Asymptoti-
cally, for a large number of training instances as M2 →∞,
under the null (nominal) hypothesis, the nearest neighbor
distance maxi{dti} of xt takes small values, defining an
infinitesimal hyperball with homogeneous intensity λ = 1
around xt. Since for a homogeneous Poisson process the
intensity is written as Λ(b(xt, r)) = λ|b(xt, r)| (Chiu et al.,
2013), where |b(xt, r)| = πm/2

Γ(m/2+1)r
m = vmr

m is the
Lebesgue measure (i.e., m-dimensional volume) of the hy-
perball b(xt, r), we rewrite the nearest neighbor distribution
as

P (max
i
{dti} ≤ r) = 1− exp (−vmrm) ,

where vm = πm/2

Γ(m/2+1) is the constant for the m-
dimensional Lebesgue measure.

Now, applying a change of variables we can write the prob-
ability density of (maxi{dti})m and δt as

f(maxi{dti})m(y) =
∂

∂y
[1− exp (−vmy)] ,

= vm exp(−vmy),

fδt(y) = vm exp(−vmdmα ) exp(−vmy) (3)

Using the probability density derived in (3), E[eω0δ
t

] = 1
can be written as

1 =

∫ φ

−dmα
eω0yvme

−vmdmα e−vmydy,

evmd
m
α

vm
=

∫ φ

−dmα
e(ω0−vm)ydy,

=
e(ω0−vm)y

ω0 − vm

∣∣∣∣∣
φ

−dmα

,

=
e(ω0−vm)φ − e(ω0−vm)(−dmα )

ω0 − vm
, (4)

where −dmα and φ are the lower and upper bounds forδt =
(maxi{dti})m − dmα . The upper bound φ is obtained from
the training set.
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Asymptotic Upper Bound on False Alarm Rate

As M2 →∞, since the mth power of (1− α)th percentile
of nearest neighbor distances in training set goes to zero,
i.e., dmα → 0, we have

e(ω0−vm)φ =
evmd

m
α

vm
(ω0 − vm) + 1.

We next rearrange the terms to obtain the form of eφx =

a0(x + θ) where x = ω0 − vm, a0 = evmd
m
α

vm
, and

θ = vm
evmd

m
α

. The solution for x is given by the Lambert-W
function (Scott et al., 2014) as x = −θ− 1

φW(−φe−φθ/a0),
hence

ω0 = vm − θ −
1

φ
W
(
−φθe−φθ

)
.

Finally, since the false alarm rate (i.e., frequency) is the
inverse of false alarm period E∞[T ], we have

FAR ≤ e−ω0h,

where h is the detection threshold, and ω0 is given above.

Although the expression for ω0 looks complicated, all the
terms in (2) can be easily computed. Particularly, vm is
directly given by the dimensionality m, dα comes from the
training phase, φ is also found in training, and finally there
is a built-in Lambert-W function in popular programming
languages such as Python and Matlab. Hence, given the
training data, ω0 can be easily computed, and based on
Theorem 1, the threshold h can be chosen to asymptotically
achieve the desired false alarm period as follows

h =
− log(FAR)

ω0
. (5)
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